1	Supporting information for:
2	Seabird-transported contaminants are reflected
3	in the Arctic tundra, but not in its soil-dwelling
4	springtails (Collembola)
5	
6	
7	
8	
9	Silje M Kristiansen ¹ , Hans P Leinaas ¹ , Dorte Herzke ³ , Ketil Hylland ¹ , Geir W Gabrielsen ² ,
10	Mikael Harju ³ , Katrine Borgå ^{1*}
11	
12	
13	
14	¹ Department of Biosciences, University of Oslo (UiO), 0316 Oslo, Norway
15	² Norwegian Polar Institute (NPI), Fram Centre, 9296 Tromsø, Norway
16	³ Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromsø, Norway
17	
18	* Corresponding author: <u>katrine.borgå@ibv.uio.no</u>
19	
20	
21	Supporting information includes 5 bodies of text, 4 figures and 3 tables, on a total of 18
22	pages.

- 23 Content:
- 24 S1. Determination of lipid-soluble contaminants
- 25 S2. Determination of PFASs
- 26 **S3. Determination of Hg**
- 27 S4. Quality assurance
- 28 S5. Stable isotope analysis
- 29 S6. Exclusion of PFAS
- 30 S7. Principal component analyses
- 31 Figure S1.
- 32 **Figure S2.**
- **Figure S3.**
- 34 Figure S4.
- **35 Table S1.**
- **Table S2.**
- **Table S3.**
- 38

39 S1. Determination of lipid-soluble contaminants

- 40 Solvents applied during the extraction and clean-up prior to analysis of POPs were of
- 41 SupraSolv® grade, purchased from Merck, Darmstadt, Germany.

42 Lipid-associated contaminants were extracted from substrate samples using Soxhlet

- 43 extraction. Borosilicate fibre glass extraction thimbles (603 g, 25 mm x 100 mm) were burned
- 44 at 450°C for 8 hours. Approximately 10 g of substrate homogenates were weighed into the
- 45 thimbles, ~20 g material for Ny-Ålesund samples, and spiked with 21-211 ng internal
- 46 standard containing ¹³C labelled PCBs, OCPs, and PBDEs. The thimbles were covered with
- 47 cotton, prewashed with dichloromethane (DCM). Round bottomed flasks were filled with 210

48 mL of toluene, and the extraction was run for 17–24 hours per sample, with four cycles per 49 hour. Sulphur was removed from the soil/moss to avoid analytical disturbance by adding 1 g activated (acid-washed) granulated copper to the solvent. Extracts were concentrated using 50 51 TurboVap® 500 Evaporation System (Caliper Life Sciences, Mountain View, USA), before 52 transferred to glass centrifuge tubes, using n-hexane and DCM to dissolve sample material 53 from the glass walls, ensuring transfer of the complete sample. Samples were then re-54 concentrated with RapidVap® Vacuum Dry Evaporation System (Labconco, Kansas City, 55 USA) until almost dry, and supplemented with a few drops of isooctane. The first clean-up step was performed with multi-bed solid phase extraction (SPE) cartridges (SupelcleanTM EZ-56 57 POP NP, 54341-U, Supelco, Sigma-Aldrich, Bellefonte, US) in a SPE station. The samples 58 were added to cartridges using isooctane and acetonitrile to dissolve sample material from the 59 glass walls, and each cartridge was added 5 mL acetonitrile. This was repeated 3 times. The 60 contaminant extracts were re-concentrated using RapidVap® to 0.1 mL, added n-hexane to 61 0.7 mL and mixed using a vortex mixer. As extracts contained more matrix than preferable, 62 sampled were split into two sub-samples and diluted with n-hexane to a total of 0.7 mL. The 63 second clean-up step was carried out with Zymark RapidTrace SPE Workstation (Caliper Life Sciences, Mountain View, USA). SilactSPETM columns (Affinisep, Paris, France) were 64 65 loaded with 1.0 g Florisil® (0.15–0.25 mm), between two glass fibre fritz. The samples were 66 automatically loaded into a separate SPE column and eluted with 6 mL 10% DCM/hexane 67 (mobile phase). Sub-samples were merged and concentrated to 0.2 mL with RapidVap®. 68 Samples were transferred to gas-chromatograph (GC) vials with a micro-volume insert using isooctane and concentrated to 50 µL using a N₂ evaporator (N₂ purity 99.995%, quality 5.0, 69 70 Yara Praxair AS, Porsgrunn, Norway). Samples were added a recovery standard (20 µL of ¹³C 71 PCB 159, 213 pg/ μ L), before mixed with a vortex mixer and stored at 4°C until analysis.

S3

72	Springtail samples were homogenized using a mortar and pestle, before extracted for
73	lipid-soluble contaminants using cold column extraction. Homogenates were weighed (1.99
74	g–3.59 g) and added sodium sulfate (Na ₂ SO ₄) until all had a similar dry consistency (1:10),
75	before further homogenised with a metal spatula, and left at -20°C overnight to dry. Samples
76	were acclimatized to room temperature before re-homogenised with a spatula. Homogenates
77	were transferred to glass columns and spiked with 200 μ L of the internal standard containing
78	¹³ C labelled PCBs, OCPs, and PBDEs. Cyclohexane:acetone (50 mL, 3:1) were added to the
79	column, which was closed when the solvents had permeated the whole sample, and opened
80	after 30 min letting the solvent run through. This was repeated 2 times. Extracts were
81	concentrated to 1–2 mL, using TurboVap®. The concentrated extracts were transferred to pre-
82	weighed glass containers, using n-hexane and DCM to dissolve sample material from the
83	glass walls. Extracts with solvents were re-concentrated using RapidVap® until only
84	remaining matrix, and lipid content was determined gravimetrically. The clean-up steps were
85	completed in the same manner as described for substrate samples.
86	Separation and detection of PCBs in substrate and springtails were conducted with a
87	gas chromatograph-mass spectrometer (GC-MS) quadrupole instrument (Agilent, Santa Clara,
88	CA, USA, GC 7890, MSD 5975C), in electron ionization mode, and in single ion monitoring
89	mode. For separation of compounds, a 1 μ L aliquot of the sample was injected in splitless
90	mode (250°C, non-tapered liner), with helium as the carrier gas at a flow rate of 1.5 mL/min.
91	The following temperature program was applied: 70°C for 2 min, followed by an increase of
92	15°C/min until reaching 180°C, an increase of 5°C/min to 280°C, before holding 280°C
93	constant for 5 min. Analyses were conducted on a DB-5 MS column (length 30 m, 0.25 μm
94	film thickness, 0.25 mm inner diameter). The MS transfer line temperature held at 300°C and
95	ion source temperature was set to 230°C. The analysis of OCPs was performed in negative
96	chemical ionization mode, with helium as carrier gas at a flow rate of 1.0 mL/min. Sample

S4

97 aliquots of 2 µl were injected in splitless mode at 220°C (glass wool liner). Temperatures 98 were programmed as: 80°C was held for 2 min, followed by an increase of 20°C/min until 99 reaching 100°C, held for 5 min, before an increase of 20°C/min to 170°C, held for 3 min, 100 before a final increase of 20°C/min to 300°C, held for 2 min. Analyses were performed on an 101 Agilent Ultra2 column (length 25 m, 0.11 µm film thickness, 0.20 mm inner diameter). The 102 MS transfer line temperature held at 300°C and ion source temperature was set to 160°C. 103 PBDEs were analysed in electron ionization mode and single ion monitoring mode with a 104 Waters Quattro Micro GC-MS (Waters Corp., MA, USA). Helium was applied as carrier gas 105 (flow rate of 1.6 mL/min), with a 5 μ l sample injection volume in splitless mode at 300°C. 106 The temperature program used for these contaminants was: 85°C initially held for 1 min, then 107 an increase of 21°C/min to 210°C, followed by 9°C/min increase until a final 310°C, kept for 108 5 min. Analyses were conducted with a Restek 1614 column (length 15 m, 0.25 µm film 109 thickness, 0.25 mm inner diameter), with a 5 m x 0.32 mmID pre-column and a pressfit 110 inbetween.

111

112 S2. Determination of PFASs

Substrate and springtails were analysed for PFASs following a method developed by Powley
et al. (2005) with modifications [1]. Solvents applied during the extraction and clean-up were
of LiChrosolv® grade, purchased from Merck, Darmstadt, Germany.

