SUPPORTING INFORMATION

Trivirensols: Selectively Bacteriostatic Sesquiterpene Trimers from the Australian Termite Nest-derived Fungus *Trichoderma virens* CMB-TN16

Wei-Hua Jiao,^{†,‡,§} Angela A. Salim,^{†,§} Zeinab G. Khalil,^{†,§} Pradeep Dewapriya,[†] Hou-Wen Lin,[‡] Mark Butler[†] and Robert J. Capon^{*,†}

[†]Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia

[‡]Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China

[§] joint first authors

Table of contents

1	Spectroscopic characterization of metabolites 11 – 17	5
1.1	Trivirensol A (11)	5
1.2	Trivirensol B (12)	7
1.3	Trivirensol C (13)	9
1.4	Trivirensol D (14)	11
1.5	Trivirensol E (15)	13
1.6	Trivirensol F (16)	15
1.7	Trivirensol G (17)	17
2	Antibacterial and antifungal assays data	43
3	Time-kill (bacteriocidal vs bacteriostatic) assays for divirensols and trivirensols (11 and 17)	- 13 46
4	Cytotoxicity assays	47

List of Tables

Table S1. ¹ H and ¹³ C NMR data for trivirensol A (11) in DMSO- d_6	5
Table S2. ¹ H and ¹³ C NMR data for trivirensol B (12) in DMSO- d_6	7
Table S3. ¹ H and ¹³ C NMR data for trivirensol C (13) in DMSO- d_6	9
Table S4. ¹ H and ¹³ C NMR data for trivirensol D (14) in DMSO- d_6	
Table S5. ¹ H and ¹³ C NMR data for trivirensol E (15) in DMSO- d_6	
Table S6. ¹ H and ¹³ C NMR data for trivirensol F (16) in DMSO- d_6	15
Table S7. ¹ H and ¹³ C NMR data for trivirensol G (17) in DMSO- d_6	17

List of Figures

Figure S1. ¹ H NMR spectrum of trivirensol A (11) in DMSO- d_6	19
Figure S2. ¹³ C NMR spectrum of trivirensol A (11) in DMSO- d_6	19
Figure S3. HSQC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	20
Figure S4. HSQC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	20
Figure S5. HSQC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	21
Figure S6. HSQC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	21
Figure S7. HSQC spectrum of trivirensol A (11) in DMSO- d_6	22
Figure S8. ¹ H- ¹ H COSY spectrum of trivirensol A (11) in DMSO- d_6	22
Figure S9. ¹ H- ¹ H COSY spectrum of trivirensol A (11) in DMSO- d_6	23
Figure S10. ¹ H- ¹ H COSY spectrum of trivirensol A (11) in DMSO- d_6	23
Figure S11. HMBC spectrum of trivirensol A (11) in DMSO-d ₆	24
Figure S12. HMBC spectrum of trivirensol A (11) in DMSO-d ₆	24
Figure S13. HMBC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	25
Figure S14. HMBC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	25
Figure S15. HMBC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	26
Figure S16. HMBC spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	26
Figure S17. HMBC spectrum of trivirensol A (11) in DMSO-d ₆	27
Figure S18. ROESY spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	27
Figure S19. ROESY spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	28
Figure S20. ROESY spectrum of trivirensol A (11) in DMSO- d_6	28
Figure S21. ROESY spectrum of trivirensol A (11) in DMSO- <i>d</i> ₆	29
Figure S22. ROESY spectrum of trivirensol A (11) in DMSO- d_6	29
Figure S23. HRESIMS spectrum of trivirensol A (11)	30
Figure S24. ¹ H NMR spectrum of trivirensol B (12) in DMSO- d_6	31
Figure S25. ¹³ C NMR spectrum of trivirensol B (12) in DMSO- d_6	31
Figure S26. HRESIMS spectrum of trivirensol B (12)	32
Figure S27. ¹ H NMR spectrum of trivirensol C (13) in DMSO- d_6	33
Figure S28. ¹³ C NMR spectrum of trivirensol C (13) in DMSO- d_6	33
Figure S29. HRESIMS spectrum of trivirensol C (13)	34
Figure S30. ¹ H NMR spectrum of trivirensol D (14) in DMSO- d_6	35
Figure S31. ¹³ C NMR spectrum of trivirensol D (14) in DMSO- d_6	35
Figure S32. HRESIMS spectrum of trivirensol D (14)	36
Figure S33. ¹ H NMR spectrum of trivirensol E (15) in DMSO- d_6	37
Figure S34. ¹³ C NMR spectrum of trivirensol E (15) in DMSO- d_6	37
Figure S35. HRESIMS spectrum of trivirensol E (15)	38
Figure S36. ¹ H NMR spectrum of trivirensol F (16) in DMSO- d_6	39
Figure S37. ¹³ C NMR spectrum of trivirensol F (16) in DMSO- d_6	39
Figure S38. HRESIMS spectrum of trivirensol F (16)	40
Figure S39. ¹ H NMR spectrum of trivirensol G (17) in DMSO- d_6	41
Figure S40. ¹³ C NMR spectrum of trivirensol G (17) in DMSO- d_6	41
Figure S41. HRESIMS spectrum of trivirensol G (17)	42
Figure S42. Graphs for antimicrobial studies against susceptible, MDR strains and fungu	s of
trivirensols $(11 - 17)$ in broth micro-dilution assay	45

1 Spectroscopic characterization of metabolites 11 – 17

1.1 Trivirensol A (11)

Table S1. ¹H and ¹³C NMR data for trivirensol A (11) in DMSO- d_6

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (H→C)	ROESY
1	166.9, ^a C				
2	133.4, C				
3a	55.4, CH ₂	4.19, d (11.9)	3b	1, 2, 4	5
3b		4.12, d (11.9)	3a	1, 2, 4	5
4	145.1, ^b CH	6.42, d (10.8)	5	1, 2, 5, 10	6, 10, 11
5	39.9, CH	2.75, ddd (11.4, 10.8, 10.8)	4, 6, 10	6	3a, 3b, 11, 12, 14a
6	58.1, CH	2.44, d (11.4)	5	7, 14, 15	4, 10
7	71.2, C				
8a	$34.6,^{c}\mathrm{CH}_{2}$	2.12, m	8b		
8b		1.32, m	8a, 9b		
9a	$20.4,\mathrm{CH}_2$	1.52, ^e m	9b	10	
9b		1.12, m	8b, 9a, 10		14a
10	45.7, CH	1.34, m	5, 9b		4, 6
11	27.9, CH	1.62, m	12, 13	10, 12, 13	4, 5, 12, 13
12	15.6, CH ₃	0.71, d (6.6)	11	10, 11, 13	5, 11
13	21.2, ^d CH ₃	0.85, ^f d (6.6)	11	10, 11, 12	11
14a	65.6, CH ₂	4.37, d (12.0)	14b	1'	5, 9b
14b		4.24, d (12.0)	14a	7, 8, 1'	
15	173.9, C				
1'	166.7, ^a C				
2'	133.9, C				
3'a	55.6, CH ₂	4.35, d (11.4)	3'b	1', 2', 4'	5'
3′b		4.30, d (11.4)	3'a	1', 2', 4'	5'
4'	144.4, CH	6.44, d (10.2)	5'	1', 2', 3', 6', 10'	10′

