Supporting Information

Rhodium-Catalyzed Amidation of the Cage B(4)–H Bond in *o*-Carboranes with Dioxazolones by Carboxylic Acid-Assisted B(4)–H Bond Activation

Yonghyeon Baek,[†] Suhui Kim,[†] Jeong-Yu Son,[†] Kooyeon Lee,[‡] Dongwook Kim,^{§,¶} and Phil Ho Lee^{†,*}

- [†] Y. Baek, S. Kim, Dr. J.-Y. Son, Prof. Dr. P. H. Lee Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea E-mail: phlee@kangwon.ac.kr
- [‡] Prof. Dr. K. Lee, Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
- § Dr. D. Kim, Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.
- [¶] Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Contents

1. Experimental Section ······S3
2. Procedure of the Rh-Catalyzed B(4)–H Amidation of <i>o</i> -Carborane······S4
3.Two-Fold Selective B(4)–H Amidation Reaction ······S15
4. Comparison of TsN ₃ and dioxazolone in B-H activation
5. NMR Study for HSQCGP(2D NMR spectrum)······S18
6. X-ray Crystallography ······S19
7. References ······S28
8. ¹ H, ¹³ C, ¹¹ B, and ¹⁹ F NMR data

1. Experimental Section

General:

Commercial available reagents were used without purification. All reaction mixtures were stirred magnetically and were monitored by thin-layer chromatography using silica gel pre-coated glass plates, which were visualized with UV light and then, developed using a solution of KMnO4. Flash column chromatography was carried out using silica gel (230-400 mesh). ¹H NMR (400 MHz), ¹³C{¹H} NMR (100 MHz), ¹¹B NMR (128 MHz), ¹¹B{¹H} NMR (128 MHz), and ¹⁹F NMR (377 MHz) spectra were recorded on NMR spectrometer. Deuterated chloroform was used as the solvent and chemical shift values (δ) are reported in parts per million relative to the residual signals of this solvent [δ 7.26 for ¹H (chloroform-*d*)]. Infrared spectra were recorded on FT-IR spectrometer as either a thin film pressed between two sodium chloride plates or as a solid suspended in a potassium bromide disk. High resolution mass spectra (HRMS) were obtained by fast atom bombardment (FAB) using a double focusing magnetic sector mass spectrometer and electron impact (EI) ionization technique (magnetic sector-electric sector double focusing mass analyzer) from the KBSI (Korea Basic Science Institute). Melting points were determined in open capillary tube.

2. Procedure of the Rh-Catalyzed B(4)-H Amidation of o-Carborane

A dried test tube equipped with a magnetic stirrer was charged with carboxylated *o*-carborane 1 (0.2 mmol), 1,4,2-dioxazol-5-one 2 (0.24 mmol), $[Cp^*RhCl_2]_2$ (2.5 mol %, 3.1 mg), AgSbF₆ (10.0 mol %, 6.9 mg), NaOAc (0.3 mmol, 24.6 mg), and DCE (2.0 mL) under a nitrogen atmosphere. After being stirred at 80 °C for 6 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel.

3a: Yield: 40.9 mg (95%); $R_f = 0.3$ (EtOAc:CH₂Cl₂:Hexane = 2:1:1); White solid; Melting point: 110-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.30 (s, 1H), 4.95 (s, 1H), 2.05 (s, 3H), 2.03 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.6, 69.3, 61.1, 26.0, 25.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.58 - 4.50 (m, 2B), -7.36 (s, 1B), -10.00 - -12.05 (m, 6B), -15.58 (s, 1B); IR (film): 3415, 3085, 2616, 2579, 1643, 1465, 1370 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₅H₁₇B₁₀NO 218.2319; Found 218.2321.

3b: Yield: 48.4 mg (97%); $R_f = 0.3$ (EtOAc: Hexane = 1:5); White solid; Melting point: 84-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.19 (s, 1H), 4.99 (s, 1H), 2.20 (t, J = 7.4 Hz, 2H), 2.04 (s, 3H), 1.70-1.60 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.5, 69.3, 61.2, 40.0, 26.0, 19.0, 13.8; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.46 - -4.53 (m, 2B), -7.39 (s, 1B), -9.92 - -12.01 (m, 6B), -15.61 (s, 1B); IR (film): 3418, 2961, 2928, 2585, 1659, 1379 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₇H₂₁B₁₀NO 246.2632; Found 246.2636.

3c: Yield: 57.4 mg (98%); $R_f = 0.3$ (EtOAc:Hexane = 1:5); White solid; Melting point: 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 2H), 7.32-7.28 (m, 1H), 7.25-7.23 (m, 2H), 5.20 (s, 1H), 4.96 (s, 1H), 3.58 (s, 2H), 2.03 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 134.8, 129.5, 129.1, 127.5, 69.3, 61.1, 45.0, 26.0; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.46 - -4.42 (m, 2B), -7.41 (s, 1B), -9.98 - -12.02 (m, 6B), -15.49 (s, 1B); IR (film): 3297, 3044, 2588, 2570, 1472, 1321, 932, 803, 707 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₁H₂₁B₁₀NO 294.2632; Found 294.2631.

3d: Yield: 52.7 mg (94%); $R_f = 0.5$ (EtOAc:Hexane = 1:5); White solid; Melting point: 148-150 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (m, 2H), 7.55-7.50 (m, 1H), 7.47-7.43 (m, 2H), 5.97 (s, 1H), 5.11 (s, 1H), 2.08 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.1, 134.6, 132.0, 128.8, 127.3, 69.4, 61.3, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.08 - -4.33 (m, 2B), -7.19 (s, 1B), -9.76 - -11.91 (m, 6B), -15.35 (s, 1B); IR (film): 3237, 3124, 2554, 2530, 1647, 1471, 961, 833, 653 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₉B₁₀NO 280.2475; Found 280.2474.

3e: Yield: 56.7 mg (97%); $R_f = 0.3$ (EtOAc:Hexane = 1:5); White solid; Melting point: 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.38 (m, 1H), 7.34-7.30 (m, 1H), 7.23-7.20 (m, 2H), 5.55 (s, 1H), 5.12 (s, 1H), 2.45 (s, 3H), 2.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.1, 137.0, 136.0, 131.3, 130.3, 126.7, 126.0, 69.5, 61.2, 26.1, 20.0; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.36 - -4.36 (m, 2B), -7.20 (s, 1B), -9.84 - -11.91 (m, 6B), -15.42 (s, 1B); IR (film): 3258, 2918, 2586, 1665, 1426, 1245, 1157, 1024, 794, 752, 691 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₁H₂₁B₁₀NO 294.2632; Found 294.2635.

3f: Yield: 58.7 mg (99%); $R_f = 0.3$ (EtOAc:Hexane = 1:5); White solid; Melting point: 173-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.59-7.56 (m, 1H), 7.34-7.33 (m, 2H), 5.93 (s, 1H), 5.12 (s, 1H), 2.41 (s, 3H), 2.09 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.3, 138.6, 134.6, 132.8, 128.7, 128.0, 124.3, 69.4, 61.3, 26.1, 21.5; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.08 - -4.37 (m, 2B), -7.23 (s, 1B), -9.75 - -11.93 (m, 6B), -15.46 (s, 1B); IR (film): 3327, 2924, 2585, 1643, 1474, 928, 882, 741, 633 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₁H₂₁B₁₀NO 294.2632; Found 294.2631.

