Lipase and metal chloride hydrate-natural deep eutectic solvents synergistically catalyze amidation reaction via multiple non-covalent bond interactions

Binbin Nian, Chen Cao, Yuanfa Liu^{a*}

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China Corresponding Authors: Yuanfa Liu

* Tel.: +860510-85876799, Fax: +860510-85876799 E-mail: yfliu@jiangnan.edu.cn

Number of pages: #18

Number of figures: #10

Number of tables: #5

Contents:

Figure S1. Characterization of Lauroyl glycine (LG)
Figure S2. Construction of 3c-NADESs
Figure S3. COM RDFs for Mg-CGly3 components around CALB catalytic triad
(Ser-His-Asp)
Figure S4. COM RDFs for Mg-CGly3 components around CALB large (A),
medium (B) and acyl binding pocket (C)
Figure S6. The effect of chloride ions on the Fukui function of lauric acidS9
Figure S7. The harmonic vibrational frequency of the amidation reaction of lauric
acid and glycine in C-Gly (A) and Mg-CGly3 (B)
Figure S8. The intrinsic reaction coordinates (IRC) of the amidation reaction of
lauric acid and glycine in C-Gly (A) and Mg-CGly3 (B)S11
Figure S9. The reaction path of the amidation reaction of lauric acid and glycine
in C-Gly calculated via IRC method
Figure S10. The reaction path of the amidation reaction of lauric acid and glycine
in Mg-CGly3 calculated via IRC method
Table S1. Construction of NADESs, the HBD and HBA are given in molar ratios
Table S2. Second screening round of NADES S15
Table S3. Construction of NADESs, the C-GLy and metal chloride hydrates are
given in mole fractions
Table S4. The different parameters and levels used during the optimization process
Table S5. L9 orthogonal array showing the controllable parameters for the
optimization of the enzymatic synthesis of LG process in Mg-CGly3S18

Figure S1. Characterization of Lauroyl glycine (LG)

* The peaks of 3321.92cm⁻¹, 1704.31cm⁻¹, 1643.87cm⁻¹ and 1558.69cm⁻¹ in Figure S1a (FT-IR) are attributed to the -NH, -C=O of -COOH; -C=O of -CONH and -C-N-respectively; Figure S1b (MS) suggested that the product showed a characteristic peak with m/z 258.1, which was consistent with (LG+H⁺). The product was also analyzed by ¹HNMR, with tetramethyl silane (TMS) as the internal standard and CD₃OD as the solvent. The chemical shift values of the peaks and their assignments were shown in Figure S1 (c, d).

Figure S2. Construction of 3c-NADESs

Figure S3. COM RDFs for Mg-CGly3 components around CALB catalytic triad (Ser-

His-Asp)

Figure S4. COM RDFs for Mg-CGly3 components around CALB large (A), medium

(B) and acyl binding pocket (C)

Figure S5. Combined free energy of CALB substrate-binding pocket and lauric acid in NADESs and 3c-NADESs calculated by MM-PBSA

Figure S6. The effect of chloride ions on the Fukui function of lauric acid *The Fukui function of lauric acid was calculated via Multiwfn software, and the isosurface value is 0.007.

Figure S7. The harmonic vibrational frequency of the amidation reaction of lauric acid and glycine in C-Gly (A) and Mg-CGly3 (B)

Figure S8. The intrinsic reaction coordinates (IRC) of the amidation reaction of lauric

acid and glycine in C-Gly (A) and Mg-CGly3 (B)

Figure S9. The reaction path of the amidation reaction of lauric acid and glycine in C-Gly calculated via IRC method.

*A-H indicates: 0, 10, 20, 30, 40, 50, 60 and 80 steps of IRC path

Figure S10. The reaction path of the amidation reaction of lauric acid and glycine in

Mg-CGly3 calculated via IRC method.

