Supporting Information

O-H and C-H Bond Activation of Water and Methane by RuO^{2+} *and* $(NH_3)RuO^{2+}$: *Ground and Excited States*

Nuno M. S. Almeida, Isuru R. Ariyarathna and Evangelos Miliordos*

Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA

* To whom correspondence should be addressed. E-mail: <u>emiliord@auburn.edu</u>

Table S1. MRCI optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the $RuO^{2+} + H_2O \rightarrow Ru(OH)_2^{2+}$ reaction for the first singlet (1¹A), the first two triplet (1³A, 2³A), and the first quintet (1⁵A) states. Red data indicate DFT/MN15 optimized structures.

		Reactants				Transition State				Products			
1 ¹ A	Ru	0.2631322560	0.2350629353	-0.1954543789	Ru	0.2908139024	-0.2903874669	0.0890582951	Ru	-0.000000001	-0.000000240	-0.0006935511	
	О	-1.1258466849	0.1965294727	0.3940700775	0	-0.2358431511	1.3587715693	-0.1073080751	0	0.0000010634	1.6724379080	0.0007711461	
	О	2.2469979545	0.0133377690	0.2240406858	0	-1.5849175140	-0.2536446911	0.0608316829	0	-0.0000010633	-1.6724379085	0.0007711452	
	Н	2.8413633629	0.7067895765	0.5516789783	Н	-1.3577608088	1.0795805737	-0.0053110040	Н	0.0000143784	2.6608826592	0.0058212826	
	Н	2.7173653231	-0.8307248577	0.3119092366	Н	-2.1566210714	-0.7753710903	0.6551284292	Н	-0.0000143784	-2.6608826347	0.0058212832	
1 ³ A	Ru	0.2989627441	0.2432285452	-0.4257258192	Ru	0.4311953167	-0.0924648067	-0.0633171477	Ru	0.0003683269	-0.0000884409	-0.4958533768	
	О	-0.9444565883	0.1834231868	0.5336261355	0	-0.2787677915	1.4885876104	-0.3396764220	0	-0.0224758501	1.6295839362	0.0450247521	
	О	2.1899064845	0.0130648538	0.2307362100	0	-1.3403754699	-0.1753258157	0.4886988931	0	0.0212291467	-1.6309275299	0.0419874879	
	Н	2.7505270591	0.7135667678	0.5967794524	Н	-1.3214243642	1.0604947914	0.0509681350	Н	0.5228366894	2.2329237992	0.5997374798	
	Н	2.6480725122	-0.8322884576	0.3508286206	Н	-1.7239684808	-0.5370436730	1.3086396254	Н	-0.5219583129	-2.2314917647	0.6016716754	
2 ³ A	Ru 0.	.2651660863 0.	2181803383 -0.	2254992356	Ru	0.3950124067	-0.0807519457	-0.0397564109	Ru	0.0002502948	-0.0002264688	-0.4376704726	
	0	-1.1758684170	0.2164354448	0.4035946034	0	-0.2780995659	1.5228620765	-0.3245889208	0	0.0216718979	1.6539268250	0.0214664216	
	0	2.2606056818	0.0076996805	0.2362511230	0	-1.3937356925	-0.2668842781	0.4168238423	0	-0.0228184437	-1.6553452559	0.0182532357	
	Н	2.8488643910	0.7069862473	0.5583009439	Н	-1.2814962592	1.0340594005	0.0752483550	Н	0.5046074227	2.2921119415	0.5942998086	
	Н	2.7442444692	-0.8283068152	0.3135971646	Н	-1.6750213736	-0.4650372729	1.3175861142	Н	-0.5037111717	-2.2904670418	0.5962190251	
15A	Ru 0	0.2847756346 0	.2708249065 -0	.6532995659		Ru 0.4014	469 -0.167403 -0.	000000	Ru	-0.0041449432	0.0010311607	-1.0742546763	
	О	-0.6608394905	0.1515497928	0.6798842964		O -0.3050	14 1.398252 -0.0	000004	0	0.1881774574	1.3780803689	-0.0164497276	
	Ο	2.1504852598	0.0233042569	0.1750098590		O -1.4670	28 -0.435088 0.0	000017	0	-0.1833580155	-1.3792215430	-0.0176385782	
	Н	2.6266448563	0.7059659727	0.6713809256		Н -1.4281	80 0.891179 -0.0	00009	Н	0.2060102898	1.5309590902	0.9510308040	
	Н	2.5419459513	-0.8306500329	0.4132690843		Н -2.0601	30 -1.230743 -0.4	000087	Н	-0.2066847883	-1.5308490770	0.9498801965	