3g: Yield: 57.1 mg (98%); $R_f = 0.5$ (EtOAc:Hexane = 1:5); White solid; Melting point: 143-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H), 5.92 (s, 1H), 5.12 (s, 1H), 2.41 (s, 3H), 2.08 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.0, 142.5, 131.8, 129.4, 127.3, 69.4, 61.3, 26.0, 21.6; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.00 - -4.37 (m, 2B), -7.23 (s, 1B), -9.77 - -11.95 (m, 6B), -15.47 (s, 1B); IR (film): 3216, 3090, 2587, 1638, 1472, 1278, 935, 751, 684 cm⁻¹; HRMS (FAB) m/z: [M + H]⁺ Calcd for C₁₁H₂₁B₁₀NO 294.2632; Found 294.2631.

3h: Yield: 62.8 mg (98%); $R_f = 0.4$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 64-68 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.4, 2H), 5.93 (s, 1H), 5.13 (s, 1H), 2.08 (s, 3H), 1.34 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.0, 155.6, 131.7, 127.1, 125.7, 69.4, 61.3, 35.1, 31.3, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.02 - 4.41 (m, 2B), -7.25 (s, 1B), -

9.78 - -11.94 (m, 6B), -15.43 (s, 1B); IR (film): 8428, 3217, 2964, 2588, 1639, 1474, 1272, 903, 851, 773 cm⁻¹ HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₇B₁₀NO 336.3101; Found 336.3097.

3i: Yield: 58.4 mg (94%); $R_f = 0.2$ (EtOAc:Hexane = 1:5); White solid; Melting point: 159-161 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.9, 2H), 6.93 (d, J = 8.8 Hz, 2H), 5.90 (s, 1H), 5.11 (s, 1H), 3.86 (s, 3H), 2.07 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.6, 162.7, 129.2, 126.8, 113.9, 69.3, 61.3, 55.6, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.00 - -4.43 (m, 2B), -7.28 (s, 1B), -9.80 - -11.96 (m, 6B), -15.50 (s, 1B); IR (film): 3425, 3273, 2966, 1581, 1637, 1440, 1253, 903, 844, 767 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₁H₂₁B₁₀NO 310.2581; Found 310.2578.

3j: Yield: 44.9 mg (71%); $R_f = 0.2$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); Ivory solid; Melting point: 158-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 9.0 Hz, 2H), 5.82 (s, 1H), 5.15 (s, 1H), 3.03 (s, 6H), 2.07 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.9, 152.8, 128.9, 121.0, 111.1, 69.2, 61.4, 40.2, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -2.66 (s, 1B), -4.58 (s, 1B), -7.27 (s, 1B), -9.83 - -11.99 (m, 6B), -15.75 (s, 1B); IR (film): 3212, 2577, 2259, 1607, 1195, 945, 883, 763, 639 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₂H₂₄B₁₀N₂O 323.2897; Found 323.2899.

3k: Yield: 58.5 mg (99%); $R_f = 0.6$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 146-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.79 (m, 2H), 7.15-7.10 (m, 2H), 5.89 (s, 1H), 5.08 (s, 1H),

2.09 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.1, 165.1 (d, J = 252.6 Hz), 130.8 (d, J = 2.8 Hz), 129.7 (d, J = 9.5 Hz), 115.8 (d, J = 22.0 Hz), 69.5, 61.3, 26.0; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.17 - -4.25 (m, 2B), -7.20 (s, 1B), -9.80 - -11.92 (m, 6B), -15.35 (s, 1B); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.02; IR (film): 3290, 3090, 2639, 2604, 1638, 1475, 1306, 905, 822, 720 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₈B₁₀NOF 298.2381; Found 298.2383.

31: Yield: 69.1 mg (99%); $R_f = 0.4$ (EtOAc:Hexane = 1:5); White solid; Melting point: 149-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (t, J = 1.9 Hz, 1H), 7.65 (dt, J = 7.7 Hz, J = 1.4 Hz, 1H), 7.50 (tq, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 5.90 (s, 1H), 5.06 (s, 1H), 2.09 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.8, 136.5, 135.0, 132.0, 130.1, 127.7, 125.3, 69.5, 61.2, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.29 - -4.20 (m, 2B), -7.21 (s, 1B), -9.83 - -11.89 (m, 6B), -15.25 (s, 1B); IR (film): 3270, 3087, 2573, 1641, 1289, 908, 807, 734, 680 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₈B₁₀NOCl 314.2085; Found 314.2085.

3m: Yield: 69.4 mg (99%); $R_f = 0.4$ (EtOAc:Hexane = 1:5); White solid; Melting point: 136-138 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 5.92 (s, 1H), 5.07 (s, 1H), 2.08 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.1, 138.3, 133.0, 129.0, 128.7, 69.5, 61.2, 26.0; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.23 - 4.22 (m, 2B), -7.20 (s, 1B), -9.82 - -11.94 (m, 6B), -15.31 (s, 1B); IR (film): 3288, 2941, 2584, 1639, 1270, 903, 846, 756 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₈B₁₀NOCl 314.2085; Found 314.2089.

3n: Yield: 65.9 mg (93%); $R_f = 0.4$ (EtOAc: Hexane = 1:5); White solid; Melting point: 115-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 5.97 (s, 1H), 5.06 (s, 1H), 2.08 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.2, 133.5, 132.0, 128.9, 126.8, 69.5, 61.2, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.25 - -4.26 (m, 2B), -7.22 (s, 1B), -9.81 - -11.93 (m, 6B), -15.26 (s, 1B); IR (film): 3423, 3080, 2941, 2588, 1648, 1265, 901, 843, 754 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₈B₁₀NOBr 358.1580; Found 358.1584.

30: Yield: 69.8 mg (98%); $R_f = 0.5$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 117-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 6.02 (s, 1H), 5.07 (s, 1H), 2.09 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.9, 138.0, 133.7 (q, J = 32.8 Hz), 127.8, 125.8 (q, J = 3.7 Hz), 123.6 (q, J = 263.2 Hz), 69.6, 61.2, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.36 - -4.10 (m, 2B), -7.17 (s, 1B), -9.77 - -11.89 (m, 6B), -15.20 (s, 1B); IR (film): 3216, 2589, 1644, 1234, 1066, 904, 884, 772 cm⁻¹; HRMS (FAB) m/z: [M]⁺ Calcd for C₁₁H₁₈B₁₀NOF₃ 347.2271; Found 347.2272.