*A-H indicates: 0, 10, 20, 30, 40, 50, 60 and 80 steps of IRC path

S. no.	HBA	HBD	HBA: HBD	Fluidity at 363K			
1	Betaine	xylitol	1:2	yes ^a			
2	Betaine	Malic acid	1:2	no			
3	Betaine	Citric acid	1:1	no			
4	Betaine	Glycerin	1:2	yes			
5	Betaine	Urea	1:2	yes			
6	Choline chloride	xylitol	1:2	yes ^a			
7	Choline chloride	Malic acid	1:1	yes			
8	Choline chloride	glucose	3:2	no			
9	Choline chloride	Trehalose	1:3	no			
10	Choline chloride	Glycerin	1:2	yes			
11	Choline chloride	Urea	1:1	yes ^a			
12	Choline chloride	Lactic acid	1:10	yes			
13	Proline	Sorbitol	1:1	no			
14	Proline	Glycerin	1:2	yes			
15	Proline	Urea	1:2	no			
16	Lactic acid	Glycine	1:3	yes			
17	Malic acid	Glucose	1:3	yes ^a			
18	Malic acid	Sucrose	1:3	no			
19	Malic acid	Glycerin	1:1	yes			
* HBA:HBD are given in molar ratios; yes ^a was liquid, but high viscous							

Table S1. Construction of NADESs, the HBD and HBA are given in molar ratios

S. no.	HBA	HBD	HBA: HBD	Fluidity at 363 K
1	Betaine	xylitol	1:1	yes ^a
2	Betaine	xylitol	2:1	NA
3	Betaine	Urea	1:1	yes
4	Betaine	Urea	2:1	no
5	Choline chloride	xylitol	1:1.5	yes
6	Choline chloride	xylitol	1:1	no
7	Choline chloride	Trehalose	3:1	yes ^a
8	Choline chloride	Trehalose	1:1	no
9	Choline chloride	Urea	1:2	yes
10	Choline chloride	Urea	1:1.5	no
11	Lactic acid	Glycine	1:1	NA
12	Lactic acid	Glycine	3:1	NA
13	Lactic acid	Glycine	6:1	NA
14	Lactic acid	Glycine	9:1	yes ^a
15	Malic acid	Glucose	1:2	NA
16	Malic acid	Glucose	1:1	yes
* HBA:HB	D are given in molar ratios; y	vesª was liquid, but h	igh viscous; NA repre	sents that NADESs cannot be
formed				

 Table S2. Second screening round of NADES

Table S3.	Construction	of NADESs, 1	the C-GLy	and metal	chloride h	ydrates are	e given
in mole fra	actions						

Male fraction of C Clu	Mole fraction of metal chloride hydrates				
	MgCl ₂ ·6H ₂ O Abbreviation F		FeCl ₃ ·6H ₂ O	Abbreviation	
0.9	0.1	Mg-CGly1	0.1	Fe-CGly1	
0.8	0.2	Mg-CGly2	0.2	Fe-CGly2	
0.7	0.3	Mg-CGly3	0.3	Fe-CGly3	
0.6	0.4	Mg-CGly4	0.4	Fe-CGly4	
0.5	0.5	Mg-CGly5	0.5	Fe-CGly5	

Identifier	Parameter	Level 1	Level 2	Level 3
А	Time (h)	72	96	120
В	Temperature (K)	313	323	333
С	Enzyme (mg)	50	75	100
D	Fatty acids: amino acids	2:1	1.5:1	1:1

Table S4. The different parameters and levels used during the optimization process

Trail [#]	А	В	С	D	
1	1	1	1	1	
2	1	2	2	2	
3	1	3	3	3	
4	2	1	2	3	
5	2	2	3	1	
6	2	3	1	2	
7	3	1	3	2	
8	3	2	1	3	
9	3	3	2	1	
*For detailed description of parameters A-D and levels 1-3, please refer Table S4, four					
controllable were listed, to make the results easier to be analyzed, a L9 assay were adopted.					
A total number of 27 runs (9 trails*3 repetitions) were needed to arrive at a conclusion.					

Table S5. L9 orthogonal array showing the controllable parameters for the optimization

 of the enzymatic synthesis of LG process in Mg-CGly3