Table S2. MRCI optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the $RuO^{2+} + CH_4 \rightarrow CH_3RuOH^{2+}$ reaction for the first singlet (1¹A), the first two triplet (1³A, 2³A), and the first quintet (1⁵A) states. Red data indicate DFT/MN15 optimized structures.

	Reactants			Tran	sition State					Products			
1 ¹ A	Ru	-0.1833143594	0.0749440162	0.0004251052	Ru	0.285346	-0.292888	-0.000001		Ru	-0.0975062205	-0.3790906129	0.0044716496
	О	-1.7225158502	0.0006877977	-0.0004658063	0	0.694253	1.276643	0.000005		0	-1.3301246754	0.8729154101	-0.1253356990
	С	2.0634372921	0.1863724123	0.0000287976	С	-1.838480	0.123255	0.000013		С	1.6449557109	0.6993603455	0.0170360422
	Н	3.1498878864	0.2416433485	-0.0004323611	Н	-2.169201	-0.312415	-0.943739		Н	1.7614338896	1.2604557724	0.9360237565
	Н	1.7533075051	0.7073963679	-0.9320706174	Н	-2.169161	-0.312058	0.943940		Н	2.0995399767	-0.3198297321	0.0395593214
	Н	1.7539466131	0.7107181064	0.9303415826	Н	-2.096318	1.212357	-0.000237		Н	1.7790848188	1.2309573364	-0.9171447075
	Н	1.8349629129	-0.9016780490	0.0019362993	Н	-0.643678	1.346515	-0.000046		Н	-1.8030595001	1.3108814807	0.6184126368
1 ³ A	Ru	-0.2478085913	0.4222768111	-0.4833218392	Ru	0.380687	-0.238699	0.000000	F	Ru	-0.0912932982	-0.0464384533	0.1548517757
	0	-1.3066755138	0.0833323748	0.6320397248	0	0.144209	1.433486	-0.000001		0	-1.3717799172	1.1062428468	0.2202274711
	С	1.9783482401	0.0619853266	-0.0792299786	С	-1.749549	-0.219370	-0.000005		С	1.7899826480	0.6410045054	-0.0091094820
	Н	2.9034736289	0.4163450215	0.3896081075	Н	-1.993362	-0.748767	-0.930552		Н	2.0269198652	1.1872175641	0.9002495175
	Н	1.9279818027	0.7422528284	-0.9526308220	Н	-1.993331	-0.748887	0.930484		Н	2.1689657695	-0.4019722696	-0.0404562537
	Н	1.3283631021	0.2830216470	0.8170268789	Н	-2.330154	0.748914	0.000094		Н	1.8750314237	1.1827589126	-0.9475114600
	Н	2.0660293314	-0.9891300095	-0.3237290713	Н	-1.089745	1.099851	0.000001		Н	-2.3435064911	1.0068468937	0.2947684311
2 ³ A	Ru -0	0.2468855407 0.	.2525101181 0	.0042116064					F	Ru	-0.0951411468	-0.0115910866	0.1410895104
	О	-1.8167753498	0.0921488540	-0.0054686887						0	-1.3661703011	1.1715316170	0.2341321549
	С	2.0954385882	0.1002014758	0.0007335133						С	1.7965065010	0.6011051885	-0.0099749722
	Н	3.1139309848	0.4840141113	-0.0043972023						Н	1.9652681108	1.1746460361	0.9054267046
	Н	1.6831379578	0.5378829815	-0.9429372527						Н	2.2646534694	-0.3948755119	-0.0418580768
	Н	1.6886954733	0.5399021312	0.9450755102						Н	1.8126777808	1.1560192342	-0.9499983433
	Н	2.1321698866	-0.9865756720	0.0025455139						Н	-2.3234744142	0.9788245225	0.2942030218