3p: Yield: 76.3 mg (98%); $R_f = 0.3$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 170-172 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 8.6 Hz, 2H), 5.99 (s, 1H), 5.04 (s, 1H), 2.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.4, 138.6, 132.6, 128.0, 118.0, 115.4, 69.6, 61.2, 26.0; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.43 - -4.01 (m, 2B), -7.16 (s, 1B), -9.79 - -11.91 (m, 6B), -15.13 (s, 1B); IR (film): 3401, 3262, 2942, 2588, 1667, 1268, 905, 867, 781 cm⁻¹; HRMS (FAB) m/z: [M + H]⁺ Calcd for C₁₁H₁₈B₁₀N₂O 305.2428; Found 305.2431.

3q: Yield: 34.2 mg (53%); $R_f = 0.4$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 168-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 8.7 Hz, 2H), 5.98 (s, 1H), 5.04 (s, 1H), 2.11 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.1, 149.9, 140.3, 128.5, 124.0, 69.7, 61.2, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.53 - -3.95 (m, 2B), -7.19 (s, 1B), -9.78 - -11.89 (m, 6B), -15.12 (s, 1B); IR (film): 3310, 3074, 2943, 2577, 1654, 1523, 1482, 1195, 960, 841, 735 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₈B₁₀N₂O₃ 325.2326; Found 325.2330.

3r: Yield: 39.0 mg (79%); $R_f = 0.3$ (EtOAc:Hexane = 1:5); Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 1.0 Hz, 1H), 7.11 (d, J = 3.5 Hz, 1H), 6.52 (dd, J = 3.5 Hz, J = 1.7 Hz, 1H), 6.16 (s, 1H), 5.02 (s, 1H), 2.07 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.9, 148.0, 144.5, 115.0, 112.6, 69.4, 61.2, 26.0; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.40 - -4.21 (m, 2B), -7.20 (s, 1B), -9.78 - -11.89 (m, 6B), -15.37 (s, 1B); IR (film): 3407, 3287, 2943, 2594, 1650, 1389, 1225, 935, 869, 757 cm⁻¹; HRMS (FAB) m/z: [M + H]⁺ Calcd for C₈H₁₇B₁₀NO₂ 270.2268; Found 270.2269.

3s: Yield: 54.4 mg (96%); $R_f = 0.5$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); Purple solid; Melting point: 113-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 5.0 Hz, J = 1.0 Hz, 1H), 7.50 (dd, J = 3.8 Hz, J = 1.0 Hz, 1H), 7.09 (dd, J = 4.9 Hz, J = 3.8 Hz, 1H), 5.77 (s, 1H), 5.05 (s, 1H), 2.07 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.5, 139.7, 131.3, 128.8, 128.0, 69.4, 61.3, 26.0; ¹¹B{¹H} NMR (128 MHz,

CDCl₃) δ -3.34 - -4.29 (m, 2B), -7.27 (s, 1B), -9.80 - -11.91 (m, 6B), -15.34 (s, 1B); IR (film): 3219, 3084, 2587, 1627, 1478, 1243, 917, 883, 781 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₈H₁₇B₁₀NOS 286.2039; Found 286.2040.

3t: Yield: 63.5 mg (97%); $R_f = 0.4$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 183-185 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.95-7.83 (m, 4H), 7.60-7.53 (m, 2H), 6.10 (s, 1H), 5.16 (s, 1H), 2.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 135.0, 132.7, 131.9, 129.1, 128.7, 128.0, 127.9, 127.86, 127.0, 123.7, 69.4, 61.4, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -2.97 - -4.24 (m, 2B), -7.13 (s, 1B), -9.70 - -11.87 (m, 6B), -15.40 (s, 1B); IR (film): 3211, 2572, 1640, 1469, 1277, 949, 883, 754 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₁B₁₀NO 330.2634; Found 330.2635.

3u: Yield: 60.6 mg (95%); $R_f = 0.3$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); Blue solid; Melting point: 204-206 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 9.1 Hz, 2H), 7.68 (t, J = 9.9 Hz, 1H), 7.64 (s, 2H), 7.23 (t, J = 9.8 Hz, 2H), 6.17 (s, 1H), 5.19 (s, 1H), 2.09 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.4, 142.6, 140.4, 140.2, 140.0, 124.3, 116.6, 69.4, 61.4, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.06 - - 4.39 (m, 2B), -7.20 (s, 1B), -9.73 - -11.88 (m, 6B), -15.45 (s, 1B); IR (film): 8209, 2560, 1644, 1455, 951, 883, 735 cm⁻¹; HRMS (FAB) m/z: [M + H]⁺ Calcd for C₁₄H₂₁B₁₀NO 330.2634; Found 330.2629.

3u

5a: Yield: 65.1 mg (98%); $R_f = 0.3$ (EtOAc:CH₂Cl₂:Hexane = 1:1:15); White solid; Melting point: 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (m, 2H), 7.55-7.51 (m, 1H), 7.45 (t, J = 7.4 Hz, 2H), 5.94 (s, 1H), 5.11 (s, 1H), 2.28-2.24 (m, 2H), 1.52-1.44 (m, 2H), 1.35-1.26 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 134.7, 132.0, 128.8, 127.3, 74.6, 60.7, 38.0, 31.3, 22.2, 13.7; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.48 - -6.38 (m, 3B), -9.97 - -12.48 (m, 6B), -16.06 (s, 1B); IR (film): 3428, 3309, 2959, 2567, 1637, 1470, 998, 805, 672 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₃H₂₅B₁₀NO 322.2947; Found 322.2948.

5b: Yield: 65.0 mg (94%); $R_f = 0.6$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (m, 2H), 7.55-7.50 (m, 1H), 7.45 (t, J = 7.4 Hz, 2H), 5.94 (s, 1H), 5.24 (s, 1H), 2.17-2.09 (m, 1H), 2.00-1.93 (m, 2H), 1.85-1.82 (m, 2H), 1.68-1.65 (m, 1H), 1.28-1.03 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 134.8, 132.0, 128.8, 127.3, 80.4, 59.2, 43.6, 33.2, 33.1, 26.5, 26.4, 25.2; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.90 - -5.63 (m, 3B), -9.90 - -14.31 (m, 6B), -16.31 (s, 1B); IR (film): 3211, 2935, 2580, 1635, 1477, 931, 792, 639 cm⁻¹; HRMS (FAB) m/z: [M + H]⁺ Calcd for C₁₅H₂₇B₁₀NO 348.3103; Found 348.3099.

5c: Yield: 61.1 mg (90%); $R_f = 0.4$ (EtOAc:CH₂Cl₂:Hexane = 1:1:15); White solid; Melting point: 206-208 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.80 (m, 2H), 7.55-7.51 (m, 3H), 7.48-7.44 (m, 2H), 7.42-7.32 (m, 3H), 6.02 (s, 1H), 5.56 (s, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 134.7, 133.5, 132.1, 130.0, 129.0, 128.8, 127.7, 127.3, 75.6, 59.8; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.19 - 4.87 (m, 3B), -9.43 - 12.05 (m, 6B), -15.77 (s, 1B); IR (film): 3432, 2559, 1636, 1472, 1209, 988, 762, 701 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₅H₂₁B₁₀NO 342.2634; Found 342.2631.