5

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (H \rightarrow C)	ROESY
5'	33.7, CH	3.48,* m	4', 10'	15'	3'a, 3'b, 11', 12', 13'
6'	124.0, C				
7′	165.2, C				
8'	22.4, CH ₂	2.38, m	9′a	6', 7'	14'
9′a	20.1, CH ₂	1.81, m	8', 10'	5'	
9′b		1.51, ^e m		5'	
10′	44.8, CH	1.46, m	5′, 9′a		4'
11′	27.3, CH	1.64, m	12', 13'		5', 12', 13'
12'	17.7, CH ₃	0.83, ^f d (6.6)	11′	10', 11', 13'	5', 11'
13′	$21.4,^d\mathrm{CH}_3$	0.95, d (6.6)	11′	10', 11', 12'	5', 11'
14′	71.6, CH ₂	4.82, m		6', 7', 15'	8'
15'	173.0, C				
1''	166.9, ^a C				
2''	129.4, C				
3‴a	60.9, CH ₂	5.28, d (14.4)	3‴b	1'', 4''	6''
3‴b		4.84, d (14.9)	3‴a	1'', 2'', 4'', 15''	
4''	145.2, ^b CH	7.07, d (3.6)	5''	1'', 3'', 6''	5'', 11'', 12''
5''	39.4, CH	2.58, ddd (12.4, 12.4, 3.6)	4", 6", 10"		4'', 9''b, 12'', 14''b
6''	51.7, CH	3.66, d (12.4)	5''	5'', 7'', 14'', 15''	3"a, 8b", 10"
7''	71.8, C				
8''a	34.8, ^c CH ₂	2.16, m	8‴b		
8‴b		1.35, m	8‴a, 9‴b		6''
9‴a	20.9, CH ₂	1.58, m	9‴b	5''	
9‴b		1.16, m	8"b, 9"a, 10		5′′, 14′′b
10''	47.6, CH	1.52, m	5″, 9″b		6''
11''	27.0, CH	1.95, m	12", 13"	13''	4'', 13''
12''	15.2, CH ₃	0.84, ^f d (6.6)	11″	10", 11", 13"	4'', 5'', 11''
13''	21.3, ^d CH ₃	0.89, d (6.6)	11″	10'', 11'', 12''	11''
14''a	65.0, CH ₂	5.01, d (12.0)	14‴b	1, 6'', 7'', 8''	
14‴b		4.35, d (12.0)	14‴a	1	5′′, 9′′b
15''	171.8, C				

 $\frac{15''}{a^{-f}Assignments}$ of overlapping resonances with the same superscript may be interchanged. *signal obscured under H₂O resonance.

1.2 Trivirensol B (**12**)

Table S2. ¹H and ¹³C NMR data for trivirensol B (12) in DMSO- d_6

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (H→C)	ROESY
1	165.3, ^a C				
2	129.0, C				
3a	60.9, ^b CH ₂	5.33, d (14.4)	3b, 4	1, 4	6
3b		4.89, d (14.4)	3a	1, 2, 4, 15	
4	146.1, CH	7.13, d (2.5)	3a, 5	1, 2, 3, 5, 6	5, 11, 12
5	39.4, [°] CH	2.62, ¹ m	4, 6, 10		4, 9b, 14b
6	52.0, CH	3.67, ^m d (13.8)	5	5, 7, 14, 15	3a, 8b, 10, 7-OH
7	71.7, ^d C				
7-OH		5.15, s		6, 7	6
8a	34.8, ^e CH ₂	2.16, ddd (12.8, 2.5, 2.5)	8b,	10	
8b		1.35, ⁿ m	8a, 9b		6
9a	$20.9,^{\rm f}\rm CH_2$	1.59,° m	9b	10	
9b		1.19, ^p m	8b, 9a, 10		5, 14b
10	47.6, ^g CH	1.53, ^q m	5, 9b		
11	27.0, ^h CH	1.98, ^r m	12, 13	12, 13	4, 12,13
12	15.2, ⁱ CH ₃	0.84, ^s d (6.6)	11	10, 11, 13	4
13	21.4, ^j CH ₃	0.90, ^t d (6.6)	11	10, 11, 12	
14a	65.2, CH ₂	4.98, d (12.0)	14b	7, 8, 1′	
14b		4.39, d (12.0)	14a	7, 8, 1′	5, 9b
15	171.9, ^k C				
1′	166.7, C				
2'	134.0, C				
3′a	55.6, CH ₂	4.35, d (12.0)		1', 2', 4'	5'
3′b		4.30, d (12.0)		1', 2', 4'	5'
4'	144.3, CH	6.44, d (10.8)	5'	1', 2', 3', 5', 6'	10'
5'	33.7, CH	3.49,* m	4', 10'		3'a, 12'
6'	124.0, C				

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (H→C)	ROESY
7′	165.2, ^a C				
8′	22.4, CH ₂	2.40, m	9'a, 9b		9'a, 9'b, 14'
9′a	20.1, CH ₂	1.82, m	8', 9b', 10'	5', 11'	8'
9′b		1.50, m	8', 9a'	5', 10'	8'
10′	44.8, CH	1.45, m	5', 9a'		4'
11′	27.3, CH	1.64, m	12', 13'	9', 10', 12', 13'	
12'	17.7, CH ₃	0.84, ^s d (6.6)	11′	10', 11', 13'	5'
13'	21.4, CH ₃	0.95, d (6.6)	11'	10', 11', 12'	
14′	$71.8,^{d}\mathrm{CH}_{2}$	4.84, m		6', 7', 8', 15'	8′
15'	173.0, C				
1''	166.9, C				
2''	129.4, C				
3‴a	61.0, ^b CH ₂	5.26, d (14.0)	3''b, 4''	1'', 2''	6''
3′′b		4.84, d (14.0)	3‴a	1'', 2'', 4'', 15''	
4''	145.1, CH	7.06, d (3.0)	3''a, 5''	1'', 2'', 3'', 6''	5", 11", 12"
5''	39.4, [°] CH	2.60, ¹ m	4'', 6'', 10''		4'', 14''b
6''	51.7, CH	3.65 ^{, m} d (13.8)	5''	5'', 7'', 14'', 15''	3"a, 8"b, 10", 7"-OH
7''	71.6, ^d C				
7''-OH		5.10, s		6'', 7''	6''
8′′a	34.8, ^e CH ₂	2.09, m	8‴b	6'', 14''	14''a
8′′b		1.36, ⁿ m	8''a, 9''b		6'', 14''a
9‴a	$20.9,^{\rm f}{\rm CH_2}$	1.59,° m	9‴b		
9‴b		1.19, ^p m	8''b, 9''a, 10''		5″, 14″b
10''	47.6, ^g CH	1.52, ^q m	5′′, 9′′b		5'', 6''
11''	27.0, ^h CH	1.98, ^r m	12", 13"	12", 13"	4", 12", 13"
12''	15.2, ⁱ CH ₃	0.84, ^s d (6.6)	11''	10", 11", 13"	4''
13''	21.4, ^j CH ₃	0.90, ^t d (6.6)	11''	10", 11", 12"	4''
14''a	65.9, CH ₂	5.10, d (12.0)	14‴b	1, 7'', 8''	
14''b		4.35, d (12.0)	14''a	1	5″, 9″b
15''	171.8, ^k C				

^{a-t}Assignments of overlapping resonances with the same superscript may be interchanged. *signal is obscured under H₂O resonance.