15A	Ru	-0.3033622771	0.0687688533	0.0072493484	Ru	-0.384719	0.239997	-0.000036	Ru	-0.0811886723	-0.5193964802	-0.0522850657
	0	-1.9430339506	-0.0099670717	-0.0060277800	0	-0.126406	-1.464589	0.000223	О	-1.3118146201	0.7454925134	-0.0014201109
	С	2.0996916571	0.1882265818	-0.0001515579	С	1.744702	0.237084	0.000316	С	1.5623048528	0.6417480767	0.0276923275
	Н	3.1897390198	0.2436422239	-0.0028587793	Н	1.993862	0.756379	-0.932394	Н	1.5610535488	1.1818365242	0.9704612798
	Н	1.8398265147	0.7112134652	-0.9310039210	Н	1.993903	0.751519	0.935708	Н	2.2757406100	-0.1927855906	0.0087856126
	Н	1.8437201610	0.7144453457	0.9300332941	Н	2.336543	-0.734135	-0.003465	Н	1.5763528253	1.2580014297	-0.8679438655
	Н	1.9231308752	-0.8962453983	0.0025223956	Н	1.146352	-1.039433	-0.001955	Н	-1.5281245444	1.5607535268	0.4877328221

Table S3. MRCI optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the (NH₃)RuO²⁺ + H₂O \rightarrow (NH₃)Ru(OH)₂²⁺ reaction for the first singlet (1¹A), the first two triplet (1³A, 2³A), and the first quintet (1⁵A) states. Red data indicate DFT/MN15 optimized structures.

		Reactants				Transition State				Products			
1 ¹ A	Ru	0.0777015596	-0.0529350430	-0.1472120102	Ru	0.5516311217	0.1855018219	0.7532652324	Ru	0.2024345656	0.0416959235	-0.3670535237	
	0	-1.1017312636	0.1618317372	0.8815475757	О	-0.0843537515	1.2972085796	-0.5030857627	О	-0.2751258972	1.5785780334	0.4250924225	
	О	2.1311447063	0.0057939985	0.0601512421	О	-1.3194154130	-0.1003929303	0.6543779774	О	-0.0246852176	-1.4551822456	0.5346150859	
	Н	2.6543776461	0.8093119468	0.1799975327	Н	-1.1469865543	0.8791408810	-0.2279304203	Н	0.3009033548	2.0811958067	1.0405304456	
	Н	2.6629586881	-0.7372045038	0.3791671288	Н	-1.8921921613	-0.7421433823	0.9699689047	Н	-0.8452791327	-1.9789490577	0.5897622035	
	Ν	0.0490510547	0.8629118238	-2.0424835422	Ν	1.7044245230	-0.8532262960	-0.6045561927	Ν	1.0414472421	0.1099877015	-2.2859275674	
	Н	0.9622565881	0.9729034886	-2.4906463052	Н	2.6241117947	-0.4178306265	-0.7471625039	Н	1.9825629717	0.5137196603	-2.3098626714	
	Н	-0.5327651660	0.3562430779	-2.7154324678	Н	1.8882579829	-1.8211941560	-0.3118474651	Н	1.1387547197	-0.8349249704	-2.6774113818	
	Н	-0.3433037705	1.8062132062	-1.9814658270	Н	1.2714977452	-0.9193316300	-1.5297757415	Н	0.4797011540	0.6314028695	-2.9657386274	
1 ³ A	Ru	0.4291542878	0.3075025877	-0.2980298390	Ru	0.7812217243	0.4401845632	0.8689982494	Ru 0	.2013593704 0.	0503623784 -0.	2514561386	
	0	-0.8396970435	0.0855987613	0.6281915708	О	0.0266830318	1.3780478722	-0.5759940591	0	-0.1515194457	1.6933962686	0.2359986790	
	0	2.3229190790	-0.0341188581	0.4167363716	О	-1.0053574638	-0.1969451350	0.6521910521	0	0.0820184903	-1.5626449199	0.4152513644	
	Н	2.8524485819	0.5922298624	0.9294848089	Н	-0.9411458542	0.6777297572	-0.2639755744	Н	0.3199192148	2.2640971585	0.8758466819	
	Н	2.7561249369	-0.8976597653	0.4652145654	Н	-1.6042291917	-0.1817371847	1.3840384072	Н	-0.7101826574	-2.1094284502	0.5904465394	