5d: Yield: 56.6 mg (80%); $R_f = 0.5$ (Acetone:Hexane = 1:2); White solid; Melting point: 163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.80 (m, 2H), 7.56-7.51 (m, 1H), 7.48-7.44 (m, 2H), 7.35-7.31 (m, 2H), 7.24-7.18 (m, 2H), 5.99 (s, 1H), 5.54 (s, 1H), 2.36 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 138.9, 134.7, 133.4, 132.1, 130.8, 128.81, 128.80, 128.2, 127.3, 124.8, 75.7, 59.7, 21.5; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.20 - 4.89 (m, 3B), -9.59 - 12.08 (m, 6B), -15.70 (s, 1B); IR (film): 3429, 2576, 1643, 1442, 1207, 999, 707, 689 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₃B₁₀NO 356.2790; Found 356.2785.

5e: Yield: 53.7 mg (76%); $R_f = 0.6$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.79 (m, 2H), 7.55-7.51 (m, 1H), 7.48-7.41 (m, 4H), 7.13 (d, J = 8.0 Hz, 2H), 6.00 (s, 1H), 5.51 (s, 1H), 2.34 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 140.3, 134.7, 132.1, 130.6, 129.6, 128.8, 127.6, 127.3, 75.8, 60.0, 21.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.24 - -4.87 (m, 3B), -9.54 - -12.03 (m, 6B), -15.70 (s, 1B); IR (film): 3215, 2923, 2576, 1642, 1443, 900, 883, 710 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₃B₁₀NO 356.2790; Found 356.2785.

5f: Yield: 53.9 mg (73%); $R_f = 0.4$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 151-154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.3 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.48-7.44 (m, 4H), 6.83 (d, J = 8.9 Hz, 2H), 6.02 (s, 1H), 5.45 (s, 1H), 3.81 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃)

 δ 170.2, 160.9, 134.6, 132.0, 129.4, 128.8, 127.3, 125.5, 114.1, 75.9, 60.6, 55.6; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.17 - -4.74 (m, 3B), -9.63 - -11.93 (m, 6B), -15.62 (s, 1B); IR (film): 3214, 2935, 2578, 1644, 1259, 998, 867, 736 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₃B₁₀NO₂ 372.2737; Found 372.2741.

5g: Yield: 71.1 mg (85%); $R_f = 0.6$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.79 (m, 2H), 7.56-7.52 (m, 1H), 7.49-7.44 (m, 4H), 7.43-7.40 (m, 2H), 6.01 (s, 1H), 5.53 (s, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.3, 134.6, 132.6, 132.2, 129.3, 128.8, 127.3, 124.8, 74.6, 59.7; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.96 - -5.70 (m, 3B), -10.00 - -14.30 (m, 6B), -16.32 (s, 1B); IR (film): 3210, 2578, 1644, 1469, 1011, 883, 833, 709, 639 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₅H₂₀B₁₀BrNO 420.1739; Found 420.1735.

5h: Yield: 53.9 mg (78%); $R_f = 0.5$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 153-155 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.78 (m, 2H), 7.55-7.51 (m, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.27-7.22 (m, 2H), 6.91 (dd, J = 5.2 Hz, J = 3.8 Hz, 1H), 5.99 (s, 1H), 5.37 (s, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.1, 136.7, 134.6, 132.1, 130.2, 128.8, 128.2, 127.33, 127.30, 71.0, 63.0; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -2.94 - -5.17 (m, 3B), -10.10 - -11.44 (m, 6B), -14.84 (s, 1B); IR (film): 3209, 2575, 1644, 1469, 1256, 946, 884, 708 cm⁻¹; HRMS (FAB) m/z: [M + H]⁺ Calcd for C₁₃H₁₉B₁₀NOS 348.2198; Found 348.2199.

5h

3. Two-Fold Selective B(4)-H Amidation Reaction

A dried test tube equipped with a magnetic stirrer was charged with *o*-carborane **1a** (0.48 mmol, 97.1 mg), 1,4,2-dioxazol-5-one **2v** (0.2 mmol, 49.6 mg), $[Cp*RhCl_2]_2$ (4.0 mol %, 4.9 mg), AgSbF₆ (16.0 mol %, 11.0 mg), NaOAc (1.5 equiv, 24.6 mg), and DCE (2.0 mL) under a nitrogen atmosphere. After being stirred at 80 °C for 6 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the amidation product **6a** (73%, 69.6 mg) as white solid.

6a: Yield: 69.1 mg (73%); $R_f = 0.3$ (Acetone:Hexane = 1:4); White solid; Melting point: 309-312 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 4H), 5.98 (s, 2H), 5.07 (s, 2H), 2.10 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.1, 133.7, 127.7, 69.6, 61.3, 26.1; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.26 - -4.12 (m, 2B), -7.17 (s, 1B), -9.80 - -11.87 (m, 6B), 15.13 (s, 1H); IR (film): 3423, 3097, 2570, 1637, 1273, 987, 893, 725 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₁₄H₃₂B₂₀N₂O₂ 481.4405; Found 481.4406.

A dried test tube equipped with a magnetic stirrer was charged with *o*-carborane **1a** (0.2 mmol, 88.9 mg), 1,4,2-dioxazol-5-one **2v** (0.48 mmol, 78.3 mg), [Cp*RhCl₂]₂ (4.0 mol %, 4.9 mg), AgSbF₆ (16.0 mol %, 11.0 mg), NaOAc (1.5 equiv, 24.6 mg), and DCE (2.0 mL) under a nitrogen atmosphere. After being stirred at 80 °C for 6 h, the reaction mixture was cooled to room temperature, filtered through a pad of

Celite and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the amidation product **6b** (77%, 91.6 mg) as white solid.

6b: Yield: 92.1 mg (77%); $R_f = 0.3$ (EtOAc:CH₂Cl₂:Hexane = 1:1:5); White solid; Melting point: 97-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (m, 4H), 7.55-7.50 (m, 2H), 7.47-7.43 (m, 4H), 5.96 (s, 2H), 5.11 (s, 2H), 2.27-2.22 (m, 4H), 1.55-1.47 (m, 4H), 1.28-1.21 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 134.6, 132.0, 128.8, 127.3, 74.0, 60.9, 38.0, 28.9, 28.4; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ -3.41 - -6.13 (m, 3B), -9.97 - -12.44 (m, 6B), -15.68 (s, 1B); IR (film): 3428, 2956, 2581, 1644, 1276, 1073, 709 cm⁻¹; HRMS (FAB) *m/z*: [M + H]⁺ Calcd for C₂₃H₄₂B₂₀N₂O₂ 599.5187; Found 599.5187.

4. Comparison of TsN₃ and dioxazolone in B-H activation

A dried test tube equipped with a magnetic stirrer was charged with amidated *o*-carborane **1a** (0.2 mmol, 40.5 mg), 1,4,2-dioxazol-5-one **2a** (0.2 mmol, 32.6 mg), TsN₃ **7** (0.2 mmol, 39.4 mg), $[Cp*RhCl_2]_2$ (2.5 mol %, 3.1 mg), AgSbF₆ (10.0 mol %, 6.9 mg), NaOAc (1.5 equiv, 24.6 mg), and DCE (2.0 mL) under a nitrogen atmosphere. After being stirred at 80 °C for 6 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the amidation product **3d** (90%, 56.0 mg) as white solid.