1.3 Trivirensol C (13)

Table S3. ¹H and ¹³C NMR data for trivirensol C (13) in DMSO- d_6

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} \left(J {\rm in} {\rm Hz} \right)$	COSY	HMBC (H \rightarrow C)	ROESY
1	165.3, C				
2	129.0, C				
3a	60.9, ^a CH ₂	5.35, d (14.4)	3b	1, 4	6
3b		4.89, d (14.4)	3a	1, 2, 4, 15	
4	146.1, CH	7.13, d (3.5)	5	1, 2, 3, 5, 6	5, 11, 12
5	39.4, ^b CH	2.62, m	4, 6, 10		4, 9b, 12, 14b
6	51.7, CH	3.69, d (12.5)	5	7, 14, 14	3a, 8b, 10
7	71.7, [°] C				
8a	$34.8,^d\mathrm{CH}_2$	2.19, ddd (12.5, 2.5, 2.5)	8b	6, 7, 10	9a, 9b
8b		1.36, ^m m	8a, 9b		6
9a	20.9, ^e CH ₂	1.60, ⁿ m	9b		8a
9b		1.18,° m	8b, 9a, 10		5, 8a, 14
10	47.5, ^f CH	1.53, ^p m	5, 9b		6, 10, 11
11	27.0, ^g CH	1.96, ^q m	12, 13	10, 13	4, 13
12	15.2, ^h CH ₃	0.84, ^r d (6.6)	11	10, 11, 13	4, 5
13	21.2, ⁱ CH ₃	0.89, ^s d (6.6)	11	10, 11, 12	11
14a	65.1, CH ₂	5.04, d (12.0)	14b	7, 8, 1′	
14b		4.36, d (12.0)	14a	1'	5, 9b
15	171.8, ^j C				
1'	166.7, C				
2'	133.4, C				
3'a	55.4, CH ₂	4.10, d (12.0)	3′b	1', 2', 4'	
3′b		3.96, d (12.0)	3'a	1', 2', 4'	5'
4′	144.1, CH	6.55, d (10.2)	5'	1', 2', 3', 6', 10'	6', 10', 11'
5'	39.5, ^b CH	2.60, m	4', 6', 10'	2',4', 6', 10', 15'	3'b , 9b', 12', 14'a

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} (J \text{ in Hz})$	COSY	HMBC (H→C)	ROESY
6'	52.0, ^k CH	2.03, d (11.4)	5'	4', 5', 7', 15'	4', 8b', 10'
7'	74.4, ¹ C				
8'a	31.8, CH ₂	1.90, ddd (13.0, 2.5, 2.5)	8′b	7', 10', 14'	
8′b		1.57, m	8'a, 9'b		
9'a	20.7, ^e CH ₂	1.60, ⁿ m	9′b		
9′b		1.18, [°] m	8'b, 9'a, 10'		5′, 14′a
10′	44.7, CH	1.25, m	5′, 9′b		4', 6'
11′	28.0, CH	1.64, m	12', 13'	10', 12', 13'	4', 12', 13'
12′	15.6, CH ₃	0.71, d (6.6)	11′	10', 11', 13'	5', 11'
13'	21.2, ⁱ CH ₃	0.88, ^s d (6.6)	11′	10', 11', 12'	11′
14'a	74.5, ¹ CH ₂	4.43, d (9.6)	14′b		5′, 9′b
14′b		3.94, d (9.0)	14'a	6', 7', 15'	
15′	176.7, C				
1''	166.8, C				
2''	129.3, C				
3‴a	61.0, ^a CH ₂	5.26, d (14.4)	3‴b	1'', 4''	6''
3‴b		4.84, d (14.4)	3‴a	1", 2", 4", 15"	
4''	145.1, CH	7.06, d (3.5)	5''	1", 2", 3", 5", 6"	5'', 11'', 12''
5''	39.4, ^b CH	2.59, m	4'', 6'', 10''		4'', 9b'', 12'', 14''b
6''	52.0, ^k CH	3.66, d (12.2)	5''	5", 7", 10", 14", 15"	3''a, 8b'', 10''
7''	71.8, ^c C				
8''a	34.8, ^d CH ₂	2.10, ddd (12.6, 3.1, 3.1)	8‴b		9‴a, 9‴b
8′′b		1.36, ^m m	8‴a, 9‴b		6''
9‴a	20.9, ^e CH ₂	1.60, ⁿ m	9‴b		8''a
9‴b		1.18,° m	8''b, 9''a, 10''		5′′, 8′′a
10''	47.6, ^f CH	1.53, ^p m	5″, 9″b		6'', 11''
11''	27.0, ^g CH	1.96, ^q m	12", 13"	13''	4'', 10'', 13''
12''	15.2, ^h CH ₃	0.84, ^r d (6.6)	11″	10", 11", 13"	4'', 5''
13''	21.4, CH ₃	0.89, ^s d (6.6)	11″	10", 11", 12"	11''
14''a	65.9, CH ₂	5.11, d (12.0)	14‴b	1, 7", 8"	
14''b		4.35, d (12.0)	14‴a	1	5′′, 9′′b
15''	171.9, ^j C				

^{a-s}Assignments of overlapping resonances with the same superscript may be interchanged.