	Ν	-0.1550160904	0.9458339017	-2.2317422597	Ν	1.5888994019	-0.8038934718	-0.5668542942	Ν	0.9703162253	0.0184207415	-2.1892564621
	Н	0.6203645960	1.0174920132	-2.8978322417	Н	2.5114963675	-0.4549244838	-0.7857530076	Н	1.9142777701	0.4095476316	-2.2538321446
	Н	-0.8245013971	0.3023871801	-2.6615558409	Н	1.7033917255	-1.7787124471	-0.2688591447	Н	1.0324170865	-0.9415774687	-2.5487613209
	Н	-0.6021069083	1.8658040485	-2.2268438085	Н	1.0724655217	-0.8159140116	-1.4496740974	Н	0.3831587827	0.5331046084	-2.8528316273
2 ³ A	Ru	0.4068924005	0.3036775742	-0.2801435437	Ru	0.6759485783	0.2545600207	0.8220420263	Ru	0.2442819647	0.0597018665	-0.3645882483
	0	-0.8413066415	0.0728987189	0.6703465443	0	-0.0234459167	1.2179381690	-0.6692149602	О	-0.2698242907	1.5565560004	0.3996923853
	0	2.3447044057	-0.0436307760	0.4397477690	0	-1.2049231854	-0.0247875680	0.7628272844	О	0.0730135757	-1.4052257524	0.5938212989
	Н	2.8769287858	0.5809571613	0.9490675797	Н	-1.0727710689	0.7975351262	-0.1755063868	Н	0.2443625621	2.0572402315	1.0634160695
	Н	2.7836936003	-0.9025849908	0.4879942049	Н	-1.7740882416	-0.0506533606	1.5722564275	Н	-0.7658018754	-1.8865239906	0.7355179975
	Ν	-0.1682978376	0.9567379483	-2.2653798622	Ν	1.7374775488	-0.8345412346	-0.6185317889	Ν	1.0201189960	0.0040178229	-2.3263239016
	Н	0.6030799002	1.0284133675	-2.9265341457	Н	2.6818293691	-0.4645744837	-0.7925068261	Н	1.9635855455	0.4031264321	-2.3914416388
	Н	-0.8347903791	0.3112606877	-2.6937997722	Н	1.8541413889	-1.8232667318	-0.3802281098	Н	1.0913752412	-0.9540633993	-2.6903154391
	Н	-0.6112141920	1.8773400404	-2.2576754472	Н	1.2592567904	-0.8083744784	-1.5270201350	Н	0.4406531178	0.5204487371	-2.9983729524
15A		Ru -0.03354	8 -0.265691 -0.0	000040		Ru 0.0247	732 -0.225495 -0.	000359		Ru 0.08742	1 -0.174500 -0.0	00021
		O -1.643586	5 -0.852959 0.00	00086		O -0.4935	54 1.428065 -0.0	000181		O -0.10657	0 1.602065 0.00	00012
		O 2.081126	5 0.052809 0.00	00057		O -1.8934	54 -0.272810 0.0	000828		O 1.85776	7 -0.414245 0.00	00053
		Н 2.660158	3 0.065947 0.78	34729		Н -1.6351	01 1.028132 0.0	000809		Н 0.63623	6 2.252548 0.00	00014
		Н 2.660224	0.066829 -0.78	84548		Н -2.6530	01 -0.894702 0.0	001565		Н 2.842064	4 -0.378788 0.00	00038
		N -0.691783	3 1.690190 0.00	00046		N 2.1107	0.034891 0.0	000744		N -2.01386	8 -0.364828 0.00	00048
		Н 0.071524	2.377711 0.00	00274		Н 2.6586	94 -0.836086 -0.0	043145		Н -2.43583	3 0.092308 -0.8	19505
		Н -1.286624	4 1.874974 -0.82	21085		Н 2.4253	90 0.606695 -0.7	796081		Н -2.36537	6 -1.331434 0.00	01346
		Н -1.287002	2 1.874799 0.82	20935		Н 2.4366	0.531446 0.8	342244		Н -2.43612	5 0.094611 0.8	18157

S5

Table S4. MRCI optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the (NH₃)RuO²⁺ + CH₄ \rightarrow CH₃Ru(NH₃)OH²⁺ reaction for the first singlet (1¹A), the first two triplet (1³A, 2³A), and the first quintet (1⁵A) states. Red data indicate DFT/MN15 optimized structures.

