Supporting Information

- pH-Responsive Emulsions with β-Cyclodextrin/Vitamin E Assembled Shells for Controlled Delivery of Polyunsaturated Fatty Acids Yongkang Xi¹, Yuxiao Zou²,Zhigang Luo^{1,3,4*}, Liang Qi^{1*} and Xuanxuan Lu⁵
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
- Sericultural & Agri-Food Research Institute GAAS, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, People's Republic of China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
- Department of Food Science, Rutgers, The State University of New Jersey, New Jersey 08901, United States

*Corresponding author:

Zhigang Luo, Tel: +86-20-87113845, Fax: +86-20-87113848. *E-mail*: <u>zhgluo@scut.edu.cn</u>

Liang Qi, Tel: +86-13450444296, *E-mail*: feqiliang@mail.scut.edu.cn

Figure S1. FT-IR spectra of nanoparticles.

Figure S2. X-ray diffraction pattern of nanoparticles.

Fig S3. (I) ¹³C NMR spectra of β -CD (DS=0) and ODS- β -CD-3(DS=0.019), respectively; (II) a 2D ¹H– ¹H two-dimensional Nuclear Overhauser Enhancement Spectroscopy (NOESY) spectrum of the ODS- β -CD-3 in D₂O. (III) section is an enlarged section of the (A) section in the (II) section (Data is taken from our previous research)^[1].

Figure S4. Photographs of solution prepared by β -CD-VE (a) and ODS- β -CD-VE (b) treated with different pH (2, 4, 7).

Figure S5. SEM of ODS- β -CD-VE treated with different pH 2(a), 4(b), 7(c); And TEM of ODS- β -CD-VE treated with different pH 3 (d) (Using pH 3 substitute pH 2, because the copper mesh was eroded at pH 2.), 7 (e) respectively; (f) the magnification of (d),(g) the magnification of (e).

Figure S6. Photographs and optical micrographs of the emulsion stabilized by β -CD-VE with different pH (2, 4, 7), particle concentration was 0.5 wt%, were taken after 1 h(a) and 30days(b) of quiescent storage.

Figure S7. Photographs of the emulsion stabilized by β -CD-VE (c) and ODS- β -CD-VE (d) with different pH 4, particle concentration was 0.5 wt%, were taken after 30days of quiescent storage. β -CD-VE stabilized emulsion showed black spots in the emulsion after storage for 30 days, but such bad phenomenon didn't appear in emulsion stabilized by ODS- β -CD-VE.

Figure S8. Microstructure integrity observation of β -CD-VE along with SGF (top row)

SIF digestion (bottom row) at 0, 30, 60, 90, and 120 min.

Functional	δ/ppm			
groups	β-CD	ODS-β-CD		
C-1	101.87	102.15(+0.28)		
C-2	72.11	72.18(+0.07)		
C-3	73.12	73.23(+0.11)		
C-4	81.17	81.15(-0.02)		
C-5	71.87	71.95(+0.08)		
C-6	60.35	60.18(-0.17)		

Table S1. ¹³C NMR spectrum assignment of β -CD and ODS- β -CDs

Table S2. NOESY assignment of ODS-β-CD-VE

Functional	δ/ppm	Functional	δ/ppm	Functional	δ/ppm
groups		groups		groups	
1′	4.82	6	1.93-1.99	G	1.50-1.56
2'	3.29	7	1.23	J	1.39
3',6'	3.61-3.68	9	0.85	K	1.23
4'	3.34	А	2.58	L	1.21
5'	3.55	В	2.31	М	1.12
7'	3.74	С	2.09	Ν	1.05
8'	3.70	D	2.02	Р	0.87
9'	4.46	E	1.97	Q	0.86
1, 2	5.30-5.55	F	1.81-1.73	R	0.85

Reference

[1] Xi, Y.; Luo, Z.; Lu, X.; Peng, X., Modulation of Cyclodextrin Particle Amphiphilic Properties to Stabilize Pickering Emulsion. *J. Agric. Food Chem.* **2018**, *66*, 228.