Substrate homogenates (5.0–5.8 g) and springtail homogenates (0.5–2.4 g) were placed in 50 mL polypropylene (PP)-centrifuge tubes before spiked with 20 μ L of internal standard (0.5 ng/ μ L ¹³C PFAS mix). One mL of 200 mM sodium hydroxide (NaOH) in methanol was added, and the samples were left resting for 30 min. They were then added 100 μ L of 2 M hydrogen chloride (HCl) in methanol, and additionally 9 mL of methanol before mixed using a vortex mixer. PFASs were extracted by ultrasonic treatment (Branson 5510,

122 Branson Ultrasonics Corp., Conneticut, USA), three treatments of 10 min with 15 sec of 123 mixing using a vortex mixer in between. The samples were centrifuged at 2000 rpm for 5 min, 124 and the supernatants were transferred to new 15 mL PP-tubes, before concentrated to 2 mL (1 125 mL for springtails) using RapidVap®. Approximately 1 mL (0.8 mL for springtails) of the 126 extracts were transferred to 1.5 mL Eppendorf tubes containing 25 mg Envi-Carb graphitized 127 carbon adsorbent and 50 uL fresh anhydrous glacial acetic acid before mixed using a vortex 128 mixer. The tubes were centrifuged at 10,000 rpm for 10 min, and 0.5 mL of the supernatant 129 were transferred to a 1.5 mL glass vial, before added 20 μ L of recovery standard (0.25 ng/ μ L 130 3,7-dimethyl PFOA; branched PFDcA in methanol) and mixed using a vortex mixer. An 131 aliquot of 50 µL (100 µL for springtails) of the extract was transferred to a liquid 132 chromatography (LC) vial with a micro-volume insert and diluted 1:1 with 2 mM aqueous 133 ammonium acetate (NH₄OAc, ≥99%). Samples were stored at 4°C until analysis. PFASs in 134 substrate and springtails were analysed and quantified according to the procedure described in 135 detail in Hanssen et al., 2013 [2].

136

137 S3. Determination of Hg

138 Substrate samples were air-dried at room temperature for 3 days prior to extraction of Hg, 139 while no pre-treatment was conducted for springtail samples, before analysed for Total Hg by 140 the Norwegian Institute for Air Research (NILU, Kjeller, Norway). Approximately 0.5 g 141 substrate and 0.25-0.68 g springtails were weighed accurately on a Mettler PG503 balance 142 and added 5 mL nitric acid (HNO₃, s.p.) and 3 mL deionized water (MilliQ). The samples 143 were extracted according to a 65 min. temperature programme, with stepwise heating to 144 250°C and a hold tima at this temperature for 30 min. After cooling, the samples were 145 quantitatively transferred to polyethylene tubes, diluted with deionoized water to a total 146 volume of 50 mL, and topped with 250 µl hydrochloric acid (HCl, s.p.). Blank samples and

147 certified reference material (CRM) were prepared and analysed in every run. Prior to analysis,

148 internal standards (¹¹⁵ In) were added to all samples. Control samples traceable to National

149 Institute of Standards and Technology (NIST) were used to verify all calibration curves. Hg

150 measurements were performed using an inductively coupled plasma mass spectrometer (ICP-

- 151 MS) from Agilent, USA (Agilent, 7700x).
- 152

153 S4. Quality assurance

154 Quantification of organic compounds was performed with the internal-standard method with 155 isotope-labelled OCs, PBDEs, and PFASs. Control parameters included internal standards, 156 recovery standards, solvent blanks, and standard reference materials (SRMs) or reference 157 samples, to ensure accurate and reliable measurements. For substrate samples, the SRMs in 158 the POPs analyses consisted of 0.5 g sediment (SRM 1944 – New York/New Jersey 159 Waterway Sediment (NIST)). For springtail samples, the SRMs containing 0.5 g fish tissue 160 (Contaminated Fish, Reference Material, EDF-2525, Cerilliant CIL, Inc. Texas, USA) were 161 added Na₂SO₄ in a ratio of 1:20. The PFAS analysis included SRMs of UNEP ILS (Sediment 162 sample, Jar n° 072, 2016) for substrate and reference samples of Pike-perch sample (QM 03-163 2, Quasimeme; #7 and #18) for springtails. The analysis of PFASs in the samples was carried 164 out twice to test for precision, as we expected low levels.

The recovery efficiency for chlorinated and brominated compounds ranged from 30– 98% for substrate, springtails, blank and reference samples. The PFAS compounds were not included in statistical analyses, but reported, with recoveries ranging between 19–48% for substrate, and 26% for PFDoDA reported in springtails. Solvent blanks and SRMs had higher recovery for PFASs (50–70% for SRMs), indicating that the low recovery results were linked to difficulties with the matrix. For chlorinated and brominated compounds, the limit of detection (LOD) was defined as 3 times the method noise for each compound as average of all

- 172 samples of the same kind. When contamination was registered in the blank samples, the LOD
- 173 was adjusted to the threefold of the found concentration. LODs for PFASs were set to 0.05
- 174 ng/g or 0.10 ng/g dry weight (d.w.) for substrate samples, and wet weight (w.w.) for springtail
- 175 samples. Limit of quantification (LOQ) was set as 3 × LOD for PFASs, PCBs, PBDEs,
- 176 DDTs. Some OCPs had a lower LOQ, set to $1.6-2.6 \times LOD$.
- 177

178 **S5. Stable isotope analysis**

- 179 Samples (1.5 mg of substrate or springtails in Sn capsules) were combusted with O₂ and
- 180 Cr_2O_3 at 1700°C in a Eurovector EA3028 element analyser. NO_x was reduced to N₂ in a Cu
- 181 oven at 650°C. H₂O was removed in a chemical trap of $Mg(ClO_4)_2$ before separation of N₂
- and CO₂ on a 2 m Poraplot Q GC column. N₂ and CO₂ are directly injected on-line to a
- 183 Horizon Isotope Ratio Mass Spectrometer (IRMS) from Nu-Instruments, for determination of
- 184 δ^{13} C and δ^{15} N. Isotopic composition was expressed as parts per mille differences by
- 185 comparison with international standards; atmospheric N₂ for nitrogen (IAEA-N-1 and IAEA-
- 186 N-2), and Vienna PeeDee Belemnite (VDPB) for carbon (USGS-24 standard). The ratios of
- 187 stable isotope were expressed as equation 1 and 2 for $\delta^{15}N$ and $\delta^{13}C$, respectively:

188

189

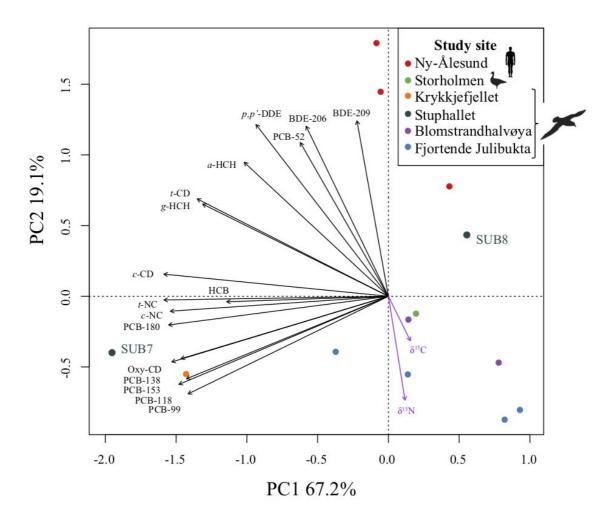
190
$$\delta^{15}N = ((R_{sample}/R_{standard})-1) \times 1000$$
 (1),

- 191 where R is the ratio of ${}^{15}N/{}^{14}N$, and
- 192

193
$$\delta^{13}C = ((R_{sample}/R_{standard})-1) \times 1000$$
 (2),

194 where R is the ratio of ${}^{13}C/{}^{12}C$, respectively.

196 **S6. Exclusion of PFAS:**

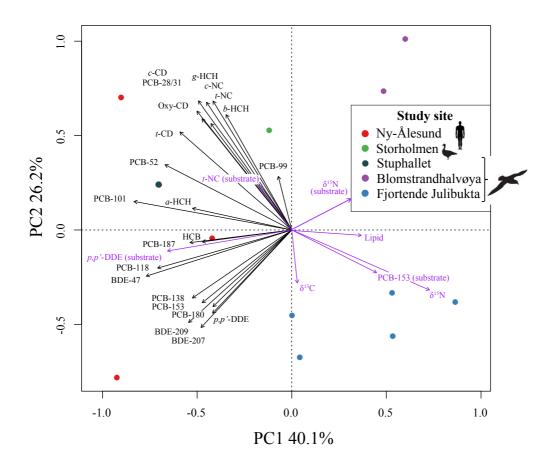

197 Besides PFOS, only few individual PFAS compounds were above the detection limit in 198 several springtail and substrate samples (Table S2 and S3). This demonstrates either the low 199 presence of PFASs compared to other organohalogen compounds occurring in terrestrial 200 ecosystems, and/or reflects challenges in the chemical analyses. PFASs had low 201 methodological recovery of internal standards of mainly the long-chained perfluorinated 202 carboxylic acids (PFCAs) with a chain length of 10 carbons and longer (average 24% for 203 substrate, and 38% for springtails). Thus, some uncertainty is linked to the analysis of these 204 substances in substrate samples and we refer to the Supporting Information for illustration of 205 PFASs relative concentrations (Figure S4). The good fit with standard reference materials and 206 very limited contributions by method blanks indicated that the laboratory procedures were 207 satisfactory. The low recovery of PFASs internal standards indicated therefore that both 208 matrices require further optimizing of the extraction techniques prior to analysis and our data 209 have to be considered semiguantitative for PFAS compounds.

