Supporting information

Conformationally Switchable Glycosyl Donors

Thomas Holmstrøm and Christian Marcus Pedersen*

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Table of contents

Complexation studies of 1	S2
Complexation studies of 2	S5
Complexation studies of 18	S6
UV-Vis titration of 1	S8
UV-Vis titration of 2	S8
Competition experiments	S9
NMR Spectra	S11

Complexation studies of 1

Figure S1. ¹H-NMR spectrum of glycosyl donor 1 and glycosyl donor 1 with zinc(II) triflate (1 equiv.)

Table S1. *J*-couplings of glycosyl donor 1 and 1•Zn.

Glycosyl donor	δ(H1)/ <i>J</i> ₁₋₂ (Hz)	δ(H2)/J ₂₋₃ (Hz)	δ(H3)/J ₃₋₄ (Hz)	δ(H4)/J ₄₋₅ (Hz)	δ(H5)/ <i>J</i> 5-6(Hz)
1	4.84/9.8	3.53/8.8	3.85/9.9	3.67/9.8	3.65/4.8, 1.7
1•Zn	5.22/10.6	2.94/4.1	4.23/≈0	3.29/≈0	4.23/≈0, 4.9

Figure S2. ¹H-NMR titration of glycosyl donor 1 with zinc(II) triflate

Figure S3. DOSY spectrum of glycosyl donor 1 in acetonitrile-*d*₃:

Figure S4. DOSY spectrum of glycosyl donor 1 + 0.5 equiv. Zn(OTf)₂ in acetonitrile-*d*₃:

Figure S5. DOSY spectrum of glycosyl donor 1 + 1.0 equiv. Zn(OTf)₂ in acetonitrile-*d*₃:

Complexation studies of 2

Figure S6. ¹H-NMR spectrum of glycosyl donor 2 and glycosyl donor 2 with zinc(II) triflate (1 equiv.)

Table S2. J-couplings of glycosyl donor 2 and 2•Zn.

Glycosyl donor	δ(H1)/ <i>J</i> ₁₋₂ (Hz)	δ(H2)/J ₂₋₃ (Hz)	δ(H3)/J ₃₋₄ (Hz)	δ(H4)/ <i>J</i> 4-5(Hz)	δ(H5)/J ₅₋₆ (Hz)
2	4.87/9.8	3.59/8.7	3.82/9.3	3.70/9.7	3.65/1.8, 4.8
2•Zn	4.38/8.2	4.03/1.3	4.35/3.3	3.29/≈0	4.16/6.2, 8.1

Figure S7.¹H-NMR titration of glycosyl donor 2 with zinc(II) triflate

Complexation studies of 18

Figure S8. ¹H-NMR spectrum of glycosyl donor 18 and glycosyl donor 18 with zinc(II) triflate (0.5 equiv.)

Table S3. *J*-couplings of glycosyl donor 18, 18₂•Zn and 18'₂•Zn.

Glycosyl donor	δ(H1)/ <i>J</i> 1-2(Hz)	δ(H2)/J ₂₋₃ (Hz)	δ(H3)/J ₃₋₄ (Hz)	δ(H4)/J4-5(Hz)	δ(H5)/J ₅₋₆ (Hz)
18	4.85/9.8	3.50/8.6	3.78/9.1	3.74/9.1	3.67/4.6, 2.0
182•Zn	4.71/9.9	3.41/8.3	4.14/10.3	3.71/10.3	4.14/5.3, n/a
18'2•Zn	4.62/n/a	3.36/8.7	3.40/8.6	3.62/9.3	3.15/8.0, n/a

Figure S9.¹H-NMR titration of glycosyl donor 18 with zinc(II) triflate

Figure S10. DOSY spectrum of glycosyl donor 18 in acetonitrile-*d*₃:

Figure S11. DOSY spectrum of glycosyl donor 18 + 0.5 equiv. Zn(OTf)₂ in acetonitrile-*d*₃:

UV-Vis titration of 1

Figure S12. UV-Vis titration of glycosyl donor 1 with zinc(II) triflate (a), Plot of absorbance at 314 nm against the ratio of glycosyl donor 1 to Zn^{2+} ions (b).

UV-Vis titration of 2

Figure S13. UV-Vis titration of glycosyl donor 2 with zinc(II) triflate (a), Plot of absorbance at 314 nm against the ratio of glycosyl donor 2 to Zn²⁺ ions (b).

