Supporting Information

Synthesis and Structure-Activity Relationship Study of Antimicrobial Auranofin against ESKAPE Pathogens

Bin Wu, Xiaojian Yang, Mingdi Yan*

Department of Chemistry, The University of Massachusetts Lowell, MA 01854

Table of Contents

Scheme S1-S8. Synthesis of 1b-6b, 7d and $\mathbf{8 f}$ S2
General procedure for qNMR S15
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR, ${ }^{19}$ F NMR and HRMS S17
Purity assessment of compounds 1-40 by qHNMR S158
FAAS calibration curve Figure S142-S143 S198
MIC/MBC Table S1-S4 S199
Cytotoxicity of auranofin and analogs Table S5 S203

Synthesis of 1b.

Scheme S1. Synthesis of compound 1b.

2,3,4,6-Tetra- O-acetyl-1-S-acetyl-1-thio- β-D-glucopyranose (1b)

This compound was synthesized according to general procedure A from $\mathbf{1 a}(1.52 \mathrm{~g}, 3.70$ mmol) and purified by flash column chromatography (ethyl acetate:hexanes $=1: 1$) to give 1b as a white solid ($1.50 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.24-5.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$, $\mathrm{H}-1), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 4.18(\mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.01(\mathrm{dd}, J=$ $12.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 3.77 (ddd, $J=10.1,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.30 (s, 3H, SAc), 1.98 (s, 3H, OAc), 1.94 (s, 3H, OAc), 1.93 (s, 3H, OAc), 1.91 (s, 3H, OAc). The NMR spectrum is consistent with published data. ${ }^{1}$

Synthesis of 2b.

Scheme S2. Synthesis of compound 2b.

2,3,4,6-Tetra- O-acetyl-1-S-acetyl-1-thio- β-D-galactopyranose (2b)

This compound was synthesized from compound $\mathbf{2 a}(2.24 \mathrm{~g}, 3.22 \mathrm{mmol})$ according to general procedure A and purified by flash column chromatography (ethyl acetate:hexanes $=1: 1)$ to give $\mathbf{2 b}(1.18 \mathrm{~g}, 90 \%)$ as a pale-yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.46$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.35-5.29(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1), 5.11 (dd, $J=9.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.18-4.02$ (m, 3H, H-6a, H-6b, H-5), 2.39 (s, 3H),
2.15 (s, 3H, SAc), 2.04 (s, 3H, OAc), 2.03 (s, 3H, OAc), 1.98 (s, 3H, OAc). The NMR spectrum is consistent with published data. ${ }^{1}$

Synthesis of 3b.

Scheme S3. Synthesis of compound 3b.

3,4,6-Tri- O-acetyl-2- N-acetylamido-2-deoxy- α-D-glucopyranosyl chloride (3a)

Prepared according to reported protocol. ${ }^{2}$ Acetyl chloride ($2.0 \mathrm{~mL}, 28.0 \mathrm{mmol}$) was added dropwise into a round-bottom flask containing N-acetylglucosamine ($1.0 \mathrm{~g}, 4.52 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 48 h under Ar at rt . DCM (200 mL) was added and the organic layer was washed by water, saturated sodium bicarbonate, brine and dried over MgSO_{4}. After removing the solvent, the residue was purified by flash column chromatography (ethyl acetate:hexanes $=3: 1$) to afford 3a as a white solid $(951 \mathrm{mg}, 57 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.19(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, 5.32 (dd, $J=10.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.22(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.53(\mathrm{ddd}, J=10.7,8.7$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.32-4.23$ (m, 2H, H-6a, H-5), $4.17-4.10$ (m, 1H, H-6b), 2.10 ($\mathrm{s}, 3 \mathrm{H}$, OAc), 2.06 (s, 3H, OAc), 2.05 (s, 3H, OAc), 1.99 (s, 3H, NHAc).

3,4,6-Tri- O-acetyl-2- N-acetyl- S-acetyl-1-thio- β-D-glucosamine (3b)

This compound was synthesized according to general procedure A from $\mathbf{3 a}$ ($951 \mathrm{mg}, 2.60$ mmol), and purified by flash column chromatography (ethyl acetate:hexanes $=2: 1$) to give 3b as a pale yellow solid ($925 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.58(\mathrm{~d}, J=9.7$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.15(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.13(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.09(\mathrm{t}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.35(\mathrm{q}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.24(\mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.10$ (dd, $J=12.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.78$ (ddd, $J=9.6,4.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.37 (s, 3H, SAc), $2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.03(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OAc}), 1.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHAc})$. The NMR spectrum is consistent with published data. ${ }^{1}$

Synthesis of 4b.

Scheme S4. Synthesis of compound 4b.

2-Deoxy-2-[[(4-methoxyphenyl)methylene]amino]- β-D-glucopyranose (4ii)

Prepared according to a reported procedure. ${ }^{3}$ D-Glucosamine hydrochloride $\mathbf{4 i}(3.0 \mathrm{~g}, 13.9$ $\mathrm{mmol})$ was dissolved in $1 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$, and p-anisaldehyde ($2.0 \mathrm{~mL}, 16.7 \mathrm{mmol}$) was added. The mixture was stirred at RT for 0.5 h then was briefly sonicated for 1 min , and was stirred for another 0.5 h . The white precipitate was filtered off, washed with cold water $(30 \mathrm{~mL})$ and $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v})$, and dried under high-vacuum, yielding $4 \mathbf{i i}$ as a white powder ($3.71 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.66$ $(\mathrm{m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73$ (ddd, $J=11.6,5.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dt}, J=11.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.23$ (ddd, $J=9.7,5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=9.7,8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=9.3,7.6$ Hz, 1H).

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-[[(4-methoxyphenyl)-methylene]amino]- β-Dglucopyranose (4iii)

Prepared according to an adapted procedure. ${ }^{3}$ To a cold mixture of $\mathbf{4 i i}(4.0 \mathrm{~g}, 13.5 \mathrm{mmol}$, $)$ and DMAP $(0.06 \mathrm{~g}, 0.5 \mathrm{mmol})$ in pyridine $(22 \mathrm{~mL})$ was added acetic anhydride $(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred overnight at RT. The reaction mixture was then poured into ice water. A large amount of precipitate formed. The precipitate was collected by filtration, and washed with water and $\mathrm{Et}_{2} \mathrm{O}$. After dried in vacuum overnight, 4iii was obtained as a white powder ($4.6 \mathrm{~g}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.60(\mathrm{~m}$, 2H), $7.07-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, J=$ $9.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$.

1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy- β-D-glucopyranose hydrochloride (4iv)

Prepared according to a reported procedure. ${ }^{3}$ To a solution of $\mathbf{4 i i i}(3.6 \mathrm{~g}, 7.73 \mathrm{mmol})$ in refluxing acetone (20 mL), 5 M aqueous solution of $\mathrm{HCl}(2 \mathrm{~mL})$ was added dropwise. After 5 min , a white precipitate started to form. After vigorous stirring for 30 min , the reaction was cooled to RT, and the precipitate was filtered off, and washed successively with acetone and $\mathrm{Et}_{2} \mathrm{O}$. After drying in vacuum overnight, 4iv was obtained as white powder $(2.68 \mathrm{~g}, 90 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3} \mathrm{Cl}\right), 5.90(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.35(\mathrm{dd}, J=10.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.93(\mathrm{dd}, J=10.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 4.19 (dd, $J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.05(\mathrm{ddd}, J=10.1,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.00$ (dd, $J=12.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.57$ (dd, $J=10.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $2.17(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$, 2.03 (s, 3H, OAc), $2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.98$ (s, 3H, OAc).