210

211 S7. Principal component analyses:

212 All compounds in the PCA on contaminant concentrations in springtails (Figure S2) were 213 negatively correlated or uncorrelated with $\delta^{15}N$ and with Lipid. Of the total variation, 10% 214 was conditioned by the covariate *Lipid*, which was therefore included as a covariate in the 215 final RDA. Increasing concentrations with decreasing δ^{15} N explained 31% of the constrained 216 variation in contamination in *H. viatica* (RDA, permutation test,p=0.003). Thus, in 217 springtails, the concentrations of several chlorinated and brominated compounds, e.g. HCB, chlordanes, high-chlorinated PCBs, BDEs, and p,p'-DDE decreased with increasing seabird 218 219 influence. These surprising findings suggest complex dynamics within soil systems, such as 220 bioavailability, and should be further studied.

221	The concentrations of p, p '-DDE in substrate (Figure S1), representing also α -HCH,
222	PCB-52, BDE-206, BDE-209, <i>trans</i> chlordane and γ -HCH, was positively associated with α -
223	HCH, BDE-209 and <i>p</i> , <i>p</i> '-DDE in <i>H. viatica</i> (Figure S2). The trans-nonachlor concentrations
224	in substrate (t-NC (substrate)), representing the clustering of cis-chlordane, HCB, trans-
225	nonachlor, cis-nonachlor and PCB-180 and was positively correlated with all chlordanes, low-
226	chlorinated PCBs and HCHs in <i>H. viatica</i> . This vector is positioned along PC1, and thereby
227	accounts for the most variation. Although this could indicate bioaccumulation of
228	contaminants in springtails to a certain degree, the last substrate representative (PCB-153
229	(substrate)) representing the concentrations of high-chlorinated PCBs was negative correlated
230	or uncorrelated with all compounds detected in <i>H. viatica</i> . These unclear findings can
231	possibly reflect the variation in bioavailability between sites.
232	



235

236 Figure S1. Principal component analyses (PCA) triplot of intercorrelations between 237 logarithmically transformed contaminant concentrations in substrate (pg/g d.w.). Response 238 loadings (contaminants) are projected onto the plot as black arrows, and passive explanatory 239 variables of stable isotope ratios (δ^{13} C and δ^{15} N) (purple arrows) did not influence the scores 240 of samples or loadings of responses. The extracted variance (% of total variance) per principal 241 component is given on each axis. Abbreviations: Oxy-CD=oxychlordane, t-CD=trans 242 chlordane, c-CD=cis chlordane, t-NC=trans nonachlor, c-NC=cis nonachlor, 243 HCB=hexachlorobenzene, HCH=hexachlorocyclohexane, BDE=congener of polybrominated 244 diphenyl ether, PCB=polychlorinated biphenyl, DDE=dichlorodiphenyldichoroethylene.

245 Symbols indicate the *a priori* ranking of study sites: human-affected (low seabird influence);

terrestrial birds (medium seabird influence) and high seabird influence.

248 Figure S2. Principal component analyses (PCA) triplot of intercorrelations between 249 logarithmically transformed contaminant concentrations in *Hypogastrura viatica* (pg/g w.w.). 250 Response loadings (contaminants) are projected onto the plot as black arrows, and the passive 251 explanatory variables (purple arrows) did not influence the scores of samples or response loadings. Passive variables include stable isotope ratios (δ^{13} C and δ^{15} N) in springtails and 252 253 δ^{15} N in substrate. The logarithmically transformed concentrations of PCB-153, t-NC and p,p'-254 DDE in substrate represent clusters in the substrate PCA (Figure S1). The extracted variance 255 (% of total variance) per principal component is given on each axis. Abbreviations: Oxy-256 CD=oxychlordane, t-CD=trans chlordane, c-CD=cis chlordane, t-NC=trans nonachlor, c-257 NC=cis nonachlor, HCB=hexachlorobenzene, HCH=hexachlorocyclohexane, BDE=congener 258 of polybrominated diphenyl ether, PCB=polychlorinated biphenyl, DDE= 259 dichlorodiphenyldichoroethylene. Symbols indicate the *a priori* seabird influence ranking of 260 study sites: human-affected (low); terrestrial birds (medium) and high seabird influence.

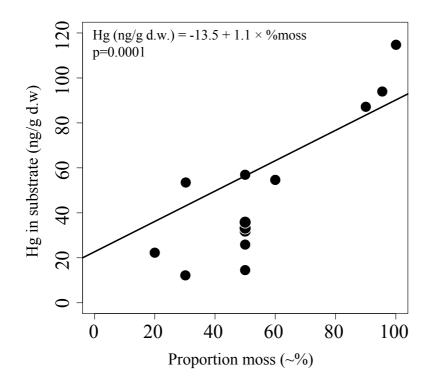


Figure S3. Linear relationship between approximate proportion of moss in substrate sample materials and the concentrations of Hg (ng/g d.w.) in substrate.

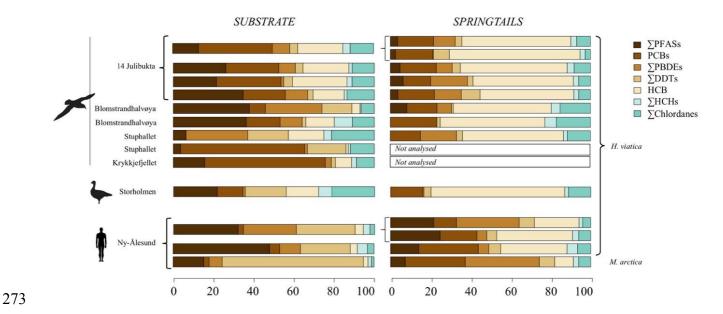


Figure S4. Relative proportions of organic contaminant groups to the sum (Σ) of all groups in

substrates (left panel) and springtails (right panel). Samples of substrates are presented

276 horizontal to their respective springtail sample. Note that springtails from Storholmen was not

analysed for per- and polyfluoroalkyl substances (PFASs) due to insufficient sample material.

278 In Fjortende Julibtukta and Ny-Ålesund, two springtail samples were collected along with one

substrate sample, indicated on the figure. Abbreviations: PCBs=polychlorinated biphenyls,

280 PBDEs=polybrominated diphenyl ethers, DDT=dichlorodiphenyltrichloroethane and its

281 metabolites, HCB=hexachlorobenzene, HCH=hexachlorocyclohexanes,

282 Chlordanes=chlordane and its metabolites.

283

284

Location	Springtail sample-ID	Springtail Species	Substrate sample-ID	Substrate content	Distance from seabird colony	Site description
Ny-Ålesund	MA1	M. arctica	SUB1	60% moss, 40% soil	50-200 m from	Wet area, pon
				(with cyanobacteria layer)	research settlement	by the beach
Ny-Ålesund	HV2	H. viatica	SUB2/3	20% moss, 80% soil (with cyanobacteria layer)	50-200 m from research settlement	Wet area, pon by the beach
Ny-Ålesund	HV3	H. viatica			50-200 m from research settlement	Wet area, pon by the beach
Ny-Ålesund	HV4	H. viatica	SUB4	50% moss, 50% soil	50-200 m from research settlement	Wet area, pon- by the beach
Storholmen	HV5	H. viatica	SUB5	100% moss	Centre of Storholmen island	Flat ground, wet area
Krykkjefjellet	MA6	M. Arctica	SUB6	90% moss, 10% soil	0-2 m from seabird colony	In the slope
Stuphallet	MA7	M. Arctica	SUB7	50% moss, 50% soil	0-2 m from seabird colony	In the slope
Stuphallet	HV8	H. viatica	SUB8	50% moss, 50% soil	250 m from seabird colony	Bottom of the slope, wet area
Blomstrandøya	HV9	H. viatica	SUB9	95% moss, 5% soil (with cyanobacteria layer)	150 m from seabird colony	In the slope
Blomstrandøya	HV10	H. viatica	SUB10	50% moss, 50% soil (with cyanobacteria layer)	400 m from seabird colony	Bottom of the slope, wet area
Fjortende Julibukta	HV11	H. viatica	SUB11	30% moss, 70% soil	130-150 m from seabird colony	Bottom of the slope, wet are
Fjortende Julibukta	HV12	H. viatica	SUB12	30% moss, 70% soil	130-150 m from seabird colony	Bottom of the slope, wet are
Fjortende Julibukta	HV13	H. viatica	SUB13/14	50% moss, 50% soil	130-150 m from seabird colony	Bottom of the slope, wet area
Fjortende Julibukta	HV14	H. viatica		50% moss, 50% soil	130-150 m from seabird colony	Bottom of the slope, wet area
Fjortende Julibukta	HV15	H. viatica	SUB15	50% moss, 50% soil	130-150 m from seabird colony	Bottom of the slope, wet area

Substrate sample SUB13/14 is parallel to springtail samples HV13 and HV14. Substrate sample SUB2/3 is parallel to springtail sa mples HV2 and HV3. Distance from bird cliffs are approximate and retrieved using TopoSvalbard (toposvalbard.npolar.no)

Table S2. Raw data of contaminant concentrations in substrate (soil/moss).