1.4 Trivirensol D (14)

Table S4. ¹H and ¹³C NMR data for trivirensol D (14) in DMSO- d_6

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (H→C)	ROESY
1	165.3, C				
2	129.0, C				
3a	60.9, CH ₂	5.34, d (14.4)	3b, 4	1,4	6
3b		4.89 ^{, k} d (14.4)	3a	1, 2, 4, 15	
4	146.1, ^a CH	7.13, d (3.6)	3a, 5	1, 2, 3, 6	5, 10, 11, 12, 8"a
5	39.4, ^b CH	2.63, ddd (12.3, 10.6, 3.6)	4, 6, 10		4, 9b, 12, 14b
6	51.8, CH	3.68, d (12.3)	5	5, 7, 8, 10, 14, 15	3a, 8b, 10
7	71.8,° C				
7 - OH		5.10, s		6, 7, 8	
8a	$34.8,^d\mathrm{CH}_2$	2.17, ddd (12.8, 2.9, 2.9)	8b	6, 10	9a, 9b, 4'
8b		1.35 ^{,1} m	8a, 9b		6
9a	$20.9,^{e}\mathrm{CH}_{2}$	1.59, ^m m	9b		8a
9b		1.17, ⁿ m	8b, 9a, 10		5, 8a, 14b
10	47.6, ^f CH	1.54, m	5, 9b		4, 6
11	27.0, ^g CH	1.99,° m	12, 13	10, 12, 13	4
12	15.2, ^h CH ₃	0.84, ^p d (6.6)	11	10, 11, 13	4, 5
13	21.2, ⁱ CH ₃	0.89, ^q d (6.6)	11	10, 11, 12	
14a	$65.0, \mathrm{CH}_2$	4.95, d (12.2)	14b	7, 8, 1'	
14b		4.40, d (12.2)	14a	1'	5, 9b
15	171.8, ^j C				
1'	166.9, C				
2'	132.1, C				
3'a	55.2, CH ₂	4.24, d (11.4)	3'b, 3'-OH	1', 2', 4'	5', 6'
3′b		4.20, d (11.4)	3′а, 3′-ОН	1', 2', 4'	5'
3'-OH		4.75, m	3'a, 3'b		

Position	$\delta_{ m C}$, mult	$\delta_{ m H} \left(J ext{ in Hz} ight)$	COSY	HMBC (H→C)	ROESY
4′	149.0, CH	6.52, d (10.2)	5'	1', 2', 3', 5', 6', 10'	6', 10', 11', 8a
5'	38.1, CH	3.22,* m	4', 6', 10'		3'a, 3'b, 6', 11', 12', 13'
6'	121.2, CH	5.23, m	5′, 8′a, 8′b,	4', 5', 8', 10', 14'	3'a, 4', 5', 14'a, 14'b
			14'a, 14'b,		
7'	140.0, C				
8'a	25.3, CH ₂	2.01, m	6′, 8′b		
8′b		1.91, m	6′, 8′a		
9'a	21.1, ^e CH ₂	1.70, m	9'b, 10'		
9′b		1.26, m	9′a		
10′	44.9, CH	1.26, m	5′, 9′a		4'
11′	28.5, CH	1.59, m	12', 13'		5'
12′	17.7, CH ₃	0.78, d (7.2)	11'	10', 11', 13'	5'
13′	21.2, ⁱ CH ₃	0.90, ^q d (7.2)	11'	10', 11', 12'	5'
14'a	64.6, CH ₂	3.80, d (14.0)	6', 14'b , 14'-OH	6', 7'	6'
14′b		3.78, d (14.4)	6', 14'a, 14'-OH		6'
14'-OH		4.71, br s	14'a, 14'b		
1''	166.9, C				
2''	130.7, C				
3‴a	$61.4,\mathrm{CH}_2$	5.22, d (14.4)	3''b, 4''	1''	6''
3‴b		4.88 ^{, k} d (14.4)	3‴a	1", 2", 4", 15"	
4''	146.1, ^a CH	7.01, d (2.5)	3''a, 5''	1", 3", 6"	5", 10", 11", 12"
5''	39.2, ^ь СН	2.56, ddd (12.3, 10.6, 2.5)	4'', 6'', 10''		4'', 9b'', 12'', 14''b
6''	52.1, CH	3.63, d (12.3)	5''	5", 7", 8", 10", 14",	3''a, 8b'', 10''
				15''	
7''	71.7,° C				
8''a	34.8, ^d CH ₂	2.09, ddd (12.8, 2.7, 2.7)	8‴b	7'', 10''	9''a, 9''b, 4
8′′b		1.35, ¹ m	8''a, 9''b		6''
9‴a	20.9, ^e CH ₂	1.59, ^m m	9‴b		8''a
9‴b		1.17, ⁿ m	8''b, 9''a, 10''		5'', 8''a, 14''b
10''	47.5, ^f CH	1.50, m	5″, 9″b		4'', 6''
11''	26.9, ^g CH	1.99,° m	12", 13"	10", 12", 13"	4", 12", 13"
12''	15.2, ^h CH ₃	0.83 ^{, p} d (6.6)	11''	10", 11", 13"	4", 5"
13''	21.2, ⁱ CH ₃	0.89, ^q d (6.6)	11''	10", 11", 12"	
14''a	65.9, CH ₂	5.11, d (12.0)	14''b	1, 6", 7", 8"	
14''b		4.35, d (12.0)	14''a	1	5′′, 9′′b
15''	172 1 ^j C				

 $\frac{15''}{a^{-q}}$ Assignments of overlapping resonances with the same superscript may be interchanged. *signal is obscured under H₂O resonance.

1.5 Trivirensol E (15)

Table S5. ¹H and ¹³C NMR data for trivirensol E (15) in DMSO- d_6

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H}$ (J in Hz)	COSY	HMBC (H \rightarrow C)	ROESY
1	164.2, C			- ()	
2	129.0, C				
3a	60.7, CH ₂	5.30, d (14.4)	3b, 4	1, 4	6
3b		4.77, d (14.4)	3a	1, 2, 4, 15	
4	146.9, CH	7.05, d (3.5)	3a, 5	1, 2, 3, 5, 6	5, 10, 11, 12, 6"
5	39.7, CH	2.59, ddd (12.0, 12.0, 3.5)	4, 6, 10		4, 9b, 12, 14b
6	51.7, CH	3.66, d (12.0)	5	5, 7, 8, 10, 14, 15	3a, 8b, 10, 7-OH
7	71.8, C				
7 - OH		5.09, s		6, 7, 8, 14	6, 8a, 8b, 14a
8a	34.7, CH ₂	2.15, d (12.6)	8b	6	9a, 9b, 14b, 7-OH, 4'
8b		1.33, m	8a, 9b		6, 7 - OH
9a	$21.0,^a\mathrm{CH}_2$	1.57, m	9b		8a
9b		1.15, m	8b, 9a, 10		5, 8a, 14b
10	47.5, CH	1.50, m	5, 9b		4, 6
11	27.1, CH	1.89, m	12, 13	10, 12, 13	4, 8a
12	15.4, CH ₃	0.82, d (6.6)	11	10, 11, 13	4, 5
13	21.1, ^a CH ₃	0.87, d (6.6)	11	10, 11, 12	
14a	64.9, CH ₂	4.94, d (12.0)	14b	7, 8, 1'	7-OH
14b		4.38, d (12.0)	14a	1'	5, 8a, 9b
15	171.7, C				
1′	167.0, C				
2'	132.1, C				
3'a	55.2, CH ₂	4.24, dd (11.6, 2.5)	3'b, 3'-OH		5′, 3′-OH
3′b		4.19, dd (11.6, 2.5)	3'a, 3'-OH	1′	5′, 3′-OH
3' - OH		4.75, m	3'a, 3'b		3'a, 3'b
4′	149.0, CH	6.51, br d (10.6)	5'	1', 2', 3', 5', '6,	6', 10', 11', 8a