1,3,4,6-Tri- O-acetyl-2- N-trichloroactyl- β-D-glucosamine (4v)

To a solution of $4 \mathbf{i v}(1.00 \mathrm{~g}, 2.61 \mathrm{mmol})$ in 10 mL of DCM , pyridine $(0.84 \mathrm{~mL}, 10.4$ $\mathrm{mmol})$ was added. The solution was brought to $0^{\circ} \mathrm{C}$. Trichloroacetic anhydride (1.21 g , 3.91 mmol) was added. The reaction was stirred overnight, then was poured into 50 mL of 1 M HCl solution followed by extraction with $\mathrm{DCM}(50 \mathrm{~mL} \times 3)$. The combined organic phase was washed by saturated NaHCO_{3}, brine, and dried over MgSO_{4}. After removal of the solvent, the residue was purified by flash column chromatography (ethyl acetate/hexanes=1:2) to afford $\mathbf{4 v}$ as a white solid ($1.25 \mathrm{~g}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.40(\mathrm{dd}, J=10.9$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.17(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.37-4.25$ (m, 2H, H-2, H-6a), 4.17 (dd, $J=12.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.91(\mathrm{ddd}, J=10.0,4.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$,
$2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$. The NMR spectrum is consistent with published data. ${ }^{4}$

3,4,6-Tri- O-acetyl-2- N-trichloroactyl-S-acetyl-1-thio- β-D-glucosamine (4b)

To a solution of $\mathbf{4 v}(350 \mathrm{mg}, 0.71 \mathrm{mmol})$ in 3 mL of dry DCM, 4 mL of $33 \% \mathrm{wt} \mathrm{HBr} / \mathrm{AcOH}$ solution was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction was brought to RT and was further stirred for 2 h . After diluting with 30 mL of DCM , the reaction mixture was poured into 60 mL of ice water and was extracted with DCM 3 times. The combined organic phase was washed by saturated NaHCO_{3} solution, water, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent by rotovap evaporation, the crude bromide product $4 \mathbf{a}$ was obtained and was used immediately in the next step without further purification. To a solution of this crude $\mathbf{4 a}$ in 8 mL of acetone, $\mathrm{KSAc}(162 \mathrm{mg}, 1.42 \mathrm{mmol})$ was added. The reaction mixture was stirred at RT for 3 h . After removing the solvent by rotovap evaporation, 30 mL of DCM, 10 mL of water and 20 mL of brine were added to the residue. The mixture was extracted by DCM 2 times. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then was purified by flash column chromatography (ethyl acetate/hexanes=1:2) to afford $\mathbf{4 b}$ as an orange solid ($285 \mathrm{mg}, 79 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.55(\mathrm{dd}, J=10.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.37(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.18$ (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.38(\mathrm{q}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.27(\mathrm{dd}, J=12.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a})$, $4.15(\mathrm{dd}, J=12.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.92$ (ddd, $J=10.1,5.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.38(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{SAc}), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.14,171.71,170.68,169.37,162.20,92.37,80.88,76.84,73.42,68.13,62.15$, 53.88, 30.85, 20.77, 20.63, 20.56.

Synthesis of 5b.

Scheme S5. Synthesis of compound 5b.

2,3,4,6-Tetra- O-acetyl- α-D-glucopyranosyl $(1 \rightarrow 4)$-2,3,6-tri- O-acetyl-l-S-acetyl-1-thio-β-D-glucopyranose (5b)

This compound was synthesized according to general procedure A and purified by flash column chromatography (ethyl acetate: hexanes $=1: 1$) to give $\mathbf{5 b}$ as a viscous solid in 82% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.38\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime}\right), 5.37-5.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $\left.3^{\prime}, \mathrm{H}-3, \mathrm{H}-1\right), 5.12-4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime} 4^{\prime}, \mathrm{H}-2\right), 4.84\left(\mathrm{dd}, J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.43$ (dd, $J=12.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.30-4.12$ (m, 2H, H-6b, H-6'a), $4.10-3.72$ (m, 4H, H6'b, H-4, H-5', H-5), 2.36 (s, 3H, SAc), 2.11 (s, 3H, SAc), 2.08 (s, 3H, OAc), 2.04 (s, 3H, $\mathrm{OAc}), 2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.99(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OAc} \times 2)$. The NMR spectrum is consistent with published data. ${ }^{1}$

Synthesis of 6b.

Scheme S6. Synthesis of compound $\mathbf{6 b}$.

This compound was synthesized according to general procedure A, and purified by flash column chromatography (ethyl acetate/hexanes $=1: 1$) to give $\mathbf{6 b}$ as a viscous solid in 85% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.35(\mathrm{dd}, J=3.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), $5.25(\mathrm{t}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.11(\mathrm{dd}, J=10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), 5.04 (dd, $J=10.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.94(\mathrm{dd}, J=10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), $4.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H, H-1'), 4.45 (dd, $J=12.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 ' \mathrm{a}$), 4.16 - 4.04 (m, 3H, H-6a, H-6b, H-6'b), $3.89-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$ '), $3.82(\mathrm{dd}, J=9.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.75(\mathrm{ddd}, J=10.0,4.7,1.9$ Hz, 1H, H-5), 2.37 (s, 3H, SAc), 2.15 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), 2.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), 2.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), $2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$. The NMR spectrum is consistent with published data. ${ }^{1}$

Synthesis of 7e.

Scheme S7. Synthesis of compound 7e.

2,3,2',3', $\mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-O-Acetyl-4,6-di-O-benzylidene- α-D-trehalose (7b)

Prepared according to an adapted procedure. ${ }^{5}$ Benzaldehyde dimethyl acetal ($1.62 \mathrm{~mL}, 10.8$ $\mathrm{mmol})$, trehalose $(2.05 \mathrm{~g}, 6.0 \mathrm{mmol})$ and p-toluenesulfonic acid monohydrate $(0.23 \mathrm{~g}, 1.2$ mmol) were added to DMF (30 mL). The mixture was stirred for 12 hours at $40^{\circ} \mathrm{C}$. After cooling to $0^{\circ} \mathrm{C}$, triethylamine $(23.60 \mathrm{~g}, 232.0 \mathrm{~mol})$ and DMAP ($122 \mathrm{mg}, 1.00 \mathrm{mmol}$) were added followed by $\mathrm{Ac}_{2} \mathrm{O}(13.0 \mathrm{~g}, 116.0 \mathrm{mmol})$ dropwise. The reaction mixture was slowly warmed to RT and stirred overnight, after which it was poured into water, and extracted by ethyl acetate 3 times. The combined organic phase was washed by brine twice, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent, the residue was purified by column chromatography (ethyl acetate/hexanes $=1: 1.5$ to $1: 1$) twice to give the desire product as a white amorphous solid (1.60 g, 40\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.38(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 7.38-7.30 (m, 3H, Ar-H), 5.61 (t, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), $5.55-5.44$ (m, 2H, H-3, $\mathrm{PhCH}), 5.37(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $5.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.09-5.02(\mathrm{~m}, 2 \mathrm{H}$, H-2' and H-4'), $5.00(\mathrm{dd}, J=10.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.25\left(\mathrm{dd}, J=12.2,5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}^{\prime}\right)$, 4.17 (dd, $\left.J=10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.09(\mathrm{ddd}, J=10.3,5.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)^{\prime}\right), 4.01(\mathrm{dd}$, $J=12.2,2.2,1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b} '), 3.97(\mathrm{td}, J=9.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.75(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6b), $3.69(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.22-1.96(\mathrm{~m}, 18 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.76,170.22,170.03,169.97,169.78,169.78,136.87,129.32,128.41,126.34,101.96$, $93.49,92.35,79.16,77.43,70.78,70.24,70.16,69.06,68.70,68.28,63.34,61.94,21.01$, 20.84, 20.79, 20.79.