Competition experiments

A mixture of glycosyl donor **1** (18 mg, 0.023 mmol, 1 equiv.) and glycosyl donor **18** (18 mg, 0.023 mmol, 1 equiv.) was dissolved in chloroform-*d* and a ¹³C-NMR spectrum (126 MHz, 512 scans) was recorded. The glycosyl donor solution was then concentrated under reduced pressure and co evaporated several times with toluene and dried under reduced pressure on a Schlenk line for 1 h together with 3 Å molecular sieves. The glycosyl donor mixture was then dissolved in MeCN/CH₂Cl₂ (2:1) together with 2-methoxymethanol (8.7 mg, 0.011 mmol, 5 equiv.) and the resulting mixture cooled to -30° C. A solution of DMTST in CH₂Cl₂ (59 µL, 387 mM, 1 equiv.) was added after which the reaction mixture was allowed to reach rt. After 2 h, the reaction was stopped by addition of Et₃N, diluted with Et₂O, filtered and extracted several times with water and brine. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo* to afford the mixture of starting materials and glycosides.

The experiment was repeated in the presence of 2 equiv. zinc(II) triflate added after the co evaporation with toluene.

¹³C-NMR spectra of a 1:1 mixture of glycosyl donor **1** and **18** before and after a glycosylation *without* zinc(II) triflate:

¹³C-NMR spectra of a 1:1 mixture of glycosyl donor **1** and **18** before and after a glycosylation *with* zinc(II) triflate:

NMR Spectra

¹H-NMR (500 MHz) spectrum of **5** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **4** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) spectrum of **4** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **23** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) spectrum of **23** in chloroform-*d*.

ppm

¹³C{¹H}-NMR (126 MHz) spectrum of **24** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **3** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) spectrum of **3** in chloroform-*d*.

ppm

¹H-NMR (500 MHz) spectrum of **7** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **6** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) spectrum of **6** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **1** in chloroform-*d*.

$^{13}\text{C}\{^{1}\text{H}\}\text{-NMR}$ (126 MHz) spectrum of $\boldsymbol{1}$ in chloroform-d.

COSY spectrum of **1** in chloroform-*d*.

HSQC spectrum of **1** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **2** in chloroform-*d*.

$^{13}\text{C}\{^{1}\text{H}\}\text{-NMR}$ (126 MHz) spectrum of **2** in chloroform-*d*.

COSY spectrum of **2** in chloroform-*d*.

HSQC spectrum of **2** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **1-Zn** in acetonitrile-*d*₃.

¹³C{¹H}-NMR (126 MHz) spectrum of **1-Zn** in acetonitrile-*d*₃.

COSY spectrum of **1-Zn** in acetonitrile-*d*₃.

HSQC spectrum of **1-Zn** in acetonitrile-*d*₃.

¹³C{¹H}-NMR (126 MHz) spectrum of **2-Zn** in acetonitrile-*d*₃.

COSY spectrum of **2**•**Zn** in acetonitrile-*d*₃.

HSQC spectrum of **2**•**Zn** in acetonitrile-*d*₃.

¹H-NMR (500 MHz) spectrum of **15** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **16** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **17** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) spectrum of **17** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **18** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) (APT) spectrum of **18** in chloroform-*d*.

COSY spectrum of **18** in chloroform-*d*.

HSQC spectrum of **18** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **18₂•Zn** in acetonitrile-*d*₃.

¹³C{¹H}-NMR (126 MHz) spectrum of **18₂•Zn** in acetonitrile-*d*₃.

COSY spectrum of **18**₂**•Zn** in acetonitrile-*d*₃.

HSQC spectrum of **18₂•Zn** in acetonitrile-*d*₃.

¹H-NMR (500 MHz) spectrum of **19** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) (APT) spectrum of **19** in chloroform-*d*.

COSY spectrum of **19** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **20** in chloroform-*d*.

$^{13}\text{C}\{^{1}\text{H}\}\text{-NMR}$ (126 MHz) spectrum of 20 in chloroform-d.

COSY spectrum of **20** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **21** in chloroform-*d*.

¹H-NMR (500 MHz) spectrum of **22** in chloroform-*d*.

¹³C{¹H}-NMR (126 MHz) (APT) spectrum of **22** in chloroform-*d*.

COSY spectrum of **22** in chloroform-*d*.

HSQC spectrum of **22** in chloroform-*d*.