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (H \rightarrow C)	ROESY
				10'	
5'	38.1, ^b CH	3.20, m	4', 6', 10'		3'a, 3'b, 6', 11', 12'
6'	121.2, CH	5.23, s	5′, 14′a, 14′b	4', 5', 8', 10', 14'	3'a, 3'b, 4', 5', 10', 14'a, 14'b
7'	140.0, C				
8′a	25.3, CH ₂	2.00, br d (14.4)	8′b		14'a, 14'b
8′b		1.92, m	8'a, 9'a		
9′a	21.0, ^a CH ₂	1.71, m	9′b		
9′b		1.26, m	8'b, 9'a, 10'		
10′	44.9, CH	1.27, m	5′, 9′b		4', 6'
11′	28.5, CH	1.58, m	12', 13'	5', 10', 12', 13'	4', 5'
12′	17.1, CH ₃	0.77, d (6.6)	11′	10', 11', 13'	5'
13′	21.1, CH ₃	0.89, ^c d (6.6)	11′	10', 11', 12'	
14′a	64.6, CH ₂	3.80, d (14.0)	6', 14'b , 14'-OH	6', 7'	6', 8'a, 14'-OH
14′b		2.78, d (14.0)	6', 14'a, 14'-OH	6', 7'	6', 8'a, 14'-OH
14'-OH		4.71, br s	14'a, 14'b		14'a, 14'b
1′′	168.5,* C				
2''	134.6,* C				
3″a	55.7, CH ₂	4.07, d (12.0)	3‴b	1'', 2'', 4''	5''
3′′b		3.97, d (12.0)	3‴a	1", 2", 4"	5''
4''	141.7,* CH	6.48, d (10.0)	5''	1", 3"	6'', 10'', 11''
5''	38.2, ^b CH	2.83, ddd (10.0, 10.0, 10.0)	4'', 6'', 10''		3"a, 3"b, 12", 14"a
6''	49.1, CH	2.70, d (10.0)	5''	4'', 5'', 7'', 14'', 15''	4'', 8b'', 10'', 4
7''	86.1, C				
8''a	27.4, CH ₂	2.45, ddd (14.0, 3.5, 3.5)	8''b, 9''a		9''a, 9''b, 14''a, 14''t
8′′b		1.90, m	8''a, 9''b		6'', 14''a
9‴a	19.7, CH ₂	1.64, ^d m	8''a, 9''b, 10''		8‴a
9‴b		1.32, m	8''b, 9''a		8‴a
10''	43.7, CH	1.36, m	5′′, 9′′a		4'', 5'', 6''
11''	27.7, CH	1.64, ^d m	12", 13"	5", 10", 12", 13"	4''
12''	15.7, CH ₃	0.71, d (6.6)	11″	10", 11", 13"	5''
13''	21.4, ^a CH ₃	0.89, ^c d (6.6)	11″	10", 11", 12"	
14''a	70.8, CH ₂	4.67, d (11.2)	14''b	7'', 15''	5'', 8''a, 8''b
14‴b		4.60, d (11.2)	14''a	7'', 15''	8‴a
15''	174.8 C				

 15"
 174.8, C

 a-dAssignments of overlapping resonances with the same superscript may be interchanged. *signals were detected from HMBC correlations.

1.6 Trivirensol F (16)

Table S6. ¹H and ¹³C NMR data for trivirensol F (16) in DMSO- d_6

i osition c	$o_{\rm C}$, mun	$\partial_{\rm H} (J {\rm in} {\rm Hz})$	COSY	HMBC (H \rightarrow C)	ROESY
1 1	166.7, C				
2 1	133.7, C				
3a 5	55.5, CH ₂	4.13, ^c d (11.8)	3b	1, 2, 4	5
3b		4.04, d (11.8)	3a	1, 2, 4	5
4 1	143.7, CH	6.65, d (10.5)	5	1, 2, 3	6, 10, 11, 8"a
5 3	38.2, ^a CH	2.87, ddd (10.5. 10.2, 10.2)	4, 6, 10	4, 6	3a, 3b, 9b, 12, 14a
6 4	48.8, CH	2.76, d (10.2)	5	4, 5, 7, 14, 15	4, 8b, 10, 14b
7 8	84.8, C				
8a 2	27.3, CH ₂	2.42, ddd (13.7, 3.3, 3.3)	8b		9a, 9b, 14a
8b		1.91, ^d m	8a	7	6
9a 1	19.8, CH ₂	1.64, ^e m	9b		8a
9b		1.31, m	9a, 10		5, 8a, 14a
10 4	43.7, CH	1.42, m	5, 9b		4, 6
11 2	27.9, CH	1.64, ^e m	12, 13	10	4
12 1	15.9, CH ₃	0.73, d (6.6)	11	10, 11, 13	5
13 2	21.3, ^b CH ₃	0.90, ^f d (6.6)	11	10, 11, 12	
14a 7	71.1, CH ₂	4.67, d (10.8)	14b	7, 15	5, 8a, 9b
14b		4.64, d (10.8)	14a	7, 15	6
15 1	175.2, C				
1′ 1	165.9, C				
2' 1	132.3, C				
3'a 5	55.0, CH ₂	4.14, d (11.4)	3′b	1', 2', 4'	4', 5', 6'
3′b		4.13, ^c d (11.4)	3'a	1', 2', 4'	4', 5', 6'
4' 1	149.2, CH	6.43, d (10.5)	5'	1', 3', 10'	3'a, 3'b, 6', 10', 11'
5' 3	38.3, ^a CH	3.19, dd (10.5, 10.5)	4', 6', 10'	6'	3'a, 3'b, 6', 12'
6' 1	120.8, CH	5.20, s	5′, 14′a,	5', 8', 10', 14'	3'a, 3'b, 4', 5', 14'a,
			14′b		14′b
7′ 1	140.2, C				
8'a 2	25.2, CH ₂	1.97, m	8′b		14'a, 14'b

Position	$\delta_{\rm C}$, mult	$\delta_{\mathrm{H}} \left(J \mathrm{in} \mathrm{Hz} \right)$	COSY	HMBC (H \rightarrow C)	ROESY
8′b		1.90, ^d m	8'a, 9'a		
9'a	20.9, ^b CH ₂	1.69, m	9'b, 8'b, 10'		
9′b		1.21, m	9′a		
10′	44.6, CH	1.27, m	5′, 9′a		4'
11′	28.4, CH	1.55, m	12', 13'		4'
12′	16.9, CH ₃	0.76, d (6.6)	11′	10', 11', 13'	5'
13′	21.2, ^b CH ₃	0.88, ^f d (6.6)	11′	10', 11', 12'	
14′a	64.5, CH ₂	3.79, d (14.0)	6′, 14′b	6', 7'	6′, 8′a
14′b		3.76, d (14.0)	14'a	6', 7'	6′, 8′a
1''	166.9, C				
2''	129.4, C				
3''a	60.9, CH ₂	5.29, d (14.4)	3‴b, 4″	1'', 4''	6''
3′′b		4.84, d (14.4)	3‴a	1", 2", 4", 15"	
4''	145.2, CH	7.07, d (4.2)	3‴a , 5″	1", 2", 3", 5", 6"	5'', 11'', 12''
5''	39.4, CH	2.59, ddd (12.4, 10.8, 3.6)	4", 6", 10"	4′′, 6′′	4'', 9''b, 12'', 14''b
6''	51.7, CH	3.67, d (12.4)	5''	5'', 7'', 10'', 14'', 15''	3''a, 8''b, 10''
7''	71.8, C				
8''a	34.8, CH ₂	2.20, ddd (12.1, 2.2, 2.2)	8‴b		9''a, 9''b, 4
8′′b		1.36, m	8‴a		6''
9‴a	20.9, ^b CH ₂	1.60, m	9‴b		8''a
9‴b		1.17, m	9"a, 10"		8''a
10''	47.6, CH	1.52, m	5″, 9″b		6''
11''	27.0, CH	1.96, m	12", 13"	10", 13"	4''
12''	15.2, CH ₃	0.84, d (7.2)	11″	10", 11", 13"	4'', 5''
13''	21.2, ^b CH ₃	0.89, ^f d (6.6)	11″	10", 11", 12"	
14''a	65.0, CH ₂	5.03, d (12.0)	14‴b	1, 7", 8"	
14''b		4.37, d (12.0)	14‴a	1	5′′, 9′′b
15''	171.8, C				