4-O-Benzoyl-6-bromo-2,3,2', $3^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-penta- O-acetyl-6-deoxy- α, α-D-trehalose (7c)

Prepared according to an adapted procedure. ${ }^{5}$ Compound 7b ($1.44 \mathrm{~g}, 2.11 \mathrm{mmol}$) was added into 60 mL of CCl_{4} containing $\mathrm{NBS}(413 \mathrm{mg}, 2.32 \mathrm{mmol})$ and $\mathrm{CaCO}_{3}(232 \mathrm{mg}, 2.32$ mmol). The mixture was refluxed at $77^{\circ} \mathrm{C}$ for 3 hours. After cooling to room temperature,
the solution was washed with saturated NaHCO_{3} and water. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated in vacuum. The residue was purified by flash column chromatography (ethyl acetate/hexanes $=2: 3$) to give $7 \mathbf{c}$ as a white solid (1.43 $\mathrm{g}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15-7.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.63(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.71(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.54(\mathrm{t}, J$ $\left.\left.=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.41(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.38(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)^{\prime}\right), 5.21-$ $5.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}^{\prime}-\mathrm{H}^{\prime}, \mathrm{H}-2 \mathrm{a}\right.$ and $\left.\mathrm{H}-4\right), 4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right.$ and H-6a'), 4.16-3.97(m,2H, H-5 and H-6b'), 3.49-3.25 (m, 2H, H-6a and H-6b), 2.28-1.76 (m, 18H, OAc). ${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 170.81,170.81,170.24,169.73,169.65,169.65,165.59,134.10$, 130.17, 130.17, 128.91, 128.91, 128.65, 92.39, 91.98, 71.82, 70.48, 70.40, 70.29, 69.43, 69.43, 68.80, 68.45, 61.99, 30.75, 21.17, 20.92, 20.90, 20.81, 20.80, 20.78, 20.76.

4-O-Benzoyl-6-S-acetyl-2,3,2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}$-penta- O-acetyl - α, α-D-trehalose (7d)

Compound $7 \mathbf{c}(2.95 \mathrm{~g}, 3.87 \mathrm{mmol})$ and $\mathrm{KI}(1.93 \mathrm{~g}, 11.6 \mathrm{mmol})$ was added to a round bottle flask containing 30 mL of DMF. After stirring at $60^{\circ} \mathrm{C}$ for 4 h , the mixture was cooled to RT, and KSAc ($1.33 \mathrm{~g}, 11.6 \mathrm{mmol}$) was added to the mixture. The reaction was stirred under Ar protection overnight. The resulting mixture was poured into 100 mL brine/ 100 mL water and extracted with ethyl acetate $(100 \mathrm{~mL} \times 3)$. The combined organic layer was further washed with 200 mL brine and dried on MgSO_{4}, concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate/hexanes $=1$ to 1) to afford the product as a viscous solid $(2.93 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=$ 8.3, 1.2 Hz, 1H, Ar-H), $7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.67$ (dd, $J=9.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.52\left(\mathrm{dd}, J=9.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.34(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}$, H-1, H-1'), 5.20 (t, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.13-4.98$ (m, 3H, H-2, H-2', H-4'), 4.20 (dd, J
$\left.=12.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\prime}\right), 4.07\left(\mathrm{dd}, J=12.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\prime}\right), 4.03-3.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 5, H-5'), 3.30 (dd, $J=14.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 2.91(\mathrm{dd}, J=14.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 2.32$ (s, 3H, SAc), $2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$, 2.04 (s, 3H, OAc), 1.93 (s, 3H, OAc). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.64,170.73$, $170.01,169.94,169.85,169.77,169.70,165.66,133.78,130.02,128.95,128.73,91.26$, $91.12,72.03,70.34,70.31,69.76,69.60,69.53,68.72,68.31,61.93,30.47,30.27,20.80$, 20.72, 20.72, 20.72, 20.70, 20.70.

6-S-Acetyl-2,3,4,2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, 6^{\prime}$-hexa- O-acetyl- α, α-D-trehalose (7e)

Compound 7d (1.44 g, 1.90 mmol) was dissolved in 50 mL methanol. $\mathrm{NaOMe}(113 \mathrm{mg}$, $2.09 \mathrm{mmol})$ in 3 mL methanol was added to the reaction under Ar protection. The reaction mixture was stirred overnight. After removing the solvent under vacuum, 7 mL of pyridine was added followed by addition of acetic anhydride $(2.7 \mathrm{~mL}, 28.5 \mathrm{mmol})$ dropwise at 0° C. The reaction was stirred for 16 hours at RT. The reaction mixture was diluted by 100 mL ethyl acetate and poured into 100 mL of water. After extraction for 3 times by ethyl acetate, the combined organic layer was washed with 1 M HCl , saturated NaHCO_{3}, water, and brine, dried over MgSO_{4}. After removing the solvent, the residue was purified by column chromatography (ethyl acetate/hexanes $=1: 1$) to afford the product as a viscous solid ($964 \mathrm{mg}, 73 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.44(\mathrm{t}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-4, \mathrm{H}-4^{\prime}\right), 5.27\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.24(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.05-4.89(\mathrm{~m}$,
$\left.4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-2^{\prime}, \mathrm{H}-3, \mathrm{H}^{\prime} 3^{\prime}\right), 4.16\left(\mathrm{dd}, J=12.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.01(\mathrm{dd}, J=12.2,1.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}$), 3.94 (ddd, $\left.J=10.0,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.89-3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.15$ (dd, $J=14.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 2.93$ (dd, $J=14.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SAc})$, 2.07 (s, 3H, OAc), $2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.02(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OAc}), 2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.73, 170.69, $169.96,169.85,169.83,169.66,91.45,91.31,71.07,70.20,70.12,69.93,69.70,69.48$, 68.68, 68.30, 61.92, 30.47, 29.93, 20.76, 20.76, 20.73, 20.67.

Synthesis of 8f.

Scheme S8. Synthesis of compound $\mathbf{8 f}$. Compounds 8a-8d are identical to compounds 4i-4iv (see Scheme S4 and the procedures for their syntheses).

1,2,3,4-Tetra- O-acetyl-2-chloroacetamido-2-deoxy- β-D-glucopyranose (8e)

Prepared according to a reported procedure. ${ }^{6}$ To a solution of $\mathbf{8 d}(2.53 \mathrm{~g}, 6.51 \mathrm{mmol})$ in 30 mL of DCM , pyridine $(0.84 \mathrm{~mL}, 10.4 \mathrm{mmol})$ was added. The solution was brought to $0{ }^{\circ} \mathrm{C}$. Chloroacetic anhydride ($1.67 \mathrm{~g}, 9.77 \mathrm{mmol}$) was added. The reaction solution was stirred overnight, then was poured into 50 mL 1 M HCl solution and was extracted by DCM (50
$\mathrm{mL} \times 3$). The combined organic phase was washed by saturated NaHCO_{3}, brine, and dried over MgSO_{4}. After removing the solvent, the residue was purified by flash column chromatography (ethyl acetate/hexanes=2:3) to afford $\mathbf{8 e}$ as a white solid ($2.45 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, 5.28 (dd, $J=10.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.14(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.29(\mathrm{dd}, J=12.5,4.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.22$ (dt, $J=10.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.14(\mathrm{dd}, J=12.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b})$, $3.98\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.85(\mathrm{ddd}, J=9.8,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.12(\mathrm{~s}, 3 \mathrm{H}$, OAc), 2.10 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.05 (s, 3H, OAc).