A dried test tube equipped with a magnetic stirrer was charged with amidated *o*-carborane **1a** (0.2 mmol, 40.5 mg), 1,4,2-dioxazol-5-one **2a** (0.2 mmol, 32.6 mg), **2b** (0.2 mmol, 20.2 mg), $[Cp*RhCl_2]_2$ (2.5 mol %, 3.1 mg), AgSbF₆ (10.0 mol %, 6.9 mg), NaOAc (1.5 equiv, 24.6 mg), and DCE (2.0 mL) under a nitrogen atmosphere. After being stirred at 80 °C for 6 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the amidation product **3a** (82%, 35.3 mg) and **3d** (14%, 7.8 mg) as white solid.

A dried test tube equipped with a magnetic stirrer was charged with amidated *o*-carborane **1a** (0.2 mmol, 40.5 mg), 1,4,2-dioxazol-5-one **2i** (0.2 mmol, 38.6 mg), **2o** (0.2 mmol, 46.2 mg), $[Cp*RhCl_2]_2$ (2.5 mol %, 3.1 mg), AgSbF₆ (10.0 mol %, 6.9 mg), NaOAc (1.5 equiv, 24.6 mg), and DCE (2.0 mL) under a nitrogen atmosphere. After being stirred at 80 °C for 6 h, the reaction mixture was cooled to room temperature, filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford the amidation product **3i** (43%, 25.1 mg) and **3o** (55%, 38.0 mg) as white solid.

5. NMR Study for HSQCGP(2D NMR spectrum)

6. X-ray Crystallography

3d (50 mg) was dissolved in ACN (2.0 mL) in a 10 mL glass vial to give a clear solution. The 10 mL vial was sealed with a screw cap. Vapor diffusion afforded crystals of the composition **3d** suitable for X-ray diffraction within 2 day at room temperature. A block-like specimen of $C_{10}H_{19}B_{10}NO$, approximate dimensions 0.100 mm x 0.100 mm x 0.150 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. (ellipsoid = 40%, CCDC = 1896569)

Table 1. Crystal data and structure refinement for 3d.

Empirical formula	$C_{10}H_{19}B_{10}NO$
Formula weight	277.36
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca

Unit cell dimensions	a = 9.4145(6) Å	$\alpha = 90^{\circ}$
	b = 16.7722(10) Å	$\beta = 90^{\circ}$
	c = 20.1088(11) Å	$\gamma = 90^{\circ}$
Volume	3175.2(3) Å ³	
Z	8	
Density (calculated)	1.160 Mg/m ³	
Absorption coefficient	0.062 mm ⁻¹	
F(000)	1152	
Crystal size	0.368 x 0.123 x 0.115 mm	1 ³
Theta range for data collection	3.163 to 28.297°.	
Index ranges	-12<=h<=12, -22<=k<=2	22, -22<=l<=26
Reflections collected	51187	
Independent reflections	3946 [R(int) = 0.0917]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.7457 and 0.6875	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3946 / 0 / 233	
Goodness-of-fit on F ²	1.066	
Final R indices [I>2sigma(I)]	R1 = 0.0540, wR2 = 0.122	25
R indices (all data)	R1 = 0.0979, wR2 = 0.144	45
Largest diff. peak and hole	0.322 and –0.285 $e^{\cdot} {\rm \AA}^{-3}$	

	X	У	Z	U(eq)	
C(1)	7420(2)	5688(1)	8211(1)	24(1)	
C(2)	8563(2)	5240(1)	7985(1)	30(1)	
C(3)	9286(2)	4743(1)	8419(1)	42(1)	
C(4)	8880(2)	4693(1)	9078(1)	47(1)	
C(5)	7723(2)	5126(1)	9302(1)	43(1)	
C(6)	6988(2)	5619(1)	8870(1)	32(1)	
C(7)	6648(2)	6274(1)	7778(1)	23(1)	
O(1)	5429(1)	6486(1)	7914(1)	33(1)	
N(1)	7365(2)	6575(1)	7252(1)	25(1)	
C(8)	5249(2)	7635(1)	6832(1)	24(1)	
C(9)	4644(2)	7884(1)	6089(1)	23(1)	
C(10)	3058(2)	7811(1)	5969(1)	31(1)	
B(1)	5577(2)	7010(1)	6171(1)	24(1)	
B(2)	6887(2)	7206(1)	6793(1)	23(1)	
B(3)	6645(2)	8216(1)	7062(1)	28(1)	
B(4)	7329(2)	7230(1)	5931(1)	26(1)	
B(5)	5868(2)	7650(1)	5489(1)	28(1)	
B(6)	5188(2)	8631(1)	6625(1)	27(1)	
B(7)	7996(2)	7981(1)	6481(1)	29(1)	
B(8)	5625(2)	8646(1)	5766(1)	30(1)	
B(9)	6936(2)	8859(1)	6376(1)	32(1)	
B(10)	7369(2)	8248(1)	5679(1)	31(1)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for **3d**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.388(2)	B(2)-B(4)	1.784(3)
C(1)-C(6)	1.392(2)	B(2)-B(3)	1.793(3)
C(1)-C(7)	1.501(2)	B(3)-B(6)	1.771(3)
C(2)-C(3)	1.386(3)	B(3)-B(7)	1.771(3)
C(2)-H(2)	0.9500	B(3)-B(9)	1.773(3)
C(3)-C(4)	1.382(3)	B(3)-H(3B)	1.08(2)
C(3)-H(3)	0.9500	B(4)-B(10)	1.782(3)
C(4)-C(5)	1.384(3)	B(4)-B(5)	1.783(3)
C(4)-H(4)	0.9500	B(4)-B(7)	1.790(3)
C(5)-C(6)	1.385(3)	B(4)-H(4B)	1.10(2)
C(5)-H(5)	0.9500	B(5)-B(10)	1.775(3)
C(6)-H(6)	0.9500	B(5)-B(8)	1.776(3)
C(7)-O(1)	1.2318(19)	B(5)-H(5B)	1.09(2)
C(7)-N(1)	1.353(2)	B(6)-B(9)	1.763(3)
N(1)-B(2)	1.475(2)	B(6)-B(8)	1.776(3)
N(1)-H(1N)	0.84(2)	B(6)-H(6B)	1.08(2)
C(8)-C(9)	1.652(2)	B(7)-B(10)	1.775(3)
C(8)-B(3)	1.700(3)	B(7)-B(9)	1.792(3)
C(8)-B(2)	1.703(2)	B(7)-H(7B)	1.10(2)
C(8)-B(1)	1.720(2)	B(8)-B(9)	1.775(3)
C(8)-B(6)	1.721(3)	B(8)-B(10)	1.781(3)
C(8)-H(8)	1.01(2)	B(8)-H(8B)	1.08(2)
C(9)-C(10)	1.518(2)	B(9)-B(10)	1.782(3)
C(9)-B(8)	1.706(3)	B(9)-H(9B)	1.10(2)
C(9)-B(5)	1.714(2)	B(10)-H(10B)	1.12(2)
C(9)-B(1)	1.717(2)		
C(9)-B(6)	1.730(2)	C(2)-C(1)-C(6)	119.54(16)
C(10)-H(10A)	0.9800	C(2)-C(1)-C(7)	122.70(15)
C(10)-H(10D)	0.9800	C(6)-C(1)-C(7)	117.72(15)
C(10)-H(10C)	0.9800	C(3)-C(2)-C(1)	120.03(18)
B(1)-B(4)	1.759(3)	C(3)-C(2)-H(2)	120.0
B(1)-B(5)	1.764(3)	C(1)-C(2)-H(2)	120.0
B(1)-B(2)	1.787(3)	C(4)-C(3)-C(2)	120.29(19)
B(1)-H(1B)	1.05(2)	C(4)-C(3)-H(3)	119.9
B(2)-B(7)	1.782(3)	C(2)-C(3)-H(3)	119.9