	Reactants	Transition State	Products
1 ¹ A	Ru -0.040324 -0.200994 0.000043	Ru 0.050451 0.184467 -0.333863	Ru -0.149179 -0.026381 0.248097
	O -0.552532 -1.663906 -0.000116	O -0.577353 1.155161 0.872497	O -1.619396 -0.481825 -0.521789
	C 2.008317 0.646889 -0.000013	C -1.519643 -1.119488 0.169185	C 0.474163 1.763699 -0.340487
	H 2.821283 1.386375 -0.000524	H -1.134740 -2.084047 0.489821	Н -0.424869 2.358483 -0.112727
	Н 1.487758 0.910933 -0.962530	Н -2.238701 -0.863843 1.016010	H 1.257203 1.952379 0.416314
	H 1.488188 0.911315 0.962550	Н -2.150467 -1.121272 -0.720164	H 0.828910 1.831655 -1.364726
	H 2.470160 -0.349874 0.000053	H -1.472633 0.048216 0.904730	Н -2.030864 -1.375598 -0.636893
	N -1.330144 1.456260 -0.000070	N 1.753382 -0.617558 0.456708	N 1.605049 -0.976315 -0.271482
	H -1.256415 2.062945 0.826300	H 2.543274 0.036250 0.361090	Н 1.665329 -1.902471 0.173659
	Н -1.258682 2.061001 -0.828048	Н 2.032171 -1.493723 -0.009534	H 2.460609 -0.479272 0.011081
	H -2.296663 1.097118 0.001788	H 1.664271 -0.839592 1.455992	Н 1.682406 -1.117809 -1.285352
1 ³ A	Ru -0.006891 -0.053439 -0.027547	Ru -0.044520 -0.278374 -0.328047	Ru -0.058321 0.044480 0.012115
	O -0.162735 -1.654383 0.052419	O 0.639746 -0.977343 1.055398	O -1.159304 1.390544 0.021887
	C 2.131642 0.690398 0.067797	C 1.376316 1.272644 0.036432	C -0.907555 -1.711322 -0.025818
	Н 3.047735 0.888166 -0.509106	Н 0.852336 2.195334 0.262872	Н -1.364923 -1.993582 -0.974467
	Н 1.987230 -0.376003 -0.283458	H 2.144368 1.156787 0.854461	Н 0.198637 -1.997100 0.015537
	Н 1.474268 1.484777 -0.365159	Н 1.960005 1.264336 -0.884698	H -1.430545 -1.998740 0.887118
	Н 2.320562 0.787457 1.133565	H 1.323146 0.181081 0.912170	Н -1.477176 2.268537 -0.288759
	N -1.891599 0.824879 0.036036	N -1.676392 0.710604 0.417030	N 2.018779 0.079074 -0.018034
	H -2.601366 0.089166 0.171132	Н -1.825777 1.641419 0.006352	Н 2.461697 -0.383202 0.786936
	H -2.019134 1.482243 0.816936	Н -1.594624 0.846170 1.432747	Н 2.331706 1.059787 0.014713
	Н -2.152862 1.314022 -0.830228	Н -2.541694 0.171995 0.269180	Н 2.435031 -0.322763 -0.868084