^{a-f}Assignments of overlapping resonances with the same superscript may be interchanged.

1.7 Trivirensol G (17)

Table S7. ¹H and ¹³C NMR data for trivirensol G (17) in DMSO- d_6

Position	$\delta_{\rm C}$, mult	$\delta_{\rm H} (J \text{ in Hz})$	COSY	HMBC (H→C)	ROESY
1	166.0, C				
2	133.3, C				
3a	55.2, CH ₂	4.12, d (12.0)	3b	1, 2, 4	5
3b		4.06, d (12.0)	3a	1, 2, 4	5
4	145.5, CH	6.32, d (10.4)	5	1, 2, 3	6, 10, 11
5	40.0, CH	2.73, m	4, 6, 10		3a, 3b, 9b, 11, 12, 14a
6	57.9, CH	2.42, d (11.4)	5	4, 7, 14, 15	4, 8b, 10
7	71.3, C				
8a	34.8, CH ₂	2.14, ddd (12.0, 2.1, 2.1)	8b		9a, 9b, 14a, 4'
8b		1.34, m	8a, 9b		6
9a	$20.3,CH_2$	1.52, m	9b		8a
9b		1.09, m	8b, 9a, 10		5, 8a
10	45.4, CH	1.33, m	5, 9b		4, 6
11	27.9, ^a CH	1.56, m	12, 13	10, 13	4, 5
12	15.6, ^b CH ₃	0.70, ^f d (6.6)	11	10, 11, 13	5
13	21.3, ^c CH ₃	0.84, d (6.6)	11	10, 11, 12	
14a	$65.5, CH_2$	4.34, d (12.6)	14b	1'	5, 9b
14b		4.27, d (12.0)	14a	7, 8, 1'	5
15	173.8, C				
1′	166.7, C				
2'	133.7, C				
3′a	55.5, ^d CH ₂	4.09, ^g d (12.0)	3'b	1', 2', 4'	5'
3′b		3.96, d (12.0)	3'a	1', 2', 4'	5'
4'	144.1, CH	6.55, d (10.8)	5'	1', 2', 3', 6'	6', 10', 11', 8a
5'	39.6, CH	2.60, ddd (10.5, 10.5, 10.5)	4', 6', 10'	4', 6'	3'a, 3'b, 9'b, 12', 14'a
6'	52.0, CH	2.03, d (10.8)	5'	4', 7', 14', 15'	4', 8b', 10'
7′	74.4, ^e C				
8'a	31.8, CH ₂	1.89, m	8′b	7'	14'a

Position	δ_{C} , mult	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (H→C)	ROESY
8′b		1.56, m	8'a, 9'b		6
9'a	20.7, CH ₂	1.60, m	9′b		
9′b		1.17, m	8'b, 9'a, 10'		5′, 14′a
10′	44.6, CH	1.26, m	5′, 9′b		4', 6'
11′	28.0, ^a CH	1.62, ^h m	12', 13'	10', 12', 13'	
12'	15.6, ^b CH ₃	0.70, ^f d (6.6)	11′	10', 11', 13'	5'
13′	21.4, ^c CH ₃	0.88, d (6.6)	11′	10', 11', 12'	
14'a	74.5, ^e CH ₂	4.42, d (9.6)	14′b	7'	5′, 8′a, 9′b
14′b		3.93, d (9.6)	14′a	7', 15'	6′, 8′a,
15'	176.7, C				
1''	168.2, C				
2''	134.2, C				
3″a	55.4, ^d CH ₂	4.09, ^g d (12.0)	3‴b	1'', 2'', 4''	5''
3‴b		3.98, d (12.0)	3‴a	1'', 4''	5''
4''	142.7, CH	6.54, d (10.3)	5''	1", 2", 3", 6", 10"	6", 10", 11"
5''	37.9, CH	2.87, ddd (10.3, 9.6, 9.6)	4'', 6'', 10''	4'', 6''	3"a, 3"b, 9"b , 12", 14"a
6''	48.7, CH	2.76, d (9.6)	5''	4'', 5'', 7'', 14'',	4'', 8b'', 10'', 14''b
				15''	
7''	84.7, C				
8''a	26.9, CH ₂	2.32, ddd (14.0, 4.1, 4.1)	8′′b		14‴a, 14‴b
8′′b		1.90, m	8''a, 9''b	7''	6''
9‴a	19.4, CH ₂	1.63, m	9‴b		
9‴b		1.33, m	8''b, 9''a,		5'', 14''a
			10''		
10''	43.6, CH	1.37, m	5″, 9″b		4''
11''	27.7, ^a CH	1.64, ^h m	12''	10''	4''
12''	15.9, CH ₃	0.72, ^f d (6.6)	11''	10", 11", 13"	5''
13''	21.3, ^c CH ₃	0.91, d (6.6)		10", 11", 12"	
14''a	71.2, CH ₂	4.63, d (10.8)	14''b		5'', 8''a, 9''b
14''b		4.56, d (10.8)	14''a	7'', 15''	6'', 8''a
15''	174.9, C				

^{a-g}Assignments of overlapping resonances with the same superscript may be interchanged.