290

			"T		Krykkje-										
Study site	. <u> </u>	Ny-Ålesun	12.000	Storhölmen	fjellet		hallet	Blomstran	v		J	nde Julibukta			
Substrate sample ID	SUB1	SUB2/3	SUB4	SUB5	SUB6	SUB7	SUB8	SUB9	SUB10	SUB11	SUB12	SUB13/14	SUB15	LOD]
Compounds															
pg/g d.w.														pg/g d.v	W.
Hg	55020	22078	31796	115219	87244	36024	26146	93965	14895	12013	52633	34061	56152		
PFHxS	60.0	59.4	<lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	<lod< td=""><td>50</td><td></td></lod<>	50	
PFNS	<lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>130</td><td>50</td><td></td></lod<></td></lod<>	<lod< td=""><td>130</td><td>50</td><td></td></lod<>	130	50	
$\sum PFOS$	1724	1958	3810	<lod< td=""><td>1164</td><td>539</td><td><lod< td=""><td>208</td><td><lod< td=""><td>144</td><td><lod< td=""><td>63.6</td><td>183</td><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	1164	539	<lod< td=""><td>208</td><td><lod< td=""><td>144</td><td><lod< td=""><td>63.6</td><td>183</td><td>50</td><td></td></lod<></td></lod<></td></lod<>	208	<lod< td=""><td>144</td><td><lod< td=""><td>63.6</td><td>183</td><td>50</td><td></td></lod<></td></lod<>	144	<lod< td=""><td>63.6</td><td>183</td><td>50</td><td></td></lod<>	63.6	183	50	
PFOA	105	<lod< td=""><td>81.3</td><td><lod< td=""><td>351</td><td>161</td><td>98.7</td><td>203</td><td>567</td><td>158</td><td>297</td><td>92.2</td><td>184</td><td>50</td><td></td></lod<></td></lod<>	81.3	<lod< td=""><td>351</td><td>161</td><td>98.7</td><td>203</td><td>567</td><td>158</td><td>297</td><td>92.2</td><td>184</td><td>50</td><td></td></lod<>	351	161	98.7	203	567	158	297	92.2	184	50	
PFNA	162	<lod< td=""><td><lod< td=""><td>372</td><td>512</td><td>146</td><td><lod< td=""><td>253</td><td>523</td><td>61.7</td><td>145</td><td>63.0</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>372</td><td>512</td><td>146</td><td><lod< td=""><td>253</td><td>523</td><td>61.7</td><td>145</td><td>63.0</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	372	512	146	<lod< td=""><td>253</td><td>523</td><td>61.7</td><td>145</td><td>63.0</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	253	523	61.7	145	63.0	<lod< td=""><td>50</td><td></td></lod<>	50	
PFDA	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>184</td><td>120</td><td><lod< td=""><td>168</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>184</td><td>120</td><td><lod< td=""><td>168</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>184</td><td>120</td><td><lod< td=""><td>168</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>184</td><td>120</td><td><lod< td=""><td>168</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	184	120	<lod< td=""><td>168</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	168	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	<lod< td=""><td>50</td><td></td></lod<>	50	
PFUnDA	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>460</td><td>207</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>460</td><td>207</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>460</td><td>207</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>460</td><td>207</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	460	207	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	<lod< td=""><td>50</td><td></td></lod<>	50	
pg/g w.w.														pg/g w.	w.
PCB 28/31	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.74</td><td>14.4</td><td>22.4</td><td><lod< td=""><td>7.25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.0</td><td>8.77</td><td>3.27</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.74</td><td>14.4</td><td>22.4</td><td><lod< td=""><td>7.25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.0</td><td>8.77</td><td>3.27</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6.74</td><td>14.4</td><td>22.4</td><td><lod< td=""><td>7.25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.0</td><td>8.77</td><td>3.27</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6.74	14.4	22.4	<lod< td=""><td>7.25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.0</td><td>8.77</td><td>3.27</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	7.25	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11.0</td><td>8.77</td><td>3.27</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11.0</td><td>8.77</td><td>3.27</td><td></td></lod<></td></lod<>	<lod< td=""><td>11.0</td><td>8.77</td><td>3.27</td><td></td></lod<>	11.0	8.77	3.27	
PCB 52	39.6	9.5	15.0	<lod< td=""><td>20.1</td><td>32.9</td><td><lod< td=""><td><lod< td=""><td>26.9</td><td><lod< td=""><td>9.10</td><td>9.25</td><td>8.20</td><td>7.82</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	20.1	32.9	<lod< td=""><td><lod< td=""><td>26.9</td><td><lod< td=""><td>9.10</td><td>9.25</td><td>8.20</td><td>7.82</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>26.9</td><td><lod< td=""><td>9.10</td><td>9.25</td><td>8.20</td><td>7.82</td><td></td></lod<></td></lod<>	26.9	<lod< td=""><td>9.10</td><td>9.25</td><td>8.20</td><td>7.82</td><td></td></lod<>	9.10	9.25	8.20	7.82	
PCB 99	<lod< td=""><td>4.3</td><td>4.54</td><td><lod< td=""><td>174</td><td>703</td><td><lod< td=""><td>4.37</td><td>8.64</td><td>6.64</td><td>10.5</td><td>14.8</td><td>16.4</td><td>3.16</td><td></td></lod<></td></lod<></td></lod<>	4.3	4.54	<lod< td=""><td>174</td><td>703</td><td><lod< td=""><td>4.37</td><td>8.64</td><td>6.64</td><td>10.5</td><td>14.8</td><td>16.4</td><td>3.16</td><td></td></lod<></td></lod<>	174	703	<lod< td=""><td>4.37</td><td>8.64</td><td>6.64</td><td>10.5</td><td>14.8</td><td>16.4</td><td>3.16</td><td></td></lod<>	4.37	8.64	6.64	10.5	14.8	16.4	3.16	
PCB 101	<lod< td=""><td>7.9</td><td>10.2</td><td><lod< td=""><td>57.0</td><td>435</td><td><lod< td=""><td>4.65</td><td><lod< td=""><td><lod< td=""><td>7.55</td><td><lod< td=""><td>5.37</td><td>3.67</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7.9	10.2	<lod< td=""><td>57.0</td><td>435</td><td><lod< td=""><td>4.65</td><td><lod< td=""><td><lod< td=""><td>7.55</td><td><lod< td=""><td>5.37</td><td>3.67</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	57.0	435	<lod< td=""><td>4.65</td><td><lod< td=""><td><lod< td=""><td>7.55</td><td><lod< td=""><td>5.37</td><td>3.67</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	4.65	<lod< td=""><td><lod< td=""><td>7.55</td><td><lod< td=""><td>5.37</td><td>3.67</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7.55</td><td><lod< td=""><td>5.37</td><td>3.67</td><td></td></lod<></td></lod<>	7.55	<lod< td=""><td>5.37</td><td>3.67</td><td></td></lod<>	5.37	3.67	
PCB 105	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>102</td><td>624</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>102</td><td>624</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>102</td><td>624</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>102</td><td>624</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	102	624	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<></td></lod<>	<lod< td=""><td>4.98</td><td>10.0</td><td>4.84</td><td></td></lod<>	4.98	10.0	4.84	
PCB 118	<lod< td=""><td>6.0</td><td>6.46</td><td>8.32</td><td>247</td><td>1720</td><td><lod< td=""><td>8.59</td><td>5.90</td><td>10.3</td><td>13.8</td><td>18.7</td><td>26.7</td><td>4.39</td><td></td></lod<></td></lod<>	6.0	6.46	8.32	247	1720	<lod< td=""><td>8.59</td><td>5.90</td><td>10.3</td><td>13.8</td><td>18.7</td><td>26.7</td><td>4.39</td><td></td></lod<>	8.59	5.90	10.3	13.8	18.7	26.7	4.39	
PCB 138	16.8	11.7	10.3	14.5	819	2660	<lod< td=""><td>14.8</td><td>7.29</td><td>17.3</td><td>27.8</td><td>29.2</td><td>54.0</td><td>3.50</td><td></td></lod<>	14.8	7.29	17.3	27.8	29.2	54.0	3.50	