1,3,4,6-Tetra-O-acetyl-2-((4-mercaptophenyl) sulfanyl)acetamido-2-deoxy- β-Dglucopyranose (8f)

To a solution of compound $\mathbf{8 e}(160 \mathrm{mg}, 0.378 \mathrm{mmol})$ and 1,4-benzenedithiol (107 mg , $0.755 \mathrm{mmol})$ in 5 mL of DCM, TEA ($42 \mathrm{mg}, 0.415 \mathrm{mmol}$) was added. The reaction was stirred for 16 h . Then it was concentrated and directly purified by flash column chromatography (ethyl acetate/DCM $=1: 1.2$) to give the product as a colorless viscous solid (180 mg, 90\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.17$ (m, 2H, Ar-H), $7.15-7.09$ (m, 2H, Ar-H), $6.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.24(\mathrm{dd}, J=$ $10.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.09(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.27(\mathrm{dd}, J=12.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a})$, 4.18 (dt, $J=10.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.11(\mathrm{dd}, J=12.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.82(\mathrm{ddd}, J=$ 9.9, 4.6, 2.3 Hz, 1H, H-5), 3.53 (q, $J=16.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}$), 3.45 (s, 1H, SH), 2.08 (s, 3 H , OAc), 2.02 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), 1.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$), 1.88 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}$). ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.80,170.74,169.43,169.30,168.43,131.72,130.33,130.06,129.04,92.28$, 72.94, 72.18, 68.10, 61.76, 53.47, 37.60, 20.83, 20.81, 20.69, 20.57.

Determination of compound purity by absolute qHNMR with internal calibration

The purities of compounds $\mathbf{1}-\mathbf{4 0}$ were determined by absolute $q N M R$ following the "general guidelines for quantitative $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR (qHNMR) experiments," provided by the Journal of Medicinal Chemistry.

The internal calibrant dimethyl sulfone $\left(\mathrm{DMSO}_{2}\right)$ was purchased from Sigma-Aldrich (product number: M81705, batch number: WXBC7924V). The purity of the internal calibrant ($\boldsymbol{P}_{I C}$) was 100.0% according to the "Certificate of Analysis" of this particular batch provided by the vendor. The absolute $q H N M R$ with internal calibration was conducted on a Bruker Avance Spectrospin DRX500 spectrometer at 298K. The data were obtained at 90° pulse tip angle with an interpulse delay $\left(D_{1}\right)$ of 60 s and an acquisition time of 3.2 s in a non-spinning mode. The FID was obtained following 64 scans of 256 K data points with a 20 ppm width spectral window. The data were processed with the MestReNova 9.0.1 software.

General procedure for $\mathbf{q H N M R}$

Step 1: The weights of the sample ($\boldsymbol{m}_{\mathbf{s}}$) and the internal calibrant ($\boldsymbol{m}_{\mathbf{I C}}$) were measured on a semi-micro METTLER TOLEDO balance with 0.01 mg accuracy. Then they were fully dissolved in $650 \mu \mathrm{~L}$ of CDCl_{3} or $600 \mu \mathrm{~L}$ of $\mathrm{D}_{2} \mathrm{O}$ in a $2-\mathrm{mL}$ vial. The resulting solution was transferred into a 5-mm standard NMR tube for analysis.

Step 2: After manual phase and baseline correction, the purest signals of the sample were integrated. The integral of the sample (Int $_{\boldsymbol{t}}$) was calculated as the average of all integrated
protons by dividing the sum of all those integrals by the number of protons that give rise the signals. By this procedure, the total number of protons $\left(\boldsymbol{n}_{\boldsymbol{t}}\right)$ is set to 1 .

Step 3: The integral of the internal calibrant $\left(\mathrm{DMSO}_{2}\right.$, singlet at $\left.3.0-3.2 \mathrm{ppm}\right)$ and the number of protons that give rise to this signal were recorded as $\boldsymbol{I n} \boldsymbol{t}_{I C}$ and $\boldsymbol{n}_{\boldsymbol{I C}}\left(\boldsymbol{n}_{\boldsymbol{I C}}=6\right)$.

Step 4: Calculate the molecular weights of the sample $\left(\boldsymbol{M} \boldsymbol{W}_{\boldsymbol{t}}\right)$ and the internal calibrant $\left(M W_{I C}=94.13 \mathrm{~g} / \mathrm{mol}\right)$.

Step 5: Calculate the purity (\boldsymbol{P}) of the sample according to the following equation:

$$
P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}
$$

References

1. Shu, P.; Zeng, J.; Tao, J.; Zhao, Y.; Yao, G.; Wan, Q., Selective S-deacetylation inspired by native chemical ligation: practical syntheses of glycosyl thiols and drug mercapto-analogues. Green Chem. 2015, 17 (4), 2545-2551.
2. Floyd, N.; Vijayakrishnan, B.; Koeppe, J. R.; Davis, B. G., Thiyl glycosylation of olefinic proteins: S-Linked glycoconjugate synthesis. Angew. Chem., Int. Ed. 2009, 48 (42), 7798-7802.
3. Dąbrowa, K.; Niedbała, P.; Jurczak, J., Engineering light-mediated bistable azobenzene switches bearing urea D-aminoglucose units for chiral discrimination of carboxylates. J. Org. Chem. 2016, 81 (9), 3576-3584.
4. Qin, C.; Schumann, B.; Zou, X.; Pereira, C. L.; Tian, G.; Hu, J.; Seeberger, P. H.; Yin, J., Total synthesis of a densely functionalized plesiomonas shigelloides serotype 51 aminoglycoside trisaccharide antigen. J. Am. Chem. Soc. 2018, 140 (8), 3120-3127.
5. Chen, X.; Wu, B.; Jayawardana, K. W.; Hao, N.; Jayawardena, H. S. N.; Langer, R.; Jaklenec, A.; Yan, M., Magnetic multivalent trehalose glycopolymer nanoparticles for the detection of mycobacteria. Adv. Healthcare Mater. 2016, 5 (16), 2007-2012.
6. Liu, F.; Vijayakrishnan, B.; Faridmoayer, A.; Taylor, T. A.; Parsons, T. B.; Bernardes, G. J. L.; Kowarik, M.; Davis, B. G., Rationally designed short polyisoprenol-Linked PglB substrates for engineered polypeptide and protein N-glycosylation. J. Am. Chem. Soc. 2014, 136 (2), 566-569.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}$ in CDCl_{3}.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ in CDCl_{3}.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}$ in CDCl_{3}.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in CDCl_{3}.

 스웅

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\underset{f 10}{100}(\mathrm{ppm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | |
| :--- |

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 in CDCl_{3}.

Figure S6. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{2}$ in CDCl_{3}.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 a}$ in CDCl_{3}.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 b}$ in CDCl_{3}.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

$\left.\begin{array}{llllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 \\ f 1(\mathrm{ppm})\end{array}\right)$
Figure S11. ${ }^{31}$ P NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

Figure S12. HRMS of compound 3.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 c}$ in DMSO- d_{6}.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 d}$ in DMSO-d .