5A	Ru 0.000666 -0.1309	956 -0.001465	Ru	0.065536	-0.083867	0.000027	Ru	-0.058358	-0.217575	-0.000038
	O -0.164435 1.5624	484 0.000890	Ο	-0.699214	1.481772	-0.000021	0	-1.836730	-0.479462	-0.000070
	C 2.297195 -0.3027	/10 0.002764	С	-2.006242	-0.716800	-0.000031	С	-0.185809	1.813225	-0.000038
	Н 3.291787 0.1610	096 0.004629	Н	-2.025687	-1.302694	0.923443	Н	-0.755147	2.025586	0.911512
	Н 1.890619 0.1210	081 0.957184	Н	-2.899230	-0.053036	-0.000435	Н	0.833216	2.196881	-0.003445
	Н 2.400969 -1.3873	386 0.000885	Н	-2.025185	-1.303044	-0.923300	Н	-0.761731	2.026718	-0.907032
	Н 1.893530 0.1247	69 -0.951381	Н	-1.697583	0.674807	-0.000034	Н	-2.780024	-0.752178	0.000789
	N -2.079716 -0.3863	371 0.002653	Ν	2.219759	-0.187289	-0.000041	Ν	2.062488	-0.289242	0.000062
	Н -2.514137 0.0689	98 -0.812100	Н	2.608848	-1.138879	0.001521	Н	2.416908	-1.255188	0.000542
	Н -2.392091 -1.3656	550 -0.001724	Н	2.624149	0.286686	0.818485	Н	2.492851	0.156726	0.819531
	Н -2.509640 0.0601	31 0.824690	Н	2.623972	0.283936	-0.820241	Н	2.492944	0.155815	-0.819862

Table S5. Harmonic vibrational frequencies (cm⁻¹) of the reactants, transition state, and products of the $RuO^{2+} + H_2O \rightarrow Ru(OH)2^{2+}$ reaction for the first singlet (1¹A), the first two triplet (1³A, 2³A), and the first quintet (1⁵A) states.

	$1^{1}A$		1 ³ A			$2^{3}A$			1 ⁵ A		
Reactants	TS	Products	Reactants	TS	Products	Reactants	TS	Products	Reactants	TS	Products
72	1860 i	109	148	1972 i	136	140	2013 i	146		2198 i	72
140	497	502	310	481	440	223	415	502		409	140
509	643	506	518	583	518	491	537	571		488	509
543	700	694	520	685	693	530	554	722		701	543
728	837	694	775	817	772	729	766	733		884	728
1364	919	1024	1232	874	924	1269	949	926		890	1364
1730	1194	1039	1740	1202	942	1735	1158	960		926	1730
3723	1940	3482	3737	1911	3547	3742	1879	3549		1735	3723
3777	3686	3539	3798	3693	3589	3798	3833	3591		3513	3777

Table S6. Relative energies (kcal/mol) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products
(P) of the $RuO^{2+} + H_2O \rightarrow Ru(OH)_2^{2+}$ reaction at the MRCI+Q level of theory.

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A
ISR	0.0	5.4	5.4	5.6	5.6	14.4
R	-82.0	-77.3	-72.2	-64.2	-61.9	-62.3
TS	15.0	-1.5	5.4	12.9	14.7	-10.9
Р	-46.7	-41.6	-39.9	-23.1	-23.0	-43.2

Table S7. Relative energies (kcal/mol) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the $RuO^{2+} + CH_4 \rightarrow CH_3RuOH^{2+}$ reaction at the MRCI+Q level of theory.

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A
ISR	0.0	5.3	5.3	5.6	5.6	17.3
R	-54.0	-45.1	-39.5	-35.5	-35.3	-38.0
TS	8.5	-10.5	-1.8	1.1	2.9	-17.1
Р	-47.1	-55.5	-54.2	-41.1	-39.1	-63.3

Table S8. Relative energies (kcal/mol) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the (NH₃)RuO²⁺ + H₂O \rightarrow (NH₃)Ru(OH)₂²⁺ reaction at the MRCI+Q level of theory.

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A
ISR	0.0	2.4	6.8	12.7	14.7	11.4
R	-68.7	-69.2	-54.2	-51.4	-44.2	-46.5
TS	11.9	12.8	28.1	33.3	34.4	-0.5
Р	-22.4	-36.7	-22.2	-13.6	24.2	-16.8

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A
ISR	0.0	2.3	6.7	12.7	14.6	11.3
R	-38.0	-37.7	-22.8	-20.0	-10.2	-26.6
TS	13.2	0.1	25.1	34.3	37.3	9.9
Р	-32.9	-35.6	-21.3	-13.1	54	-38 5

Table S9. Relative energies (kcal/mol) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the (NH₃)RuO²⁺ + CH₄ \rightarrow CH₃Ru(NH₃)OH²⁺ reaction at the MRCI+Q level of theory.