PCB 153	39.1	15.2	<lod< td=""><td><lod< td=""><td>1240</td><td>4460</td><td><lod< td=""><td>26.1</td><td>21.8</td><td>32.7</td><td>63.6</td><td>54.6</td><td>93.3</td><td>6.24</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1240</td><td>4460</td><td><lod< td=""><td>26.1</td><td>21.8</td><td>32.7</td><td>63.6</td><td>54.6</td><td>93.3</td><td>6.24</td><td></td></lod<></td></lod<>	1240	4460	<lod< td=""><td>26.1</td><td>21.8</td><td>32.7</td><td>63.6</td><td>54.6</td><td>93.3</td><td>6.24</td><td></td></lod<>	26.1	21.8	32.7	63.6	54.6	93.3	6.24	
PCB 180	37.0	<lod< td=""><td>8.40</td><td>7.03</td><td>587</td><td>2110</td><td><lod< td=""><td>11.1</td><td>11.1</td><td>14.8</td><td>18.3</td><td><lod< td=""><td>40.0</td><td>4.12</td><td></td></lod<></td></lod<></td></lod<>	8.40	7.03	587	2110	<lod< td=""><td>11.1</td><td>11.1</td><td>14.8</td><td>18.3</td><td><lod< td=""><td>40.0</td><td>4.12</td><td></td></lod<></td></lod<>	11.1	11.1	14.8	18.3	<lod< td=""><td>40.0</td><td>4.12</td><td></td></lod<>	40.0	4.12	
PCB 183	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>100</td><td>299</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>100</td><td>299</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>100</td><td>299</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>100</td><td>299</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	100	299	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<></td></lod<>	<lod< td=""><td>3.53</td><td>11.3</td><td>7.09</td><td>3.45</td><td></td></lod<>	3.53	11.3	7.09	3.45	
PCB 187	6.24	<lod< td=""><td><lod< td=""><td><lod< td=""><td>167</td><td>251</td><td><lod< td=""><td>5.44</td><td><lod< td=""><td>5.53</td><td>7.50</td><td>8.01</td><td>13.1</td><td>4.00</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>167</td><td>251</td><td><lod< td=""><td>5.44</td><td><lod< td=""><td>5.53</td><td>7.50</td><td>8.01</td><td>13.1</td><td>4.00</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>167</td><td>251</td><td><lod< td=""><td>5.44</td><td><lod< td=""><td>5.53</td><td>7.50</td><td>8.01</td><td>13.1</td><td>4.00</td><td></td></lod<></td></lod<></td></lod<>	167	251	<lod< td=""><td>5.44</td><td><lod< td=""><td>5.53</td><td>7.50</td><td>8.01</td><td>13.1</td><td>4.00</td><td></td></lod<></td></lod<>	5.44	<lod< td=""><td>5.53</td><td>7.50</td><td>8.01</td><td>13.1</td><td>4.00</td><td></td></lod<>	5.53	7.50	8.01	13.1	4.00	
PCB 194	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>106</td><td>280</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>106</td><td>280</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>106</td><td>280</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>106</td><td>280</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	106	280	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.72</td><td></td></lod<></td></lod<>	<lod< td=""><td>6.72</td><td></td></lod<>	6.72	
PBDE 47	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>42.3</td><td>78.9</td><td><lod< td=""><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>42.3</td><td>78.9</td><td><lod< td=""><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>42.3</td><td>78.9</td><td><lod< td=""><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>42.3</td><td>78.9</td><td><lod< td=""><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	42.3	78.9	<lod< td=""><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<>	5.1	<lod< td=""><td><lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<></td></lod<>	<lod< td=""><td>6.8</td><td>5.2</td><td>1.2</td><td></td></lod<>	6.8	5.2	1.2	
PBDE 99	<lod< td=""><td>3.6</td><td><lod< td=""><td><lod< td=""><td>23.2</td><td>21.2</td><td>2.8</td><td>2.4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.6</td><td>3.5</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3.6	<lod< td=""><td><lod< td=""><td>23.2</td><td>21.2</td><td>2.8</td><td>2.4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.6</td><td>3.5</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23.2</td><td>21.2</td><td>2.8</td><td>2.4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.6</td><td>3.5</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	23.2	21.2	2.8	2.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.6</td><td>3.5</td><td>1.2</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.6</td><td>3.5</td><td>1.2</td><td></td></lod<></td></lod<>	<lod< td=""><td>3.6</td><td>3.5</td><td>1.2</td><td></td></lod<>	3.6	3.5	1.2	
PBDE 100	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.2</td><td>7.0</td><td>7.4</td><td><lod< td=""><td><lod< td=""><td>13.4</td><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>1.0</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.2</td><td>7.0</td><td>7.4</td><td><lod< td=""><td><lod< td=""><td>13.4</td><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>1.0</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3.2</td><td>7.0</td><td>7.4</td><td><lod< td=""><td><lod< td=""><td>13.4</td><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>1.0</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3.2	7.0	7.4	<lod< td=""><td><lod< td=""><td>13.4</td><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>1.0</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13.4</td><td><lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>1.0</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	13.4	<lod< td=""><td>5.1</td><td><lod< td=""><td><lod< td=""><td>1.0</td><td></td></lod<></td></lod<></td></lod<>	5.1	<lod< td=""><td><lod< td=""><td>1.0</td><td></td></lod<></td></lod<>	<lod< td=""><td>1.0</td><td></td></lod<>	1.0	
PBDE 153	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<>	<lod< td=""><td>1.1</td><td></td></lod<>	1.1	
PBDE 154	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td>9.2</td><td>2.0</td><td>2.2</td><td>2.3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td>9.2</td><td>2.0</td><td>2.2</td><td>2.3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5.2</td><td>9.2</td><td>2.0</td><td>2.2</td><td>2.3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.2</td><td>9.2</td><td>2.0</td><td>2.2</td><td>2.3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5.2	9.2	2.0	2.2	2.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.1</td><td></td></lod<></td></lod<>	<lod< td=""><td>1.1</td><td></td></lod<>	1.1	
PBDE 183	<lod< td=""><td>0.9</td><td>0.7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.9	0.7	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>4.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4.6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.7</td><td></td></lod<></td></lod<>	<lod< td=""><td>3.7</td><td></td></lod<>	3.7	
PBDE 206	10.0	3.2	8.9	<lod< td=""><td>5.6</td><td>8.6</td><td>3.4</td><td>4.3</td><td>3.6</td><td>0.9</td><td>1.7</td><td>2.7</td><td>2.0</td><td>1.3</td><td></td></lod<>	5.6	8.6	3.4	4.3	3.6	0.9	1.7	2.7	2.0	1.3	
PBDE 207	13.6	5.3	12.9	<lod< td=""><td>4.8</td><td>9.3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.6</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4.8	9.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.6</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.6</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.6</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.6</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.6</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.6</td><td></td></lod<></td></lod<>	<lod< td=""><td>1.6</td><td></td></lod<>	1.6	
PBDE 209	321	99.5	520	<lod< td=""><td>85.9</td><td>173</td><td>55.2</td><td>40.3</td><td>263</td><td>45.7</td><td><lod< td=""><td>37.7</td><td>56.1</td><td>26</td><td></td></lod<></td></lod<>	85.9	173	55.2	40.3	263	45.7	<lod< td=""><td>37.7</td><td>56.1</td><td>26</td><td></td></lod<>	37.7	56.1	26	

²⁹⁴ Table S2 continued. Raw data of contaminant concentrations in substrate (soil/moss).