Figure $\mathbf{S 1 5}$. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 e}$ in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 f}$ in CDCl_{3}.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 f}$ in CDCl_{3}.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

Figure S20. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 4 in CDCl_{3}.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 b}$ in CDCl_{3}.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in CDCl_{3}
\#%OMNO
\#%OMNO

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}$ in CDCl_{3}

Figure S24. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{5}$ in CDCl_{3}

Figure S25. HRMS of compound 5.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 b}$ in CDCl_{3}.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Figure S29. ${ }^{31}$ P NMR spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 d}$ in CDCl_{3}.

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 d}$ in CDCl_{3}.

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 e}$ in CDCl_{3}.

Figure S33. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 e}$ in CDCl_{3}.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 in CDCl_{3}.

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 in CDCl_{3}.

Figure S36. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 7 in CDCl_{3}.

Madanodaya Sundhor WB-09
Synapt_10294 23 (0.465) Cm (22:24-7:10) 100

SYNAPTG2-Si\#UGA305

1. 13:54:23 1: TOF MS ES+

Figure S37. HRMS of compound 7

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 e}$ in CDCl_{3}

Figure S39．${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 f}$ in CDCl_{3}

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100
 $\mathrm{f} 1(\mathrm{ppm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 f}$ in CDCl_{3}

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}$ in CDCl_{3}

Figure $\mathbf{S 4 2} .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}$ in CDCl_{3}.

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 in $\mathrm{D}_{2} \mathrm{O}$.

Figure $\mathbf{S 4 5} .{ }^{13} \mathrm{C}$ NMR spectrum of compound 10 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S46. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 10 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 1}$ in $\mathrm{D}_{2} \mathrm{O}$

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 11 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S49. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 11 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S51. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 12 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S52. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{1 2}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 3}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S55. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{1 3}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S56. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 4}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S57. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S58. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 14 in $\mathrm{D}_{2} \mathrm{O}$

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 5}$ in CDCl_{3}.

Figure S60. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 15 in CDCl_{3}.

320310300290280270260250240230220210200190180170160150140130
f1 (ppm)
Figure S61. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 15 in CDCl_{3}.

Figure S62. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16 in CDCl_{3}.

Figure S63. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 16 in CDCl_{3}.

 f1 (ppm)

Figure S64. ${ }^{31}$ P NMR spectrum of compound 16 in CDCl_{3}.

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17 in CDCl_{3}.

Figure S66. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 17 in CDCl_{3}.
 $32031030029028027026025024023022021020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 5040$ f1 (ppm)

Figure S67. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 17 in CDCl_{3}.

Figure S68. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18 in CDCl_{3}.

Figure S69. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 18 in CDCl_{3}.

 f1 (ppm)

Figure S70. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 18 in CDCl_{3}.

Figure $\mathbf{S 7 1 .}{ }^{1} \mathrm{H}$ NMR spectrum of compound 19 in CDCl_{3}.

Figure S72. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 19 in CDCl_{3}.

Figure S73. ${ }^{31}$ P NMR spectrum of compound 19 in CDCl_{3}.

Figure S74. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 0}$ in CDCl_{3}.

Figure S75. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 20 in CDCl_{3}.
 $32031030029028027026025024023022021020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \quad 10 \quad 0 \quad-10-20-30-40-50-60-70$ f1 (ppm)

Figure S76. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 20 in CDCl_{3}.

Figure S77. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 20 in CDCl_{3}.

Figure S78. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 21 in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S79. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 21 in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S80. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 21 in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S81. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 22 in CDCl_{3}.
N
\circ
ìn
1

Figure S82. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 22 in CDCl_{3}.

3203103002902802702602502402302202102001901801701601501401301201101009080 f1(ppm)

Figure S83. ${ }^{31}$ P NMR spectrum of compound 22 in CDCl_{3}.

Figure S84. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 3}$ in CDCl_{3}.

Figure S85. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 23 in CDCl_{3}.

\qquad

Figure S86. ${ }^{31}$ P NMR spectrum of compound 23 in CDCl_{3}.

Figure S87. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 23 in CDCl_{3}.

Figure S88. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 4}$ in CDCl_{3}.

乎晨品
$\stackrel{\text { 〒ं }}{\stackrel{\circ}{\circ}}$

Figure S89．${ }^{13} \mathrm{C}$ NMR spectrum of compound 24 in CDCl_{3} ．

 f1 (ppm)

Figure S90. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 24 in CDCl_{3}.

Figure S91. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 25 in CDCl_{3}.

 f1 (ppm)

Figure S92. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 25 in CDCl_{3}.

Figure S93. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26 in CDCl_{3}.

Figure S94. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26 in CDCl_{3}.

 f1 (ppm)

Figure S95. ${ }^{31}$ P NMR spectrum of compound 26 in CDCl_{3}.

Figure S96. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 27 in CDCl_{3}.

Figure S97. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 27 in CDCl_{3}.

$32031030029028027026025024023022021020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \quad 10 \quad 0 \quad-10-20-30-40-50-60-70$ f1 (ppm)

Figure S98. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 27 in CDCl_{3}.

Figure S99. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 28 in CDCl_{3}.

Figure S100. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 28 in CDCl_{3}.

320	310300290280270260250240230220210200190180170160150140130120110100
$f 1(\mathrm{ppm})$	90
80	70

Figure S101. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 28 in CDCl_{3}.

Figure S102. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 29 in CDCl_{3}.

Figure S103. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 29 in CDCl_{3}.

Figure S104. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 29 in CDCl_{3}.

ゅog

Figure S105. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 29 in CDCl_{3}.

Figure S106. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 0}$ in CDCl_{3}.

 둗웅

Figure S107. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 0}$ in CDCl_{3}.

Figure S108. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 30 in CDCl_{3}.

Figure S109. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 0}$ in CDCl_{3}.

Figure S110. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 1}$ in CDCl_{3}.

Figure S111. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 1}$ in CDCl_{3}.

Figure S112. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 1}$ in CDCl_{3}.

Figure S113. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2}$ in CDCl_{3}.

Figure S114. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2}$ in CDCl_{3}.

 f1 (ppm)

Figure S115. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 2}$ in CDCl_{3}.

Figure S116. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3}$ in CDCl_{3}.

Figure S117. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3}$ in CDCl_{3}.

3203103002902802702602502402302202102001901801701601501401301201101009080
Figure S118. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 3}$ in CDCl_{3}.

$$
{ }^{15}{ }_{\text {f1 }}^{(\mathrm{ppm})}{ }_{(\mathrm{ppm}}^{5.10}
$$

Figure S119. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 4}$ in CDCl_{3}.

Figure S120．${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 4}$ in CDCl_{3} ．

Figure S121. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 34 in CDCl_{3}.

Figure S122. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 35 in CDCl_{3}.

Figure S123. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 5}$ in CDCl_{3}.

3203103002902802702602502402302202102001901801701601501401301201101009080
Figure S124. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 5}$ in CDCl_{3}.

Figure S125. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 5}$ in CDCl_{3}.

Figure S126. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 6}$ in CDCl_{3}.

Figure S127. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 6}$ in CDCl_{3}.

Figure S128. ${ }^{31} \mathrm{P}$ NMR spectrum of compound $\mathbf{3 6}$ in CDCl_{3}.

Figure S129. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 6}$ in CDCl_{3}.

Figure S130. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 7}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S131. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 37 in $\mathrm{D}_{2} \mathrm{O}$.