Table S10. Exact energies (a.u.) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the RuO²⁺ + H₂O \rightarrow Ru(OH)²⁺ reaction at the MRCI and MRCI+Q level of theory.

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A
			MF	RCI		
ISR	-244.502443	-244.493964	-244.493964	-244.493292	-244.493292	-244.477352
R	-244.630369	-244.621782	-244.614656	-244.601977	-244.598529	-244.596052
TS	-244.461259	-244.488373	-244.478872	-244.465929	-244.462206	-244.501065
Р	-244.553702	-244.546184	-244.543935	-244.517322	-244.517263	-244.550714
			MRO	CI+Q		
ISR	-244.564284	-244.555690	-244.555690	-244.555322	-244.555322	-244.541330
R	-244.694912	-244.687418	-244.679383	-244.666579	-244.662869	-244.663619
TS	-244.540349	-244.566618	-244.555645	-244.543723	-244.540922	-244.581692
Р	-244.638714	-244.630594	-244.627879	-244.601053	-244.600983	-244.633119

Table S11. Exact energies (a.u.) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the RuO²⁺ + CH₄ \rightarrow CH₃RuOH²⁺ reaction at the MRCI and MRCI+Q level of theory.

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A
			MI	RCI		
ISR	-208.604547	-208.596120	-208.596120	-208.595460	-208.595460	-208.574370
R	-208.684690	-208.669183	-208.662141	-208.655782	-208.655501	-208.654128
TS	-208.574683	-208.602751	-208.587625	-208.584526	-208.578674	-208.610596
Р	-208.668188	-208.679952	-208.677997	-208.657380	-208.654561	-208.690273
			MRO	CI+Q		
ISR	-208.663369	-208.654852	-208.654852	-208.654495	-208.654495	-208.635858
R	-208.749482	-208.735183	-208.726377	-208.719888	-208.719594	-208.723960
TS	-208.649883	-208.680089	-208.666244	-208.661698	-208.658686	-208.690691
Р	-208.738349	-208.751783	-208.749703	-208.728871	-208.725639	-208.764162

Table S12. Exact energies (a.u.) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the (NH₃)RuO²⁺ + H₂O \rightarrow (NH₃)Ru(OH)₂²⁺ reaction at the MRCI and MRCI+Q level of theory.

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A
			MF	RCI		
ISR	-301.070002	-301.066127	-301.059329	-301.049913	-301.047193	-301.048856
R	-301.176904	-301.177752	-301.154587	-301.150227	-301.139561	-301.139179
TS	-301.037931	-301.033231	-301.011621	-301.002849	-301.000724	-301.057191
Р	-301.088622	-301.108703	-301.086789	-301.071191	-301.015724	-301.082875
			MRG	CI+Q		
ISR	-301.187481	-301.183689	-301.176703	-301.167229	-301.164098	-301.169309
R	-301.296893	-301.297743	-301.273835	-301.269427	-301.257926	-301.261646
TS	-301.168541	-301.167049	-301.142696	-301.134464	-301.132612	-301.188273
Р	-301.223098	-301.245920	-301.222875	-301.209066	-301.148912	-301.214181

Table S13. Exact energies (a.u.) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the (NH₃)RuO²⁺ + CH₄ \rightarrow CH₃Ru(NH₃)OH²⁺ reaction at the MRCI and MRCI+Q level of theory.

	1 ¹ A	1 ³ A	2 ³ A	3 ³ A	4 ³ A	1 ⁵ A	
	MRCI						
ISR	-265.174349	-265.170514	-265.163713	-265.154292	-265.151561	-265.153389	
R	-265.227561	-265.227278	-265.204282	-265.199566	-265.184784	-265.208548	
TS	-265.135088	-265.154127	-265.115606	-265.100147	-265.096119	-265.141236	
Р	-265.212967	-265.210997	-265.188307	-265.175521	-265.145640	-265.216733	
			MRO	CI+Q			
ISR	-265.287512	-265.283791	-265.276813	-265.267315	-265.264189	-265.269591	
R	-265.348068	-265.347533	-265.323789	-265.319449	-265.303692	-265.329893	
TS	-265.266514	-265.287437	-265.247554	-265.232781	-265.228058	-265.271815	
Р	-265.339898	-265.344204	-265.321455	-265.308362	-265.278920	-265.348874	

Table S14. Exact energies (a.u.) for the infinitely separated reactants (ISR) of the reactants (R), transition state (TS), and products (P) of the XRuO²⁺ + YH \rightarrow YRu(X)OH²⁺ reaction at the CCSD(T) level of theory.