295

206				<u>ش</u>	2					7						
296	Study site		Ny-Ålest	Ind Y	Storholmen	Krykkje- fjellet	Stup	hallet	Blomstra	ndhalvøya		Fjort	ende Julibukta			
	Substrate sample ID	SUB1	SUB2/3	SUB4	SUB5	SUB6	SUB7	SUB8	SUB9	SUB10	SUB11	SUB12	SUB13/14	SUB15	LOD	LOQ
	Compounds															
	pg/g w.w.														pg/g w.v	N.
	o,p'-DDT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>453</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>453</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>453</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>453</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>453</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	453	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5.6</td><td>16.9</td></lod<></td></lod<>	<lod< td=""><td>5.6</td><td>16.9</td></lod<>	5.6	16.9
	p,p'-DDT	107	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1010</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1010</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1010</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1010</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1010	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7.9</td><td>23.7</td></lod<></td></lod<>	<lod< td=""><td>7.9</td><td>23.7</td></lod<>	7.9	23.7
	o,p'-DDD	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.7</th><th>62.9</th><th>4.65</th><th><lod< th=""><th>21.9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>14.7</th><th>62.9</th><th>4.65</th><th><lod< th=""><th>21.9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>14.7</th><th>62.9</th><th>4.65</th><th><lod< th=""><th>21.9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>14.7</th><th>62.9</th><th>4.65</th><th><lod< th=""><th>21.9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	14.7	62.9	4.65	<lod< th=""><th>21.9</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	21.9	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>2.6</th><th>7.9</th></lod<></th></lod<>	<lod< th=""><th>2.6</th><th>7.9</th></lod<>	2.6	7.9
	p,p'-DDD	<lod< th=""><th>58.4</th><th>187</th><th>44.9</th><th><lod< th=""><th>593</th><th>37.2</th><th><lod< th=""><th>115</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>9.6</th><th>28.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	58.4	187	44.9	<lod< th=""><th>593</th><th>37.2</th><th><lod< th=""><th>115</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>9.6</th><th>28.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	593	37.2	<lod< th=""><th>115</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>9.6</th><th>28.8</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	115	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>9.6</th><th>28.8</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>9.6</th><th>28.8</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>9.6</th><th>28.8</th></lod<></th></lod<>	<lod< th=""><th>9.6</th><th>28.8</th></lod<>	9.6	28.8
	o,p'-DDE	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.7</td><td>11.0</td></lod<></td></lod<>	<lod< td=""><td>3.7</td><td>11.0</td></lod<>	3.7	11.0
	p,p'-DDE	3604	212	415	13.4	109	2088	<lod< td=""><td>8.82</td><td>15.3</td><td>11.2</td><td>21.9</td><td>23.3</td><td>30.6</td><td>8.1</td><td>24.2</td></lod<>	8.82	15.3	11.2	21.9	23.3	30.6	8.1	24.2
	нсв	121	38	84.6	46.1	489	260	36.5	69.3	41.6	64.5	137	140	173	7.0	14.6
	a-HCH	77.4	49.4	59	5.5	89	102	5	15.1	<lod< td=""><td>3.7</td><td>8.2</td><td>6.3</td><td>12.1</td><td>0.4</td><td>1.2</td></lod<>	3.7	8.2	6.3	12.1	0.4	1.2
	b-HCH	n.d.	n.d.	n.d.	9.1	35.6	94.9	<lod< td=""><td>21.3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.5</td><td>0.6</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	21.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11.5</td><td>0.6</td><td>1.9</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11.5</td><td>0.6</td><td>1.9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11.5</td><td>0.6</td><td>1.9</td></lod<></td></lod<>	<lod< td=""><td>11.5</td><td>0.6</td><td>1.9</td></lod<>	11.5	0.6	1.9
	с-НСН	11.9	5.2	8.3	4.1	22.2	42	2.8	7.8	5.5	2.1	4.6	4	4.6	1.7	5.1
	Oxychlordane	34.3	28	34.1	40.1	311	1316	33.5	32.7	57.9	53.9	44.1	54.4	66	18.6	55.7
	Trans chlordane	4.1	1.2	1.6	1.9	15.4	92.7	1.6	1.2	0.9	0.5	0.9	1.2	1.9	0.3	0.9
	Cis chlordane	12.8	3.4	5.0	6.2	65	277	3.5	5.0	2.6	2.1	3.8	4	7.6	1.4	4.2
	Trans nonachlor	11.7	3.1	4.7	8.5	95	608	3.3	8.3	3.1	<lod< td=""><td>4.3</td><td>4.8</td><td>8.7</td><td>2.6</td><td>7.0</td></lod<>	4.3	4.8	8.7	2.6	7.0
	Cis nonachlor	5.1	<lod< td=""><td>2.1</td><td>4.2</td><td>47.2</td><td>312</td><td>2.1</td><td>5.7</td><td>2.2</td><td><lod< td=""><td>2.4</td><td>2.8</td><td>5.2</td><td>1.2</td><td>2.8</td></lod<></td></lod<>	2.1	4.2	47.2	312	2.1	5.7	2.2	<lod< td=""><td>2.4</td><td>2.8</td><td>5.2</td><td>1.2</td><td>2.8</td></lod<>	2.4	2.8	5.2	1.2	2.8
	Mirex	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50.4</td><td>165</td><td><lod< td=""><td><lod< td=""><td>8.6</td><td><lod< td=""><td>5.7</td><td><lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50.4</td><td>165</td><td><lod< td=""><td><lod< td=""><td>8.6</td><td><lod< td=""><td>5.7</td><td><lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50.4</td><td>165</td><td><lod< td=""><td><lod< td=""><td>8.6</td><td><lod< td=""><td>5.7</td><td><lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>50.4</td><td>165</td><td><lod< td=""><td><lod< td=""><td>8.6</td><td><lod< td=""><td>5.7</td><td><lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	50.4	165	<lod< td=""><td><lod< td=""><td>8.6</td><td><lod< td=""><td>5.7</td><td><lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>8.6</td><td><lod< td=""><td>5.7</td><td><lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<></td></lod<></td></lod<>	8.6	<lod< td=""><td>5.7</td><td><lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<></td></lod<>	5.7	<lod< td=""><td>5.6</td><td>4.1</td><td>12.2</td></lod<>	5.6	4.1	12.2

Abbreviations: LOD = limit of detection, LOQ=limit of quantificaiton, n.d. = not detected, d.w. = dry weight

Analyte abbreviations: Hg=mercury, PFHxS=perfluorohexane sulfonate, PFNS=perfluorodecane sulfonate, PFOS=perfluorooctane sulfaonic acid, PFOA=perfluorooctane sulfonate, PFOS=perfluorooctane sulfaonic acid, PFOA=perfluorooctane sulfonate, PFOS=perfluorootecane sulfaonic acid, PFOA=perfluorootecane sulfaonic acid, PFOA=perfluorootecane

PFAS congeners below LOD in all substrate samples (pg/g d.w., given in brackets): PFBS (50), PFHpS (50), PFDcS (50), PFHxA (100), PFHpA (100), PFTrDA (100),