$\begin{array}{lllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -71\end{array}$
Figure S132. ${ }^{31}$ P NMR spectrum of compound 37 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S133. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 8}$ in $\mathrm{D}_{2} \mathrm{O}$

Figure S134. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 38 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S135. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 38 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S136. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 39 in $\mathrm{D}_{2} \mathrm{O}$
のN\&O

Figure S137. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 39 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S138. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 39 in $\mathrm{D}_{2} \mathrm{O}$.

Figure S139. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 0}$ in CDCl_{3}.

$$
\mathrm{HO}_{\mathrm{PMe}_{3}}
$$

170

10090 80 60

Figure S140. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 0}$ in in CDCl_{3}.

Figure S141. ${ }^{31} \mathrm{P}$ NMR spectrum of compound 40 in in CDCl_{3}.

Determination of purity of Compounds 1 - $\mathbf{4 0}$ by qHNMR.

Compound $\mathbf{1}$ in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 2 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound $\mathbf{3}$ in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=3.36 \mathrm{mg}, \boldsymbol{m}_{I C}=2.25 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{\boldsymbol{t}}=109.21, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t ~}_{\text {IC }}=3318.30, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$M W_{t}=677.50 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} W_{I C}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \operatorname{In} I_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=95.2 \%$
Note	The integral of target analyte was calculated as the average of signals at 5.41, 5.24-5.08, 4.97, 4.14, 3.95, 2.10, 2.09, 2.02, 1.96, 1.85 and 1.23 ppm .

Compound 4 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound $\mathbf{5}$ in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 6 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 7 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=10.52 \mathrm{mg}, \boldsymbol{m}_{I C}=1.88 \mathrm{mg}, \boldsymbol{P}_{\text {IC }}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{t}=100.83, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t} \boldsymbol{I}_{\text {I }}=1588.77, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=1317.31 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{I C}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \mid n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=95.2 \%$
Note	The integral of target analyte was calculated as the average of signals at and 1.21 ppm .

Compound $\mathbf{8}$ in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=8.24 \mathrm{mg}, \boldsymbol{m}_{I C}=4.02 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{t}=112.65, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	Int $_{\text {IC }}=2929.11, n_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=843.69 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=95.0 \%$
Note	The integral of target analyte was calculated as the average of signals at 7.45, 7.00, 5.77, 5.29, $5.12,4.3,4.19,4.133 .85,3.51,2.10,2.04,1.99, ~, 1.92,1.89$ and 1.25 ppm .

Compound $\mathbf{9}$ in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right.$) as internal standard (500 MHz).

Compound 10 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=12.05 \mathrm{mg}, \boldsymbol{m}_{I C}=2.84 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{\boldsymbol{t}}=110.09, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t} \boldsymbol{I}_{\text {IC }}=877.34, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=510.34 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot n t t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \ln t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=96.2 \%$
Note	The integral of target analyte was calculated as the average of signals at 3.98, 3.80-3.64, $3.60,3.53$ and 1.21 ppm .

Compound 11 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 12 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Compound 13 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Step 1	
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{t}=110.92, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	Int $_{\text {IC }}=2447.84, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=672.48 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \operatorname{Int} \cdot} \cdot M W_{I C} \cdot m_{s} P_{I C}=95.2 \%$
Note	The integral of target analyte was calculated as the average of signals at 5.00, 4.47, 4.033.89, 3.86-3.71, 3.71-3.51 and 1.21 ppm .

Compound 14 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=6.22 \mathrm{mg}, \boldsymbol{m}_{I C}=2.52 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t}_{\boldsymbol{t}}=109.26, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	Int $_{\text {IC }}=1978.83, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=672.48 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \ln t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=95.9 \%$
Note	The integral of target analyte was calculated as the average of signals at 5.41, 4.98, 3.91, $3.87,3.81-3.65,3.64-3.52,3.42,3.30$ and 1.21 ppm .

Compound 15 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 16 in CDCl_{3} with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Compound $\mathbf{1 7}$ in CDCl_{3} with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Compound $\mathbf{1 8}$ in CDCl_{3} with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Compound 19 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 20 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=7.31 \mathrm{mg}, \boldsymbol{m}_{I C}=6.49 \mathrm{mg}, \boldsymbol{P}_{\text {IC }}=100 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{\boldsymbol{t}}=100.10, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t}_{\text {IC }}=2754.38, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$M W_{t}=492.29 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=101.2 \%$
Note	The integral of target analyte was calculated as the average of signals at 1.89 and 7.61 ppm.

Compound 21 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 22 in CDCl_{3} with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Step 1	$\begin{array}{ll}4.1 & 4.0 & 3.9 & 3.8 & 3.7 & 3.6 & 3.5 & 3.4 & 3.3 & 3.2 & 3.1 & 3.0 & 2.9 & 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 & 1.5 & 1.4 & 1.3 & 1.2 & 1.1 & 1.0 & 0.9 & 0.8\end{array}$ $\boldsymbol{m}_{s}=8.34 \mathrm{mg}, \boldsymbol{m}_{I C}=1.93 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t}_{\boldsymbol{t}}=101.48, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t}_{\text {IC }}=630.68, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$M W_{t}=420.26 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \operatorname{In} t_{I C} \cdot M W_{I C} \cdot m_{S}} \cdot P_{I C}=99.4 \%$
Note	The integral of target analyte was calculated as the average of signals at 3.70, 3.57, 1.83 and 1.21 ppm .

Compound 23 in CDCl_{3} with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Compound 24 in CDCl_{3} with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

				0 \sum_{0}^{0} 0		$\begin{array}{\|l} \hline \text { Q } \\ \hline \mathbf{\circ} \end{array}$		
	4.5	4.0	3.5	0.5	2.0	1.5	1.0	0.5
Step 1	$\boldsymbol{m}_{s}=5.25 \mathrm{mg}, \boldsymbol{m}_{I C}=4.04 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$							
Step 2	$\boldsymbol{I n t}_{\boldsymbol{t}}=100.00, \boldsymbol{n}_{\boldsymbol{t}}=1$							
Step 3	$\boldsymbol{I n t} \boldsymbol{I C}_{\text {IC }}=1399.73, \boldsymbol{n}_{\text {IC }}=6$							
Step 4	$\boldsymbol{M} \boldsymbol{W}_{\boldsymbol{t}}=308.50 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$							
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=100.2 \%$							

Compound 25 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 26 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 27 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 28 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 29 in CDCl_{3} with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=7.42 \mathrm{mg}, \boldsymbol{m}_{I C}=8.93 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{\boldsymbol{t}}=100.00, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t}_{\text {IC }}=4339.21, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=548.68 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \operatorname{In} t_{I C} \cdot M W_{I C} \cdot m_{S}} \cdot P_{I C}=97.0 \%$
Note	The integral of target analyte was calculated from signals at 7.52 ppm .

Compound $\mathbf{3 0}$ in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\begin{array}{ll}8.4 & 8.2 & 8.0 & 7.8 & 7.6 & 7.4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6.2 & 6.0 & 5.8 & 5.6 & 5.4 & 5.2 & 5.0 & 4.8 & 4.6 & 4.4 & 4.2 & 4.0 & 3.8 & 3.6 & 3.4 & 3.2 & 3.0 & 2.8 & 2.6 & 2.4\end{array}$ $\boldsymbol{m}_{s}=5.39 \mathrm{mg}, \boldsymbol{m}_{I C}=3.31 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t}_{t}=99.20, \boldsymbol{n}_{t}=1$
Step 3	Int $_{\text {IC }}=2693.83, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$M W_{t}=698.70 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=100.7 \%$
Note	The integral of target analyte was calculated as the average of signals at 7.79 and 7.67 ppm .