	1 ¹ A	1 ³ A	1 ⁵ A	1 ¹ A	1 ³ A	1 ⁵ A
		X = -; Y = OH			$X = -; Y = CH_3$	
ISR	-244.5749255			-208.6701422		
R	-244.7106730	-244.7001351	-244.6842588	-208.7637864	-208.7444145	-208.7163370
TS	-244.5724776	-244.5818615	-244.6136832	-208.6728155	-208.6867639	-208.7207656
Р	-244.6722024	-244.6613484	-244.6693221	-208.7581151	-208.7523077	-208.7887866
		$X = NH_3; Y = OH$			$X = NH_3; Y = CH_3$	
ISR	-301.2238853			-265.3144507		
R	-301.3362557	-301.3367084	-301.3080580	-265.3886576	-265.3614680	-265.3739840
TS	-301.2188972	-301.2227299	-301.2465957	-265.3159530	-265.3414687	-265.3272720
Р	-301.2796162	-301.3022620	-301.2913600	-265.3874629	-265.3724662	-265.4068038

Table S15	• Exact energies	(a.u.) for the inf	initely separated	l reactants (ISR) of the reactants	(R), transiti	on state (TS)	, and products (P)
of the XRu	$O^{2+} + CH_4 \rightarrow C$	$H_3Ru(X)OH^{2+} r$	eaction at the CC	CSD(T)-augC le	vel of theory.				

	1 ¹ A	1 ³ A	1 ⁵ A
		X = -	
ISR	-208.6720467		
R	-208.7663032	-208.7467935	-208.7190143
TS	-208.6754932	-208.6894369	-208.7233003
Р	-208.7608192	-208.7548517	-208.7915169
		$X = NH_3$	
ISR	-265.3163526		
R	-265.3911946	-265.3638160	-265.3764693
TS	-265.3187278	-265.3442258	-265.3299934
Р	-265.3905507	-265.3749225	-265.4097347

Table S16. MN15 optimal geometries (Cartesian coordinates in Å) of the reactants, transition state, and products of the $RuO^{2+} + H_2O \rightarrow Ru(OH)2^{2+}$ reaction for the first singlet (1¹A) state.

	Reactants	Transition State	Products		
1 ¹ A	Ru 0.158460 -0.152944 -0.000573	Ru 0.409937 -0.146218 0.000531	Ru 0.000000 -0.000000 0.000765		
	O 1.543211 0.512506 0.002046	O -0.376386 1.330051 0.026746	O 0.000000 1.687263 -0.001315		
	O -1.823637 0.221037 0.000659	O -1.446946 -0.497882 -0.084729	O -0.000000 -1.687263 -0.001315		
	Н -2.366403 0.421207 0.798922	Н -1.470583 0.855858 -0.073937	Н -0.000035 2.689552 -0.006313		
	Н -2.362441 0.439968 -0.795336	Н -1.979994 -1.079601 0.514426	Н 0.000035 -2.689552 -0.006313		

Table S17. CCSD(T)//MN15 and CCSD(T)//MRCI energetics for the lowest singlet state along the $RuO^{2+} + H_2O \rightarrow Ru(OH)_2^{2+}$ reaction coordinate. ISR = infinitely separated reactants; R = reactants (interacting complex); TS = transition state; P = products.

	Exact	energy	Relative	Difforonco	
	CCSD(T)//MRCI	CCSD(T)//MN15	CCSD(T)//MRCI	CCSD(T)//MN15	Difference
ISR	-244.5749248	-244.5752983	0.00	0.00	0.00
R	-244.7106696	-244.7132450	-85.18	-86.56	-1.38
TS	-244.5719219	-244.5701173	1.88	3.25	1.37
Р	-244.6722055	-244.6741879	-61.04	-62.05	-1.01