Table 3. Bond lengths [Å] and angles [°] for 3d.

```
C(3)-C(4)-C(5)
                 119.90(18)
C(3)-C(4)-H(4)
                 120.0
C(5)-C(4)-H(4)
                 120.0
                 120.10(19)
C(4)-C(5)-C(6)
C(4)-C(5)-H(5)
                 119.9
C(6)-C(5)-H(5)
                 119.9
                 120.10(18)
C(5)-C(6)-C(1)
C(5)-C(6)-H(6)
                 120.0
                 120.0
C(1)-C(6)-H(6)
O(1)-C(7)-N(1)
                 122.09(15)
O(1)-C(7)-C(1)
                 120.75(15)
N(1)-C(7)-C(1)
                 117.12(14)
C(7)-N(1)-B(2)
                 127.19(14)
C(7)-N(1)-H(1N) 117.2(13)
B(2)-N(1)-H(1N) 115.1(13)
C(9)-C(8)-B(3)
                 111.57(13)
C(9)-C(8)-B(2)
                 112.19(12)
B(3)-C(8)-B(2)
                  63.58(11)
C(9)-C(8)-B(1)
                  61.17(10)
B(3)-C(8)-B(1)
                 114.90(13)
B(2)-C(8)-B(1)
                  62.92(10)
C(9)-C(8)-B(6)
                  61.67(10)
B(3)-C(8)-B(6)
                  62.33(11)
B(2)-C(8)-B(6)
                 115.42(13)
                 114.28(13)
B(1)-C(8)-B(6)
C(9)-C(8)-H(8)
                 113.2(11)
                 124.3(11)
B(3)-C(8)-H(8)
                 123.1(11)
B(2)-C(8)-H(8)
B(1)-C(8)-H(8)
                 114.9(11)
B(6)-C(8)-H(8)
                 115.3(11)
C(10)-C(9)-C(8)
                117.56(13)
C(10)-C(9)-B(8)
                122.21(14)
C(8)-C(9)-B(8)
                 110.30(13)
C(10)-C(9)-B(5)
                122.03(13)
C(8)-C(9)-B(5)
                 110.31(12)
B(8)-C(9)-B(5)
                  62.59(11)
C(10)-C(9)-B(1)
                116.67(14)
                  61.37(10)
C(8)-C(9)-B(1)
```

B(8)-C(9)-B(1)	113.58(13)
B(5)-C(9)-B(1)	61.87(11)
C(10)-C(9)-B(6)	116.71(14)
C(8)-C(9)-B(6)	61.14(10)
B(8)-C(9)-B(6)	62.26(11)
B(5)-C(9)-B(6)	113.94(13)
B(1)-C(9)-B(6)	114.00(12)
С(9)-С(10)-Н(10А	A) 109.5
C(9)-C(10)-H(10I	D) 109.5
H(10A)-C(10)-H(10D) 109.5
C(9)-C(10)-H(100	C) 109.5
H(10A)-C(10)-H(10C) 109.5
H(10D)-C(10)-H(10C) 109.5
C(9)-B(1)-C(8)	57.46(9)
C(9)-B(1)-B(4)	105.90(13)
C(8)-B(1)-B(4)	104.62(13)
C(9)-B(1)-B(5)	58.97(10)
C(8)-B(1)-B(5)	104.91(14)
B(4)-B(1)-B(5)	60.84(11)
C(9)-B(1)-B(2)	105.26(13)
C(8)-B(1)-B(2)	58.08(10)
B(4)-B(1)-B(2)	60.40(10)
B(5)-B(1)-B(2)	108.98(14)
C(9)-B(1)-H(1B)	117.5(11)
C(8)-B(1)-H(1B)	118.1(10)
B(4)-B(1)-H(1B)	130.4(10)
B(5)-B(1)-H(1B)	123.9(10)
B(2)-B(1)-H(1B)	123.5(10)
N(1)-B(2)-C(8)	123.46(14)
N(1)-B(2)-B(7)	124.39(14)
C(8)-B(2)-B(7)	103.79(13)
N(1)-B(2)-B(4)	123.59(14)
C(8)-B(2)-B(4)	104.25(12)
B(7)-B(2)-B(4)	60.27(11)
N(1)-B(2)-B(1)	121.13(14)
C(8)-B(2)-B(1)	59.00(10)
B(7)-B(2)-B(1)	107.00(13)
B(4)-B(2)-B(1)	59.01(10)

N(1)-B(2)-B(3)	121.89(14)
C(8)-B(2)-B(3)	58.12(10)
B(7)-B(2)-B(3)	59.41(11)
B(4)-B(2)-B(3)	107.53(13)
B(1)-B(2)-B(3)	107.29(13)
C(8)-B(3)-B(6)	59.43(10)
C(8)-B(3)-B(7)	104.37(13)
B(6)-B(3)-B(7)	108.47(14)
C(8)-B(3)-B(9)	104.84(13)
B(6)-B(3)-B(9)	59.66(11)
B(7)-B(3)-B(9)	60.74(12)
C(8)-B(3)-B(2)	58.30(10)
B(6)-B(3)-B(2)	108.67(13)
B(7)-B(3)-B(2)	59.98(11)
B(9)-B(3)-B(2)	108.70(14)
C(8)-B(3)-H(3B)	117.7(11)
B(6)-B(3)-H(3B)	118.3(11)
B(7)-B(3)-H(3B)	128.1(11)
B(9)-B(3)-H(3B)	127.6(11)
B(2)-B(3)-H(3B)	118.9(10)
B(1)-B(4)-B(10)	107.39(13)
B(1)-B(4)-B(5)	59.72(10)
B(10)-B(4)-B(5)	59.71(11)
B(1)-B(4)-B(2)	60.58(10)
B(10)-B(4)-B(2)	107.63(14)
B(5)-B(4)-B(2)	108.24(13)
B(1)-B(4)-B(7)	107.88(13)
B(10)-B(4)-B(7)	59.60(11)
B(5)-B(4)-B(7)	107.50(14)
B(2)-B(4)-B(7)	59.82(10)
B(1)-B(4)-H(4B)	118.7(10)
B(10)-B(4)-H(4B)	125.0(10)
B(5)-B(4)-H(4B)	121.4(10)
B(2)-B(4)-H(4B)	120.0(10)
B(7)-B(4)-H(4B)	124.2(10)
C(9)-B(5)-B(1)	59.16(10)
C(9)-B(5)-B(10)	104.72(13)
B(1)-B(5)-B(10)	107.47(13)