300 Table S3. Raw data of contaminant concentrations in springtails.

2	Δ	1
- 3	υ	L

Study site		Ny-Å	lesun,		Storholmen	Krykkje- fjellet	Stup	hallet	Blomstra	ndhalvøya		Fjor	tende Julib	oukta			
Springtail sample ID	MA1	HV2	HV3	HV4	HV5	MA6	MA7	HV8	HV9	HV10	HV11	HV12	HV13	HV14	HV15	LOD	
Compounds																	
pg/g d.w.																	
Hg	49752	12988	18228	11021	15577	88644	n.a.	19830	13747	13081	13012	10655	10616	9732	9309		
pg/g w.w.																pg/g w.	.w
∑PFOS	408	1085	1975	2634	n.a.	77.4	n.a.	n.a.	<lod< td=""><td><lod< td=""><td><lod< td=""><td>115</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>115</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>115</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	115	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	<lod< td=""><td>50</td><td></td></lod<>	50	
PFNA	<lod< td=""><td>68.3</td><td>56</td><td><lod< td=""><td>n.a.</td><td>91.3</td><td>n.a.</td><td>n.a.</td><td><lod< td=""><td>94.3</td><td><lod< td=""><td>55.3</td><td><lod< td=""><td>50.6</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	68.3	56	<lod< td=""><td>n.a.</td><td>91.3</td><td>n.a.</td><td>n.a.</td><td><lod< td=""><td>94.3</td><td><lod< td=""><td>55.3</td><td><lod< td=""><td>50.6</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	91.3	n.a.	n.a.	<lod< td=""><td>94.3</td><td><lod< td=""><td>55.3</td><td><lod< td=""><td>50.6</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	94.3	<lod< td=""><td>55.3</td><td><lod< td=""><td>50.6</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	55.3	<lod< td=""><td>50.6</td><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	50.6	<lod< td=""><td>50</td><td></td></lod<>	50	
PFDA	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>n.a.</td><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n.a.</td><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n.a.</td><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>n.a.</td><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	<lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	n.a.	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>60.1</td><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	60.1	<lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	<lod< td=""><td>50</td><td></td></lod<>	50	
PFUnDA	65.7	88.2	66.7	55.1	n.a.	15.7	n.a.	n.a.	<lod< td=""><td>86.7</td><td><lod< td=""><td>52.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	86.7	<lod< td=""><td>52.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	52.6	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50</td><td></td></lod<></td></lod<>	<lod< td=""><td>50</td><td></td></lod<>	50	
PFDoDA	<lod< td=""><td>55.3</td><td>95.4</td><td>162</td><td>n.a.</td><td>86.7</td><td>n.a.</td><td>n.a.</td><td><lod< td=""><td>214</td><td>260</td><td>179</td><td>137</td><td>65.9</td><td>196</td><td>50</td><td></td></lod<></td></lod<>	55.3	95.4	162	n.a.	86.7	n.a.	n.a.	<lod< td=""><td>214</td><td>260</td><td>179</td><td>137</td><td>65.9</td><td>196</td><td>50</td><td></td></lod<>	214	260	179	137	65.9	196	50	
PCB 28/31	73.5	903	116	134	219	n.a.	n.a.	349	236	175	80.2	169	61.9	80.8	179	11.4	
PCB 52	320	666	295	289	180	n.a.	n.a.	287	164	140	105	131	<lod< td=""><td>149</td><td>153</td><td>71.5</td><td></td></lod<>	149	153	71.5	
PCB 99	89.2	137	242	137	101	n.a.	n.a.	85.1	57.5	54.4	223	64.1	60	121	73.7	26.7	
PCB 101	153	242	222	222	84.5	n.a.	n.a.	143	63.0	75.4	106	64	38.1	<lod< td=""><td>59.9</td><td>31.0</td><td></td></lod<>	59.9	31.0	
PCB 105	49.8	46.5	82.7	<lod< td=""><td><lod< td=""><td>n.a.</td><td>n.a.</td><td>23.0</td><td><lod< td=""><td><lod< td=""><td>26.4</td><td><lod< td=""><td>26.2</td><td>49.8</td><td><lod< td=""><td>21.9</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>n.a.</td><td>n.a.</td><td>23.0</td><td><lod< td=""><td><lod< td=""><td>26.4</td><td><lod< td=""><td>26.2</td><td>49.8</td><td><lod< td=""><td>21.9</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	n.a.	23.0	<lod< td=""><td><lod< td=""><td>26.4</td><td><lod< td=""><td>26.2</td><td>49.8</td><td><lod< td=""><td>21.9</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>26.4</td><td><lod< td=""><td>26.2</td><td>49.8</td><td><lod< td=""><td>21.9</td><td></td></lod<></td></lod<></td></lod<>	26.4	<lod< td=""><td>26.2</td><td>49.8</td><td><lod< td=""><td>21.9</td><td></td></lod<></td></lod<>	26.2	49.8	<lod< td=""><td>21.9</td><td></td></lod<>	21.9	
PCB 118	168	145	137	144	136	n.a.	n.a.	118	66.5	61.5	145	80.5	94.2	78.4	96.2	19.6	
PCB 138	288	180	138	169	158	n.a.	n.a.	101	77.4	65.4	171	107	128	110	120	38.5	
PCB 153	516	295	303	299	245	n.a.	n.a.	166	162	135	314	198	233	199	216	60.7	
PCB 180	160	68.3	53.0	60.4	69.3	n.a.	n.a.	36.4	<lod< td=""><td><lod< td=""><td>56.2</td><td>45.9</td><td>55.7</td><td>40.1</td><td>56.1</td><td>32.4</td><td></td></lod<></td></lod<>	<lod< td=""><td>56.2</td><td>45.9</td><td>55.7</td><td>40.1</td><td>56.1</td><td>32.4</td><td></td></lod<>	56.2	45.9	55.7	40.1	56.1	32.4	
PCB 183	39.6	19.5	17.1	<lod< td=""><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15.9</td><td><lod< td=""><td>14.6</td><td>15.9</td><td><lod< td=""><td>13.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15.9</td><td><lod< td=""><td>14.6</td><td>15.9</td><td><lod< td=""><td>13.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	n.a.	<lod< td=""><td><lod< td=""><td><lod< td=""><td>15.9</td><td><lod< td=""><td>14.6</td><td>15.9</td><td><lod< td=""><td>13.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>15.9</td><td><lod< td=""><td>14.6</td><td>15.9</td><td><lod< td=""><td>13.7</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>15.9</td><td><lod< td=""><td>14.6</td><td>15.9</td><td><lod< td=""><td>13.7</td><td></td></lod<></td></lod<></td></lod<>	15.9	<lod< td=""><td>14.6</td><td>15.9</td><td><lod< td=""><td>13.7</td><td></td></lod<></td></lod<>	14.6	15.9	<lod< td=""><td>13.7</td><td></td></lod<>	13.7	
PCB 187	79.1	36.7	23.7	47.3	<lod< td=""><td>n.a.</td><td>n.a.</td><td>24.3</td><td>17.1</td><td>17.3</td><td>26.6</td><td><lod< td=""><td>23.1</td><td><lod< td=""><td>22.4</td><td>15.5</td><td></td></lod<></td></lod<></td></lod<>	n.a.	n.a.	24.3	17.1	17.3	26.6	<lod< td=""><td>23.1</td><td><lod< td=""><td>22.4</td><td>15.5</td><td></td></lod<></td></lod<>	23.1	<lod< td=""><td>22.4</td><td>15.5</td><td></td></lod<>	22.4	15.5	
PBDE 47	133	109	111	110	32.3	n.a.	n.a.	38.4	<lod< td=""><td><lod< td=""><td>28.3</td><td>36.6</td><td>34.6</td><td><lod< td=""><td><lod< td=""><td>7</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>28.3</td><td>36.6</td><td>34.6</td><td><lod< td=""><td><lod< td=""><td>7</td><td></td></lod<></td></lod<></td></lod<>	28.3	36.6	34.6	<lod< td=""><td><lod< td=""><td>7</td><td></td></lod<></td></lod<>	<lod< td=""><td>7</td><td></td></lod<>	7	
PBDE 100	11.6	14.6	<lod< td=""><td>24.7</td><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24.7	<lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	n.a.	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19.9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19.9	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<>	<lod< td=""><td>10</td><td></td></lod<>	10	
PBDE 154	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>n.a.</td><td>n.a.</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	n.a.	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>14.9</td><td>3.3</td><td><lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<></td></lod<>	14.9	3.3	<lod< td=""><td><lod< td=""><td>10</td><td></td></lod<></td></lod<>	<lod< td=""><td>10</td><td></td></lod<>	10	
PBDE 206	118	<lod< td=""><td><lod< td=""><td>75.6</td><td><lod< td=""><td>n.a.</td><td>n.a.</td><td>76.8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54.9</td><td><lod< td=""><td><lod< td=""><td>23.6</td><td>8</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>75.6</td><td><lod< td=""><td>n.a.</td><td>n.a.</td><td>76.8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54.9</td><td><lod< td=""><td><lod< td=""><td>23.6</td><td>8</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	75.6	<lod< td=""><td>n.a.</td><td>n.a.</td><td>76.8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54.9</td><td><lod< td=""><td><lod< td=""><td>23.6</td><td>8</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	n.a.	n.a.	76.8	<lod< td=""><td><lod< td=""><td><lod< td=""><td>54.9</td><td><lod< td=""><td><lod< td=""><td>23.6</td><td>8</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>54.9</td><td><lod< td=""><td><lod< td=""><td>23.6</td><td>8</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>54.9</td><td><lod< td=""><td><lod< td=""><td>23.6</td><td>8</td><td></td></lod<></td></lod<></td></lod<>	54.9	<lod< td=""><td><lod< td=""><td>23.6</td><td>8</td><td></td></lod<></td></lod<>	<lod< td=""><td>23.6</td><td>8</td><td></td></lod<>	23.6	8	
PBDE 207 PBDE 209	99.4 2029	14.3 343	11 312	107 3820	21.9 <lod< td=""><td>n.a.</td><td>n.a.</td><td>75.6 1411</td><td><lod <lod< td=""><td>12.1 341</td><td>20.6 863</td><td>66.1 980</td><td>12.7 273</td><td>15.7 <lod< td=""><td>24.9 541</td><td>10 201</td><td></td></lod<></td></lod<></lod </td></lod<>	n.a.	n.a.	75.6 1411	<lod <lod< td=""><td>12.1 341</td><td>20.6 863</td><td>66.1 980</td><td>12.7 273</td><td>15.7 <lod< td=""><td>24.9 541</td><td>10 201</td><td></td></lod<></td></lod<></lod 	12.1 341	20.6 863	66.1 980	12.7 273	15.7 <lod< td=""><td>24.9 541</td><td>10 201</td><td></td></lod<>	24.9 541	10 201	