Figure S1. ¹H NMR spectrum of trivirensol A (11) in DMSO- d_6

Figure S2. ¹³C NMR spectrum of trivirensol A (11) in DMSO- d_6

Figure S3. HSQC spectrum of trivirensol A (11) in DMSO- d_6

Figure S4. HSQC spectrum of trivirensol A (11) in DMSO- d_6

Figure S5. HSQC spectrum of trivirensol A (11) in DMSO- d_6

Figure S6. HSQC spectrum of trivirensol A (11) in DMSO- d_6

Figure S7. HSQC spectrum of trivirensol A (11) in DMSO- d_6

Figure S8. ¹H-¹H COSY spectrum of trivirensol A (11) in DMSO- d_6

TN16RB3F7A 4 1 "C:\topspin2.1\Bruker TOPSPIN 2.1\bruker" Weihua

Figure S9. 1 H- 1 H COSY spectrum of trivirensol A (11) in DMSO- d_{6}

Figure S10. ¹H-¹H COSY spectrum of trivirensol A (11) in DMSO- d_6

Figure S11. HMBC spectrum of trivirensol A (11) in DMSO-d₆

Figure S12. HMBC spectrum of trivirensol A (11) in DMSO-*d*₆

Figure S13. HMBC spectrum of trivirensol A (11) in DMSO-d₆

Figure S14. HMBC spectrum of trivirensol A (11) in DMSO-*d*₆

Figure S15. HMBC spectrum of trivirensol A (11) in DMSO-d₆

Figure S16. HMBC spectrum of trivirensol A (11) in DMSO-d₆

Figure S17. HMBC spectrum of trivirensol A (11) in DMSO-d₆

Figure S18. ROESY spectrum of trivirensol A (11) in DMSO- d_6

TN16RB3F7A 5 1 "C:\topspin2.1\Bruker TOPSPIN 2.1\bruker" Weihua

Figure S19. ROESY spectrum of trivirensol A (11) in DMSO- d_6

Figure S20. ROESY spectrum of trivirensol A (11) in DMSO- d_6

Figure S21. ROESY spectrum of trivirensol A (11) in DMSO- d_6

Figure S22. ROESY spectrum of trivirensol A (11) in DMSO-d₆

x10 ⁵	-ESI Scan (rt: 2.745 min)	Frag=180	0.0V TN16	3RB3F7	7A.d																						
8-												857	3971															
7-																												
6-																												
5-																												
4 -																												
3-																												
2-																												
1-														ĺ.						072	1220		970	747				
0-						-			050	0-0	054	050						-	0-10	075	4230	0 - 20	0/9	.5/4/		-		
	Deat			5		· C · · ·	-					(Josen)	(53-10-01		T > 14	(115											
-	Best	MFG	rce v +	C45 H6	a v += 2 0 16	(M-H)	- -	857.3	3971 98	core 1 3.77	-0.	π (ppm) .28	Y-10 ;	98.77	MFG) 1	85 v 4	8.4038	·G)/ Y	15	E V 44								
	Sne	ecies V-D	m/z V	-B Score	e (iso ;	abund) T	<u>дъ</u> (Score (r	nass) V	-0 9	core (M	EG MS	(MS) 7	7-13 500	ore (M	5) 🖓 🗗	Score	(MEG) S	7.7.10	Score	l (iso si	acina)	7-0	leiaht ⊽	-ta lo	n Form	ula V-	6
	□ (М-Н)-	857.397	1 97.52	2	abondy i		99.87	10007		0010 (1-1	,		98.	.77	.,	98.77	(1.11 - 24)		98.08	(100.0)	Juoning/	7	65246.1	0	45 H61	016	
		Height (Cal) 7ª	Height S	Sum% ((Calc) 7	7 # H	leight %	(Calc) ۲	7-12	m/z (Ca	lc) ⊽ +	Diff (I	mDa) V	r-⊨ He	eight ∵	🗢 Heig	ght % 🏹	'≠ He	ight Su	m % 🗤	7-⊉ m	/z 🖓 🛱	Diff (pp	pm) 🛛	4		_
		760945		59.1			1	00			857.396	5	-0.6		76	5246.1	100		59	5		85	7.3971	-0.71				
		380334.3		29.6			5	0			858.399	19	0.2		38	9693.5	50.9)	30	3		85	8.3997	0.25				
		118064.8		9.2			1	5.5			859.402	28	0.4		10	9768.3	14.3	3	8.5			85	9.4024	0.44				
		27344.4		2.1			3	.6			860.405	6	1.3		21	980.6	2.9		1.7			86	0.4042	1.53				

Figure S23. HRESIMS spectrum of trivirensol A (11)

Figure S24. ¹H NMR spectrum of trivirensol B (12) in DMSO- d_6

Figure S25. ¹³C NMR spectrum of trivirensol B (12) in DMSO- d_6

x10 ⁵	-ESI So	can (rt	2.978 min) Frag=180	0.0V TN16RB3	F13A.d											
1.6-										839.3	3853						
1.4 -																	
1.2-																	
1-																	
0.8-											I						
0.6-																	
0.4 -																	
0.2-										825.4029	857.42	97 883.408	915.4359	937.35	03 959.424	9 982.9854	
0-	66	60 6	70 680	690 700	710 720	730 740 7	750 760 770	780	790 800 810 Counts	820 830 84 s vs. Mass-to-Cha	40 850 86 rge (m/z)	0 870 880 8	890 900 910 920	930 94	0 950 960	970 980 99	0 1000
	Res	et V	7-b ID So		Formula V	Species V		Score	Z-⊟ Diff (nom)	V-B Score (ME)	G) 🖂 🗗 Mae	e (MEG)/ ▽-=					
E)	MFG		C45 H60 O15	M-H)-	839.3853	97.83	0.65	97.83	840.	.3932	16				
		Spec	ies ⊽+¤	m/z ⊽·	De Score (iso	abund) 🖓 🕈	Score (mass)	7₽ 9	Score (MFG, MS/	MS) ⊽≠ Score	(MS) マ+ 9	Score (MFG) ⊽ ⊽	7+ Score (iso. spaci	ng) マ+□ ŀ	Height ⊽ +⊐ lo	n Formula ⊽‡	
	B -	(M	-H)-	839.3853	3 93.87		99.35			97.83	9	97.83	99.57	1	158523.5 C	45 H59 O15	
		H	leight (Cal	c) ⊽‡	Height Sum%	(Calc) ⊽‡	Height % (Cald	c)⊽‡	m/z (Calc) ⊽+¤	Diff (mDa) ⊽+¤	Height ⊽+¤	Height % ⊽+Þ	Height Sum % 🖓 🛱	m/z ⊽+¤	Diff (ppm) 🔽	·+p	
			151203.9		59.3		100		839.3859	0.7	158523.5	100	62.2	839.3853	0.78		
			75482.1		29.6		49.9		840.3893	0.2	73490.9	46.4	28.8	840.3892	0.22		
			23103.3 5264.2		21		35	_	842 395	11	4317.2	27	1.3	842 3939	1.02	_	
														2.2.0000			

Figure S26. HRESIMS spectrum of trivirensol B (12)

Figure S27. ¹H NMR spectrum of trivirensol C (13) in DMSO-*d*₆

13C NMR Spectrum of TN16RB3EG in DMSO, 27/03/2017

Figure S28. ¹³C NMR spectrum of trivirensol C (13) in DMSO- d_6

Figure S29. HRESIMS spectrum of trivirensol C (13)

Figure S30. ¹H NMR spectrum of trivirensol D (14) in DMSO- d_6

13C NMR Spectrum of TN16RB3F10A in DMSO, 06/04/2017

Figure S31. ¹³C NMR spectrum of trivirensol D (14) in DMSO- d_6 ₃₅

Figure S32. HRESIMS spectrum of trivirensol D (14)