C(9)-B(5)-B(8)	58.49(10)
B(1)-B(5)-B(8)	107.99(13)
B(10)-B(5)-B(8)	60.19(12)
C(9)-B(5)-B(4)	104.97(12)
B(1)-B(5)-B(4)	59.44(10)
B(10)-B(5)-B(4)	60.09(11)
B(8)-B(5)-B(4)	108.33(14)
C(9)-B(5)-H(5B)	117.7(11)
B(1)-B(5)-H(5B)	117.0(11)
B(10)-B(5)-H(5B)	129.5(11)
B(8)-B(5)-H(5B)	121.3(11)
B(4)-B(5)-H(5B)	126.0(11)
C(8)-B(6)-C(9)	57.19(9)
C(8)-B(6)-B(9)	104.38(14)
C(9)-B(6)-B(9)	104.83(14)
C(8)-B(6)-B(3)	58.24(10)
C(9)-B(6)-B(3)	104.71(13)
B(9)-B(6)-B(3)	60.24(12)
C(8)-B(6)-B(8)	103.96(13)
C(9)-B(6)-B(8)	58.20(10)
B(9)-B(6)-B(8)	60.21(12)
B(3)-B(6)-B(8)	107.98(14)
C(8)-B(6)-H(6B)	118.4(11)
C(9)-B(6)-H(6B)	115.0(11)
B(9)-B(6)-H(6B)	132.5(11)
B(3)-B(6)-H(6B)	127.1(10)
B(8)-B(6)-H(6B)	122.0(10)
B(3)-B(7)-B(10)	107.68(14)
B(3)-B(7)-B(2)	60.60(11)
B(10)-B(7)-B(2)	108.00(13)
B(3)-B(7)-B(4)	108.19(13)
B(10)-B(7)-B(4)	59.97(11)
B(2)-B(7)-B(4)	59.92(10)
B(3)-B(7)-B(9)	59.67(11)
B(10)-B(7)-B(9)	59.96(12)
B(2)-B(7)-B(9)	108.35(13)
B(4)-B(7)-B(9)	108.04(14)
B(3)-B(7)-H(7B)	121.8(10)

B(10)-B(7)-H(7B)	122.9(10)
B(2)-B(7)-H(7B)	119.7(11)
B(4)-B(7)-H(7B)	120.5(10)
B(9)-B(7)-H(7B)	123.5(11)
C(9)-B(8)-B(9)	105.32(13)
C(9)-B(8)-B(5)	58.92(11)
B(9)-B(8)-B(5)	108.44(14)
C(9)-B(8)-B(6)	59.54(10)
B(9)-B(8)-B(6)	59.51(12)
B(5)-B(8)-B(6)	108.72(14)
C(9)-B(8)-B(10)	104.79(14)
B(9)-B(8)-B(10)	60.16(12)
B(5)-B(8)-B(10)	59.86(12)
B(6)-B(8)-B(10)	107.67(14)
C(9)-B(8)-H(8B)	117.1(11)
B(9)-B(8)-H(8B)	128.0(11)
B(5)-B(8)-H(8B)	118.4(11)
B(6)-B(8)-H(8B)	119.1(11)
B(10)-B(8)-H(8B)	128.1(11)
B(6)-B(9)-B(3)	60.11(11)
B(6)-B(9)-B(8)	60.28(11)
B(3)-B(9)-B(8)	107.93(14)
B(6)-B(9)-B(10)	108.21(14)
B(3)-B(9)-B(10)	107.29(14)
B(8)-B(9)-B(10)	60.07(12)

B(6)-B(9)-B(7) 107.92(14)
B(3)-B(9)-B(7) 59.59(11)
B(8)-B(9)-B(7) 107.69(14)
B(10)-B(9)-B(7) 59.55(12)
B(6)-B(9)-H(9B) 119.3(11)
B(3)-B(9)-H(9B) 120.1(10)
B(8)-B(9)-H(9B) 122.3(11)
B(10)-B(9)-H(9B)124.5(11)
B(7)-B(9)-H(9B) 122.9(11)
B(5)-B(10)-B(7) 108.55(14)
B(5)-B(10)-B(8) 59.95(11)
B(7)-B(10)-B(8) 108.20(14)
B(5)-B(10)-B(4) 60.19(11)
B(7)-B(10)-B(4) 60.44(11)
B(8)-B(10)-B(4) 108.21(13)
B(5)-B(10)-B(9) 108.19(14)
B(7)-B(10)-B(9) 60.50(12)
B(8)-B(10)-B(9) 59.77(12)
B(4)-B(10)-B(9) 108.85(14)
B(5)-B(10)-H(10B)121.3(11)
B(7)-B(10)-H(10B)121.3(11)
B(8)-B(10)-H(10B)122.1(11)
B(4)-B(10)-H(10B)120.9(11)
B(9)-B(10)-H(10B)121.8(11)

Symmetry transformations used to generate equivalent atoms:

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²		
C(1)21(1)	20(1)	31(1)	-2(1)	-7(1)	-2(1)		
C(2)28(1)	23(1)	41(1)	-4(1)	-7(1)	3(1)		
C(3)38(1)	25(1)	64(1)	-2(1)	-16(1)	9(1)		
C(4)55(1)	30(1)	56(1)	8(1)	-27(1)	2(1)		
C(5)59(1)	33(1)	36(1)	7(1)	-13(1)	-5(1)		
C(6)36(1)	27(1)	32(1)	2(1)	-4(1)	-1(1)		
C(7)17(1)	24(1)	27(1)	-1(1)	-4(1)	0(1)		
O(1)17(1)	44(1)	37(1)	9(1)	3(1)	6(1)		
N(1)15(1)	29(1)	31(1)	2(1)	1(1)	5(1)		
C(8)19(1)	30(1)	22(1)	2(1)	-2(1)	3(1)		
C(9)20(1)	30(1)	19(1)	1(1)	-1(1)	2(1)		
C(10)	20(1)	43(1)	28(1)	3(1)	-2(1)	2(1)	
B(1)19(1)	29(1)	24(1)	1(1)	-1(1)	0(1)		
B(2)14(1)	28(1)	27(1)	0(1)	0(1)	0(1)		
B(3)24(1)	28(1)	30(1)	-5(1)	-6(1)	0(1)		
B(4)19(1)	33(1)	26(1)	-1(1)	4(1)	2(1)		
B(5)25(1)	39(1)	20(1)	0(1)	4(1)	1(1)		
B(6)27(1)	27(1)	27(1)	0(1)	-3(1)	3(1)		
B(7)18(1)	32(1)	36(1)	2(1)	-1(1)	-3(1)		
B(8)27(1)	32(1)	29(1)	7(1)	1(1)	0(1)		
B(9)28(1)	27(1)	42(1)	2(1)	-4(1)	-5(1)		
B(10)	22(1)	37(1)	34(1)	8(1)	5(1)	-2(1)	