303

306 Table S3 continued. Raw data of contaminant concentrations in springtails.

307

308

			,		1					2							
Study site		Ny-Å	lesund T	l	Storholmen	Krykkje- fjellet	Stuphallet		Blomstra	ndhalvøya	•						
Springtail sample ID	MA1	HV2	HV3	HV4	HV5	MA6	MA7	HV8	HV9	HV10	HV11	HV12	HV13	HV14	HV15	LOD	LOQ
Compounds																	
pg/g w.w.																pg/g w.v	Ν.
o,p'-DDT	75.5	205	209	340	27.6	n.a.	n.a.	27.6	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>18.1</th><th><lod< th=""><th><lod< th=""><th>18.0</th><th>54.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>18.1</th><th><lod< th=""><th><lod< th=""><th>18.0</th><th>54.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>18.1</th><th><lod< th=""><th><lod< th=""><th>18.0</th><th>54.1</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>18.1</th><th><lod< th=""><th><lod< th=""><th>18.0</th><th>54.1</th></lod<></th></lod<></th></lod<>	18.1	<lod< th=""><th><lod< th=""><th>18.0</th><th>54.1</th></lod<></th></lod<>	<lod< th=""><th>18.0</th><th>54.1</th></lod<>	18.0	54.1
p,p'-DDT	58.9	64.4	<lod< th=""><th><lod< th=""><th>69.3</th><th>n.a.</th><th>n.a.</th><th>69.3</th><th><lod< th=""><th><lod< th=""><th>341</th><th>73.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>26.5</th><th>79.5</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>69.3</th><th>n.a.</th><th>n.a.</th><th>69.3</th><th><lod< th=""><th><lod< th=""><th>341</th><th>73.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>26.5</th><th>79.5</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	69.3	n.a.	n.a.	69.3	<lod< th=""><th><lod< th=""><th>341</th><th>73.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>26.5</th><th>79.5</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>341</th><th>73.4</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>26.5</th><th>79.5</th></lod<></th></lod<></th></lod<></th></lod<>	341	73.4	<lod< th=""><th><lod< th=""><th><lod< th=""><th>26.5</th><th>79.5</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>26.5</th><th>79.5</th></lod<></th></lod<>	<lod< th=""><th>26.5</th><th>79.5</th></lod<>	26.5	79.5
o,p'-DDD	<lod< th=""><th>27.6</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>n.a.</th><th>n.a.</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	27.6	<lod< th=""><th><lod< th=""><th><lod< th=""><th>n.a.</th><th>n.a.</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>n.a.</th><th>n.a.</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>n.a.</th><th>n.a.</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	n.a.	n.a.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>12.0</th><th>35.9</th></lod<></th></lod<>	<lod< th=""><th>12.0</th><th>35.9</th></lod<>	12.0	35.9
p,p'-DDD	<lod< th=""><th><lod< th=""><th><lod< th=""><th>462</th><th>38.9</th><th>n.a.</th><th>n.a.</th><th>38.9</th><th>15.7</th><th><lod< th=""><th>136</th><th><lod< th=""><th>49.3</th><th>102</th><th>72</th><th>15.1</th><th>45.3</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>462</th><th>38.9</th><th>n.a.</th><th>n.a.</th><th>38.9</th><th>15.7</th><th><lod< th=""><th>136</th><th><lod< th=""><th>49.3</th><th>102</th><th>72</th><th>15.1</th><th>45.3</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>462</th><th>38.9</th><th>n.a.</th><th>n.a.</th><th>38.9</th><th>15.7</th><th><lod< th=""><th>136</th><th><lod< th=""><th>49.3</th><th>102</th><th>72</th><th>15.1</th><th>45.3</th></lod<></th></lod<></th></lod<>	462	38.9	n.a.	n.a.	38.9	15.7	<lod< th=""><th>136</th><th><lod< th=""><th>49.3</th><th>102</th><th>72</th><th>15.1</th><th>45.3</th></lod<></th></lod<>	136	<lod< th=""><th>49.3</th><th>102</th><th>72</th><th>15.1</th><th>45.3</th></lod<>	49.3	102	72	15.1	45.3
o,p'-DDE	21.7	41.4	<lod< th=""><th><lod< th=""><th><lod< th=""><th>n.a.</th><th>n.a.</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>n.a.</th><th>n.a.</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>n.a.</th><th>n.a.</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	n.a.	n.a.	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>14.0</th><th>42.1</th></lod<></th></lod<>	<lod< th=""><th>14.0</th><th>42.1</th></lod<>	14.0	42.1
p,p'-DDE	337	211	230	201	128	n.a.	n.a.	128	44.9	41.9	172	101	98	258	108	19.0	57.1
НСВ	603	3052	3355	2953	5000	n.a.	n.a.	4478	1896	2353	3252	3139	2171	2960	2956	67.2	161
a-HCH	113	324	238	203	71.6	n.a.	n.a.	108	138	141	120	125	103	89.8	128	3.4	10.2
b-НСН	19.5	79.2	<lod< td=""><td><lod< td=""><td>26.9</td><td>n.a.</td><td>n.a.</td><td>20.5</td><td>18.4</td><td>22.3</td><td>17.7</td><td>10.9</td><td>11.6</td><td><lod< td=""><td><lod< td=""><td>8.2</td><td>24.6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>26.9</td><td>n.a.</td><td>n.a.</td><td>20.5</td><td>18.4</td><td>22.3</td><td>17.7</td><td>10.9</td><td>11.6</td><td><lod< td=""><td><lod< td=""><td>8.2</td><td>24.6</td></lod<></td></lod<></td></lod<>	26.9	n.a.	n.a.	20.5	18.4	22.3	17.7	10.9	11.6	<lod< td=""><td><lod< td=""><td>8.2</td><td>24.6</td></lod<></td></lod<>	<lod< td=""><td>8.2</td><td>24.6</td></lod<>	8.2	24.6
с-НСН	40.2	84	38.7	37.1	41.3	n.a.	n.a.	49.3	53.5	46.9	34	35.6	23	26.4	31	15.8	36.5
Oxychlordane	287	296	265	267	396	n.a.	n.a.	461	301	357	260	239	216	<lod< th=""><th>242</th><th>202</th><th>364</th></lod<>	242	202	364
Trans chlordane	5.6	24.3	24.4	24.9	30.8	n.a.	n.a.	45.8	18	26.6	11.5	10.5	9	10.1	10.4	5.0	11.4
Cis chlordane	23.6	110	99.4	99.4	128	n.a.	n.a.	201	109	138	54.1	48.4	42.8	41.8	49.2	15.3	26.9
Trans nonachlor	44.8	106	88.4	88.4	167	n.a.	n.a.	194	121	133	51.6	46.7	44.2	46.9	47.3	30.3	73.0
Cis nonachlor	25.9	65.9	50.7	50.7	110	n.a.	n.a.	119	69	78.2	30.2	23.3	23.1	21.9	24.8	13.9	31.8

Springtail sample-ID reflect species; MA=M. arctica, and HV=H. viatica. Abbreviations: LOD=limit of detection, LOQ=limit of quantification, n. a.=not analysed, d.w.=dry weight, w.w.=wet weight

Analyte abbreviations: Hg=mercury, PFOS=perfluorooctanesulfaonic acid, PFNA=perfluorononanoic acid, PFDA=perfluorodecanoic acid, PFD

PFAS congeners below LOD in all springtail samples (pg/g w.w., given in brackets) (not analysed in HV5, MA7 and HV): PFBS, PFHxS (50), PFHpS, PFDxS, PFDxS, PFHxA, PFHpA, PFOA, PFTrDA, (100). Other analytes below LOD in all springtail samples (pg/g w.w., given in brackets) (not analysed in MA6 and MA7): PCB-194 (41.26), PBDE-28 (206), PBDE-138 (9.8), PBDE-133 (18.8), PBDE-196 (7.7), PBDE-197 (7.1), Mirex (78.1)

309

310

References:

313	1.	Powley, C.R., S.W. George, T.W. Ryan, and R.C. Buck, Matrix effect-free analytical
314		methods for determination of perfluorinated carboxylic acids in environmental
315		matrixes. Analytical Chemistry, 2005. 77(19): p. 6353-6358.
316	2.	Hanssen, L., A.A. Dudarev, S. Huber, J.O. Odland, E. Nieboer, and T.M. Sandanger,
317		Partition of perfluoroalkyl substances (PFASs) in whole blood and plasma, assessed
318		in maternal and umbilical cord samples from inhabitants of arctic Russia and
319		Uzbekistan. Science of the Total Environment, 2013. 447: p. 430-437.
320		