Compound 31 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound $\mathbf{3 2}$ in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=5.04 \mathrm{mg}, \boldsymbol{m}_{I C}=1.97 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{\boldsymbol{t}}=105.15, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t} \boldsymbol{I V}_{\text {IC }}=2072.75, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{\boldsymbol{t}}=762.65 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=96.4 \%$
Note	The integral of target analyte was calculated as the average of signals at 5.20-5.06, 4.98, $4.24,4.10,3.72,2.07,2.06,2.011 .98,1.80,1.48$ and 0.96 ppm .

Compound $\mathbf{3 3}$ in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 34 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=5.84 \mathrm{mg}, \boldsymbol{m}_{I C}=4.65 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{t}=102.89, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	Int $_{\text {IC }}=4962.22, n_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=912.63 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=96.0 \%$
Note	The integral of target analyte was calculated as the average of signals at $7.47,6.98,5.31-4.98$, $4.22,4.13,3.85,3.77,2.05,2.01,1.98$ and 1.91 ppm .

Compound 35 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 36 in CDCl_{3} with the addition of dimethyl sulfone ($\mathrm{DMSO}_{2}, 100.0 \%$) as internal standard (500 MHz).

Compound 37 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Compound 38 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=6.37 \mathrm{mg}, \boldsymbol{m}_{I C}=3.22 \mathrm{mg}, \boldsymbol{P}_{I C}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{\boldsymbol{t}}=101.79, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t ~}_{\text {IC }}=1593.91, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=468.25 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \operatorname{In} t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=96.4 \%$
Note	The integral of target analyte was calculated as the average of signals 3.97, 3.82-3.64, 3.60, 3.49 and 1.61 ppm .

Compound 39 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=11.47 \mathrm{mg}, \boldsymbol{m}_{\text {IC }}=4.25 \mathrm{mg}, \boldsymbol{P}_{\text {IC }}=100.0 \%$
Step 2	$\boldsymbol{I n t}_{\boldsymbol{t}}=104.78, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	$\boldsymbol{I n t}_{\text {IC }}=1330.45, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$M W_{t}=509.31 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot \ln t_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=94.7 \%$
Note	The integral of target analyte was calculated as the average of signals $3.91,3.81-3.65,2.08$ and 1.63 ppm .

Compound 40 in $\mathrm{D}_{2} \mathrm{O}$ with the addition of dimethyl sulfone $\left(\mathrm{DMSO}_{2}, 100.0 \%\right)$ as internal standard (500 MHz).

Step 1	$\boldsymbol{m}_{s}=7.05 \mathrm{mg}, \boldsymbol{m}_{I C}=4.08 \mathrm{mg}, \boldsymbol{P}_{\text {IC }}=100.0 \%$
Step 2	$\boldsymbol{I n t} \boldsymbol{t}_{t}=101.80, \boldsymbol{n}_{\boldsymbol{t}}=1$
Step 3	Int $_{\text {IC }}=1316.75, \boldsymbol{n}_{\text {IC }}=6$
Step 4	$\boldsymbol{M} \boldsymbol{W}_{t}=350.17 \mathrm{~g} / \mathrm{mol}, \boldsymbol{M} \boldsymbol{W}_{\text {IC }}=94.13 \mathrm{~g} / \mathrm{mol}$
Step 5	$P[\%]=\frac{n_{I C} \cdot I n t_{t} \cdot M W_{t} \cdot m_{I C}}{n_{t} \cdot I n I_{I C} \cdot M W_{I C} \cdot m_{s}} \cdot P_{I C}=99.9 \%$
Note:	The integral of target analyte was calculated as the average of signals at $3.68,3.13$ and 1.56 ppm .

Figure S142. Calibration Curve A of compound 40 in n-octanol-saturated water.

Figure S143. Calibration Curve B of compound 40 in water-saturated n-octanol.

Table S1. MIC/MBC ($\mu \mathrm{g} / \mathrm{mL})^{\mathrm{a}}$ of Group 1 analogs having varying thio sugar structures.

	A. baumannii P. aeruginosa	E. cloacae NCTC 13420	NCTC 13437. pneumoniae	S. aureus	E. faecium	E. coli		
NCTC 13405	ATCC 700603	JE2 (USA300)	ATCC 700221	ATCC 25922	Log P			
$\mathbf{1}$	$32(32)$	$256(256)$	$128(128)$	$256(256)$	$0.03(0.06)$	$0.12 / 0.06(0.25)$	$16(16)$	0.56
$\mathbf{2}$	$32(64)$	$256(256)$	$256(256)$	$>256(>256)$	$0.03(0.06)$	$0.12 / 0.25(0.25)$	$16(16)$	0.38
$\mathbf{3}$	$16(32)$	$128(128)$	$32(64)$	$128(128)$	$0.03 / 0.06(0.06)$	$0.06(0.25)$	$8(8)$	0.26
$\mathbf{4}^{\mathrm{f}}$	$64(128)$	>256	>256	>256	$0.008(0.01)$	$0.06(0.12)$	$16(16)$	1.01
$\mathbf{5}^{\mathrm{f}}$	$32(32)$	$128(128)$	$64(64)$	>256	$0.008(0.06)$	$0.03 / 0.06(0.12)$	$16(16)$	0.45
$\mathbf{6}^{\mathbf{g}}$	$64(128)$	$128(128)$	$256(256)$	>256	$0.03(0.12)$	$0.12(0.25)$	$32(32)$	1.04
$\mathbf{7}^{\mathbf{c}}$	$16(16)$	>256	$32(32)$	>256	$0.004 / 0.008(0.008)$	$0.06(0.12)$	$32(32)$	-0.28
$\mathbf{8}^{\mathrm{f}}$	$64 / 16(16)$	>256	$128 / 256$	>256	$0.03 / 0.008(0.12)$	$0.03 / 0.06(0.25)$	$128 />256(128)$	-0.36
$\mathbf{9}$	$32 / 8(128)$	$256(256)$	$64(64)$	$256(256)$	$0.03 / 0.06(0.25)$	$0.06(1)$	$16(16)$	-0.81
$\mathbf{1 0}$	$16(16)$	$128(128)$	$32(32)$	$128(128)$	$0.01(0.06)$	$0.06 / 0.12(0.25)$	$8(8)$	-0.73
$\mathbf{1 1}$	$16(32)$	$256(256)$	$64(128)$	$256(256)$	$0.01 / 0.03(0.06)$	$0.03 / 0.06(0.25)$	$8(8)$	-0.59
$\mathbf{1 2}$	$8 / 16(64)$	$256(256)$	$64(128)$	$256(256)$	$0.008(0.03)$	$0.03 / 0.06(0.25)$	$4 / 2(4)$	-0.89
$\mathbf{1 3}$	$16 / 32(128)$	$256(256)$	$128(128)$	$256(256)$	$0.01 / 0.03(0.06)$	$0.06(0.25)$	$16(16)$	-1.81
$\mathbf{1 4}$	$16(16)$	$256(256)$	$128(128)$	$>256(>256)$	$0.03 / 0.06(0.06)$	$0.06 / 0.12(0.25)$	$8(8)$	-1.69

${ }^{\text {a }}$ Assays were repeated twice. Only one value is presented unless both data are shown.
Lowest precipitation concentration at ${ }^{\mathrm{b}} 4,{ }^{\mathrm{c}} 8,{ }^{\mathrm{d}} 16,{ }^{\mathrm{e}} 32{ }^{\mathrm{f}} 64,{ }^{\mathrm{g}} 128 \mu \mathrm{~g} / \mathrm{mL}$.