13C NMR Spectrum of TN16RB3F10B in DMSO, 04/04/2017

37

x10 ⁵	-ESI Scan (rt: 2.918 min) Frag=180.0V TN16RB3F10B.d								
6-		813.4	1068						
5.5-									
5-									
4.5-									
4-									
3.5-									
3-			2						
2.5-									
2-									
1.5-									
1-									
0.5-	769 4146	795.3895	825 4024	841.4014	857 3896	873.4228	899 3970	911.3749	931.4315
0-	710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 79	0 795 800 805 810 8 Counts	315 820 825 830 8 /s. Mass-to-Charge (r	35 840 845 850 n/z)	0 855 860 865	870 875 880 885 890 8	895 900 90	5 910 915 920 9	25 930 935

Bes	st ⊽+¤ ID Source ⊽+¤	Formula ⊽+ Species N	7₽ m/z ⊽₽ Score	vr ⊅ Diff (ppm)	⊽ # Score (MF	G)⊽≠ Ma	ss (MFG) ∕ ⊽+¤	DBE ▽≠			
•) MFG	C44 H62 O14 (M-H)-	813.4068 99.7	0.07	99.7	814	4.414	14			
	Species ⊽+¤ m/z ⊽	+ Score (iso. abund) ⊽+	Score (mass) ⊽+⊐	Score (MFG, MS/	MS) 🛛 🗭 Score	(MS) ▽ + ₽	Score (MFG) ⊽ ⊽	7+ Score (iso. spa	icing) ⊽+¤	Height \7 +Þ	Ion Formula 🗸
.	(M-H)- 813.406	8 99.18	99.99		99.7		99.7	99.73		568608.5	C44 H61 O14
	Height (Calc) ⊽+	Height Sum% (Calc) 🖓 🛱	Height % (Calc) ⊽+	m/z (Calc) ⊽+¤	Diff (mDa) ⊽+	Height ▽-	⊨ Height% \7+	Height Sum % ▽-	⊨ m/z ⊽	🕂 Diff (ppm)	7₽
	558390.4	60	100	813.4067	-0.1	568608.5	100	61.1	813.406	8 -0.13	
	272629	29.3	48.8	814.4101	0.3	269840.3	47.5	29	814.409	8 0.31	
	81181.3	8.7	14.5	815.413	0.1	76649.8	13.5	8.2	815.412	9 0.11	

Figure S35. HRESIMS spectrum of trivirensol E (15)

Figure S36. ¹H NMR spectrum of trivirensol F (16) in DMSO-*d*₆

13C NMR Spectrum of TN16RB3F11A in DMSO, 01/04/2017

Figure S37. ¹³C NMR spectrum of trivirensol F (16) in DMSO- d_6

Figure S38. HRESIMS spectrum of trivirensol F (16)

Figure S39. ¹H NMR spectrum of trivirensol G (17) in DMSO- d_6

Figure S40. ¹³C NMR spectrum of trivirensol G (17) in DMSO- d_6

Figure S41. HRESIMS spectrum of trivirensol G (17)

2 Antibacterial and antifungal assays data

Antifungal assay methodology:

The fungus Candida albicans ATCC 10231 was streaked onto a Sabouraud agar plate and incubated at 37 °C for 48 h. One colony was then transferred to fresh Sabouraud broth (15 mL) and the cell density adjusted to 104-105 CFU/mL. The compounds to be tested were dissolved in DMSO and diluted with H₂O to return 600 μ M stock solutions (20% DMSO). Aliquots (10 μ L) were transferred to 96-well microtiter plates and pre-loaded with freshly prepared microbial broth (190 μ L), to give a final concentration of 30 μ M in 1% DMSO. The plates were incubated at 37 °C for 24 h and the optical density of each well was measured spectrophotometrically at 600 nm using a POLARstar Omega plate reader (BMG LABTECH). Amphotericin B was used as a positive control (30 μ g/mL in 10% DMSO). Where relevant, IC50 value were calculated as the concentration of the compound or antifungal drug required for 50% inhibition of the fungal cells using Prism 8.0 (GraphPad Software Inc.).

OXA-48 Klebsiella pneumonaie

methicillin-resistant Staphylococcus aureus

NDM Klebsiella pneumonaie

OXA-23 Acinetobacter baumannii

VIM Pseudomonas aeruginosa

Figure S42. Graphs for antimicrobial studies against susceptible, MDR strains and fungus of trivirensols (11 - 17) in broth micro-dilution assay

Figure S43. Graphs for antimicrobial studies against susceptible and MDR strains of divirensols A - D and F - G, trivirensols (11 – 17) in broth micro-dilution assay

3 Time-kill (bacteriocidal vs bacteriostatic) assays for divirensols and trivirensols (11 – 13 and 17)

Figure S44. Colony forming units (CFU) for bacteriostatic studies of divirensols A - D and G and trivirensols A - D and G (30 μ M) against (a, c) VRE and (b, d) *E. faecalis* at different timepoints, 1, 3, 6 and 24 h. Data are means ± SD of three replicate wells obtained in three independent experiments. Each treated group was compared to DMSO treatment using One-Way Anova, Dunnett's correction.

Figure S45. HRESIMS spectrum of trivirensol G dehydrated product Figure 8, (i)

Cytotoxicity assays

Adherent cell human colorectal (SW620) and lung (NCIH-460) carcinoma cells were cultured in RPMI medium 1640. All cells were cultured as adherent mono-layers in flasks supplemented with 10% foetal bovine serum, L-glutamine (2 mM), penicillin (100 unit/mL) and streptomycin (100 µg/mL), in a humidified 37 °C incubator supplied with 5% CO2. Briefly, cells were harvested with trypsin and dispensed into 96-well microtiter assay plates at 3,000 cells/well after which they were incubated for 18 h at 37 °C with 5% CO2 (to allow cells to attach as adherent mono-layers). Test compounds were dissolved in 20% DMSO in PBS (v/v) and aliquots (10 µL) applied to cells over a series of final concentrations ranging from 10 nM to 30 µM. After 48 h incubation at 37 °C with 5% CO2 an aliquot (20 µL) of MTT in PBS (5 mg/mL) was added to each well (final concentration 0.5 mg/mL), and microtiter plates were incubated for a further 4 h at 37 °C with 5% CO2. After final incubation, the medium was aspirated, and precipitated formazan crystals dissolved in DMSO (100 µL/well). The absorbance of each well was measured at 580 nm with a PowerWave XS Microplate Reader from Bio-Tek Instruments Inc. IC50 values were calculated using Prism 7.0 (GraphPad Software Inc.), as the concentration of analyte required for 50% inhibition of cancer cell growth (compared to negative controls). Negative controls comprised 1% aqueous DMSO, while positive controls used doxorubicin as the test sample. All experiments were performed in duplicate.

Figure S46. Graphs for cytotoxic activities on trivirensols A-G (11 - 17)