Table 4. Anisotropic displacement parameters (Å² x 10³) for **3d**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

	X	V	Z	U(ea)	
		5			
H(2)	8849	5275	7533	36	
H(3)	10065	4435	8263	51	
H(4)	9394	4363	9377	56	
H(5)	7433	5085	9754	51	
H(6)	6187	5910	9024	38	
H(1N)	8220(20)	6434(11)	7206(9)	30	
H(8)	4480(20)	7448(12)	7145(9)	35	
H(10A)	2825	7257	5859	46	
H(10D)	2782	8158	5599	46	
H(10C)	2543	7970	6371	46	
H(1B)	5000(20)	6475(12)	6142(9)	36	
H(3B)	6760(20)	8354(12)	7584(10)	41	
H(4B)	7980(20)	6753(12)	5714(9)	39	
H(5B)	5470(20)	7453(12)	5005(10)	42	
H(6B)	4340(20)	8990(12)	6828(10)	40	
H(7B)	9120(20)	7994(12)	6616(10)	43	
H(8B)	5080(20)	9061(12)	5442(10)	44	
H(9B)	7350(20)	9466(13)	6457(10)	49	
H(10B)	8110(20)	8454(12)	5282(10)	47	

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (${\rm \AA}^2\;x\;10^2$) for ${\bf 3d}.$

Table 6. Hydrogen bonds for ${\bf 3d}$ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1N)O(1)#1	0.84(2)	2.10(2)	2.9080(18)	161.3(18)	

Symmetry transformations used to generate equivalent atoms: #1 x+1/2, y, -z+3/2

7. References

- (a) Lyu, H.; Quan Y.; Xie, Z. Transition Metal Catalyzed Direct Amination of Cage B(4)-H Bond in *o*-Carboranes: Synthesis of Tertiary, Secondary and Primary *o*-Carboranyl Amines. J. Am. Chem. Soc. 2016, 138, 39, 12727-12730. (b) Lyu, H.; Quan, Y.; Xie, Z. Palladium-Catalyzed Direct Dialkenylation of Cage B-H Bonds in *o*-Carboranes through Cross-Coupling Reactions. Angew. Chem. Int. Ed. 2015, 54, 10623-10626. (c) Quan, Y.; Tang, C.; Xie, Z. Palladium Catalyzed Regioselective B-C(sp) Coupling via Direct Cage B-H Activation: Synthesis of B(4)-Alkynylated *o*-Carboranes. Chem. Sci. 2016, 7, 5838-5845. (d) Lyu, H.; Quan, Y.; Xie, Z. Rhodium-Catalyzed Regioselective Hydroxylation of Cage B-H Bonds of *o*-Carboranes with O₂ or Air. Angew. Chem., Int. Ed. 2016, 55, 11840-11844.
- Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M.-H.; Chang, S. Selective formation of *γ*lactams via C–H amidation enabled by tailored iridium catalysts *Science* 2018, *359*, 1016.

I.,		l						l													
	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

¹¹B{¹H} NMR

¹¹B NMR

¹¹B{¹H} NMR

¹¹B NMR

¹³C{¹H} NMR

¹³C{¹H} NMR

-3.36	-4.36	-7.20	-9.84	-10.56	-11.91	-15.42

5 0 -5 -10 -15 -20 -25 ppm S48

¹³C{¹H} NMR

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

S56

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

	129.2 126.8 113.9	77.5 77.5 76.8 69.3 61.3 55.6	
H H OMe O OMe 3i			

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

¹⁹F NMR

0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm

¹³C{¹H} NMR

180 170

160 150

0 ppm

0 	-4.20	-7.21	-9.83 -10.48	-11.89	ער ער ר

[τη
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 рр	m

.3.23	-4.22	7.20	9.82	-10.53	-11.94	-15.31
					ĺ	

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

-3.25	-4.26	-7.22	-9.81	-10.52 -11.93	-15.26

S85

-3.36	-4.10	-7.17	-9.77 -10.45	-11.89	-15.20

¹⁹F NMR

--62.969

	' '		·				·		·	·	· _]
0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm
											••

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

-3.43 -4.01	-7.16	-9.79 -10.43	-11.91	-15.13

		0 4	0	0
сυ	0	ຜູ້ທີ່ຫ	a,	Ä
60	÷.			
• •	•	• 0 0	-	D
$\omega \omega$	L	6 4 4	-	H
1 1	1	1 1 1	1	1
1.1	1	1 1 1	1	1

¹³C{¹H} NMR

3t

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

ppm

5a

5.11

¹³C{¹H} NMR

5a

5a

5b

¹³C{¹H} NMR

_		0	10	88	19	20	0	80	92
0	Ļ.	э	3	•	٦.				
•	•	•	•	0	H	\sim	\sim	2	9
4	Ъ	9	6	H	H	-	-	-	
1	1	1	1	1	1	1	1	1	1

5b

-0.00

5c

5c

Me H H Ph

5d

--0.00

2.36

[L
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

				0	ъ		8
H	9	L-		ć	2 L	7	
7	\sim	4	8	•	•	•	•
•	•	•	•		2	വ	9
ŝ	4	D	σ		-	-	-
1	- I	1	1	1	1	1	1

5d

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

5e

c c	28 2	.42	. 02	0.UL	1.10 2.50	5.12	6.20
C	1 1 0 4	L L	ດ _ເ			ri I	Ē.
	Í	Í	ĺ			ĺ	Í

5e

3.25	4.13	5.11	9.12	10.11	11.20	12.48	15.21	16.41
1	1	1	1	1	1	1	1	- I

Br H H Ph

5g

--0.00

[
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0 ppm

4	04	٢٦	8	72	98	.31	23	18
					.0	2	വ	9
ς Γ	4	ц Г	80 I	6	-	- -		

5h

--0.00

¹¹B{¹H} NMR

¹¹B NMR

					9	\sim	4
00	σ	σ	0	0	0	\sim	\sim
6	Ъ	9		ъ	•	•	•
•	•	•	•	•		4	Ъ
0	\sim	4	വ	6	-	-	
I	1	I.	I	1	I	1	1

5h

¹³C{¹H} NMR

¹¹B{¹H} NMR

¹¹B NMR

MAAA MAN Μ way we are an a start and a start and a start and a start and a start a start a start a start a start a start a Mandaleranian and also dependent and a set of

5	0	-5	-10	-15	-20	-25	ppm
			S150				

¹H NMR

6b

-0.00

¹³C{¹H} NMR

¹¹B{¹H} NMR

--15.68

¹¹B NMR