Table S2. MIC/MBC ($\mu \mathrm{g} / \mathrm{mL})^{\text {a }}$ of Group 2 analogs having an aromatic or aliphatic thiol ligand.

| | A. baumannii | P. aeruginosa | E. cloacae | K. pneumoniae | S. aureus
 ATCC 700603 | JE2 (USA300) | ATCC 700221 | ATCC 25922 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Log P

${ }^{\text {a }}$ Assays were repeated twice. Only one value is presented unless both data are shown.
Lowest precipitation concentration at ${ }^{\mathrm{b}} 4,{ }^{\mathrm{c}} 8,{ }^{\mathrm{d}} 16,{ }^{\mathrm{e}} 32{ }^{\mathrm{f}} 64,{ }^{\mathrm{g}} 128 \mu \mathrm{~g} / \mathrm{mL}$.

Table S3. MIC/MBC ($\mu \mathrm{g} / \mathrm{mL})^{\mathrm{a}}$ of Group 3 analogs having a trialkyl- or triaryl-phosphine ligand.

	A. baumannii NCTC 13420	P. aeruginosa NCTC 13437	E. cloacae NCTC 13405	K. pneumoniae ATCC 700603	aureusJE2 (USA300)	$\begin{gathered} \text { E. faecium } \\ \text { ATCC } 700221 \end{gathered}$	$\begin{gathered} \text { E. coli } \\ \text { ATCC } 25922 \end{gathered}$	Log P
24	4/2 (4)	16 (16)	1 (1)	4/2 (4)	0.03/0.06 (0.5)	0.12 (1)	2 (2)	0.16
25	8/4 (8)	32 (64)	8 (8)	16 (16)	0.004/0.007 (0.06)	0.03/0.06 (0.25)	8 (8)	1.74
$26^{\text {e }}$	64/32 (64)	32 (32)	>256	64 (64)	1 (2)	2 (2)	>256	>3.99
$27^{\text {d }}$	64/8 (258)	>256	>256	>256	0.5/1 (2)	2 (2)	>256	>3.94
$28^{\text {c }}$	>256	>256	>256	>256	1 (2)	2 (2)	>256	>4.09
$29^{\text {d }}$	32/16 (128)	>256	>256	>256	0.5 (2)	1/2 (2)	>256	>4.04
30°	>256	>256	>256	>256	2/1 (8)	>256	>256	>3.94
31 ${ }^{\text {g }}$	8/4 (64)	64 (64)	2 (2)	8 (8)	0.06 (0.12)	0.12/0.25 (0.5)	4 (4)	0.35
1	32 (32)	256 (256)	128 (128)	256 (256)	0.03 (0.06)	0.12/0.06 (0.25)	16 (16)	0.56
$32^{\text {e }}$	64 (>256)	>256	>256	>256	2 (2)	4/2 (2)	>256	>4.32
$33^{\text {c }}$	>256	>256	>256	>256	1/2 (2)	4 (4)	>256	>3.87
$34^{\text {c }}$	>256	>256	>256	>256	1 (2)	4/2 (4)	>256	>3.03
$35^{\text {c }}$	>256	>256	>256	>256	1 (2)	4/2 (4)	>256	>3.04
$36^{\text {e }}$	>256	>256	>256	>256	4 (8)	32 (64)	>256	>3.55

${ }^{\text {a }}$ Assays were repeated twice. Only one value is presented unless both data are shown.
Lowest precipitation concentration at ${ }^{\mathrm{b}} 4,{ }^{\mathrm{c}} 8,{ }^{\mathrm{d}} 16,{ }^{\mathrm{e}} 32{ }^{\mathrm{f}} 64,{ }^{\mathrm{g}} 128 \mu \mathrm{~g} / \mathrm{mL}$.

Table S4. MIC/MBC $(\mu \mathrm{g} / \mathrm{mL})^{\mathrm{a}}$ of analogs having trimethylphosphine ligand.

	A. baumannii	P. aeruginosa	E. cloacae	K. pneumoniae	S. aureus	E. faecium	E. coli	
	NCTC 13420	NCTC 13437	NCTC 13405	ATCC 700603	JE2 (USA300)	ATCC 700221	ATCC 25922	Log P
$\mathbf{1}$	$32(32)$	$256(256)$	$128(128)$	$256(256)$	$0.03(0.06)$	$0.12 / 0.06(0.25)$	$16(16)$	0.56
$\mathbf{3 1}^{\mathrm{g}}$	$8 / 4(64)$	$64(64)$	$2(2)$	$8(8)$	$0.06(0.12)$	$0.12 / 0.25(0.5)$	$4(4)$	0.35
$\mathbf{3 7}$	$8 / 2(8)$	>256	$2 / 4(8)$	$16(16)$	$0.12 / 0.25(0.5)$	$0.12 / 0.25(0.25)$	$4(4)$	-1.63
$\mathbf{3 8}$	$8 / 4(8)$	$>256(>256)$	$2(2)$	$16(16)$	$0.12(0.12)$	$0.12 / 0.25(0.25)$	$4(4)$	-1.88
$\mathbf{3 9}$	$8 / 4(8)$	$>256(>256)$	$4 / 8(8)$	$16(64)$	$0.25(0.25)$	$0.12 / 0.25(0.25)$	$4 / 16(16)$	-2.03
$\mathbf{4 0}$	$2 / 1(8)$	$32 / 8(32)$	$1(1)$	$4(8)$	$0.12(0.25)$	$0.12(0.12)$	$0.5 / 2(4)$	-0.15

${ }^{\text {a }}$ Assays were repeated twice. Only one value is presented unless both data are shown.
Lowest precipitation concentration at ${ }^{\mathrm{b}} 4,{ }^{\mathrm{c}} 8,{ }^{\mathrm{d}} 16,{ }^{\mathrm{e}} 32{ }^{\mathrm{f}} 64,{ }^{\mathrm{g}} 128 \mu \mathrm{~g} / \mathrm{mL}$.

Table S5. $\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})^{\mathrm{a}}$ of auranofin and analogs against A549 cells.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
7.7 ± 1.3	10.5 ± 0.2	30.9 ± 5.8	7.9 ± 0.1	15.2 ± 0.3	29.8 ± 3.2	14.4 ± 0.0
$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
15.8 ± 0.1	30.2 ± 0.1	16.9 ± 0.5	17.2 ± 1.1	29.2 ± 4.8	32.9 ± 4.6	31.0 ± 2.4
$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$
4.3 ± 0.2	7.5 ± 0.1	6.5 ± 1.1	7.2 ± 0.7	5.5 ± 1.3	3.1 ± 0.2	7.3 ± 1.7
$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$
6.4 ± 2.4	4.6 ± 0.2	15.9 ± 0.7	9.5 ± 0.1	4.7 ± 0.0	12.0 ± 1.8	9.4 ± 1.7
$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$
13.2 ± 1.0	85.6 ± 26.1	13.1 ± 2.3	2.5 ± 0.3	3.1 ± 0.1	3.8 ± 0.1	2.9 ± 0.1
$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$\mathbf{4 0}$		
18.3 ± 2.2	52.2 ± 1.0	43.0 ± 3.7	35.5 ± 0.9	12.3 ± 3.1		

${ }^{\text {a }}$ Data are presented as mean \pm S.E.M. from two independent experiments.

