Supporting Information Available

Fluorescent 2-(pyridin-2-yl)vinyl pyridine dyes and their thermo-controlled release

Agnieszka Witkowska¹, Jolanta Brzezinska¹, Tomasz Pędziński², Marcin K. Chmielewski^{1,3}*

¹Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland

²University of Adam Mickiewicz, Faculty of Chemistry, Umultowska 89B, 61-614 Poznań, Poland ³FutureSynthesis sp. z o.o., ul. Rubież 46H, 61-612 Poznań

Table of Contents:

(1)	Optimization of Heck cross-coupling reaction	S2
(2)	Time and temperature dependance of PvP releasing	
(3)	PvP releasing form labeled oligomer	S6
(4)	X-ray crystallographic data	S7-S9
(5)	¹ H, ¹³ C, ¹⁹ F, ³¹ P NMR and MS spectra	S10-S68
(6)	Absorption and emission spectra of fluorescent compounds	S69-S90

Optimization of Heck cross-coupling reaction

Table S1. Optimizing the Heck cross-coupling between 1 and 2

Entra	PdCl ₂	Pd(OAc)₂	K ₂ CO ₃	NaOAc	Cs ₂ CO ₃	TBAB	DMF/H ₂ O	20 PPh ₃ [mol %] 2 2 2 2 2 2 - - - - - - - - - - - - -		Yield
Entry	[mol %]	[mol %]	[mmol]	[mmol]	[mmol]	[mmol]	[v/v]	[mol %]	[°C]	[%]
1	1	-	2	-	-	5	3/0	2	80	18
2	1	-	2	-	-	1	3/0	2	80	16
3	1	-	2	-	-	1	3/0	2	120	-
4	1	-	2	-	-	1	8/0.8	2	120	-
5	5	-	2	-	-	1	8/0.8	-	120	23
6	2	-	2	-	-	1	2/1	-	120	22
7	2	-	2	-	-	1	2/1	-	140	27
8	2	-	-	1.5	-	1	0.5	-	120	20
9	-	2	-	1.5	-	1	0.5	-	120	38
10	-	2			-	1	-	-	120	-
11	-	2	-	1.5	-	1	1	-	120	40
12	-	A) 5 <i>,</i> B) 10	-	1.5	-	1	0.5	-	120	A)~38, B) 40
13	-	2	-	1.5	-	1	0.5	6	120	40
14	-	2	-	1.5	-	1	0.5	-	120	38
15	-	2			1.5	1	0.5	-	120	33
16	-				1.5	1	1	6	120	50-60
17	-	2			1.5	0.1	1	6	120	60

^aGeneral Conditions: unless otherwise stated, reactions were performed using 2-vinylpyridine (1.2 mmol), 2,6dibromopyridine (1.0 mmol), catalyst (1–5 mol%), base (1.5 mmol), TBAB (0.5–1 mmol) in 1.0 mL solvent, MW; ^bisolated yield. MW = microwave heating. TBAB = tetrabutylammonium bromide. DMF = N,N-dimethylformamide.

	Retention time [min.]
Compound 11	13.5
Compound 12	9.6
Compound 10	8.5

Table S2. Retention times of each compound mixture upon HPLC analysis.

Figure S1. HPLC Chromatograms – thermal releasing of 11

1. <u>Temperature dependance</u>

Probe 11 - heated for 2h in 40°C

Probe 11 - heated for 2h in 50°C

Probe 11 - heated for 2h in 60°C

2. <u>Time dependance</u>

Probe 11 – heated 5 min. in 90°C

Probe 11 - heated 10 min. in 90°C

Probe 11 - heated 15 min. in 90°C

Table S3. Retention times of each compoun	d in the reaction mixture	during dye removal.
---	---------------------------	---------------------

Compound	R _t [min.]
Labeled oligonucleotide (15)	14.49
5'-monophosphate oligonucleotide (16)	12.57
Cyclic form of dye (12)	22.64-24.52

Figure S2. HPLC Chromatograms depicting thermal releasing of **12** from oligonucleotide 5'monophosphate. We observed total dye removal after 4 hours of heating the probe in 90°C, appearing as a new signal with different retention time and without any fluorescence emission on FLD detector (**16**).

X-ray crystallographic data

Data collections were performed with the wavelength of 0.8943 Å at 100 K on a P13 beamline of the EMBL facility localized in DESY, Hamburg, Germany. Corrections for Lorentz-polarization effect and for absorption were used. Unit cell parameters were determined by a least-square fit of 2567 reflections of highest intensity, chosen from the whole experiment. SIR92 [1] was used for structures solution. Refinement with the full-matrix procedure on F^2 was carried out in SHELXL97 [2]. The function $\Sigma w(|F_0|^2 - |F_c|^2)^2$, where $w^{-1} = [\sigma^2(F_0)^2 + A \cdot P^2 + B \cdot P)$ and $P = [Max (F_0^2, 0) + 2F_c^2]/3$, was minimized. All non-hydrogen atoms we refined anisotropically, while positions of hydrogen atoms were fpund on the difference electron density map. Crystallographic date (without structure factors) has been deposited with the Cambridge Crystallographic Data Centre, No. CCDC-1916777. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK. FAX: +44(1223)336-033, email: deposit@ccdc.cam.ac.ul or www.ccdc.cam.ac.uk.

[1]A. Altomare, G. Cascarano, C. Giacovazzo & A. Gualardi, *J. Appl. Cryst.*, 26, 343. 1993
[2] G. M. Sheldrick, *Acta Cryst.* A64, 112, 2008.

Single crystals suitable for X-ray crystallography were obtained by diffusion of **5b** in DCM and slow evaporation of the solvent. Afterward, the probe was kept in a refrigerator for crystallization. Thin crystals were obtained within a night.

	5b
Empirical formula	C ₁₅ H ₁₇ N ₃ O
Formula weight	255.31
T [K]	100
λ [Å]	0.89429
Crystal system	Monoclinic
Space group	$P2_1/c$
F(000)	544
μ [mm ⁻¹]	0.08
Z	4
a [Å]	12.880 (3)
b [Å]	16.510 (3)
c [Å]	6.395 (1)
β [°]	99.631 (30)
V [Å ³]	1340.72
$\rho_{calc} [g \text{ cm}^{-3}]$	1.265
Collected data	2797
Unique data / R _{int}	2690
No. of parameters	240
Goof	1.166
$R / wR^2 (I > 4\sigma)$	0.0413 / 0.1053
$\mathbf{R} / \mathbf{w} \mathbf{R}^2$ (all data)	0.0459 / 0.1317
Largest diff. peak/holes [e Å ⁻³]	0.29 / -0.29

Table S4. X-ray crystallographic data and refinement statistics

Figure S3. Thermal ellipsoid plot of the atom numbering-scheme of 5b. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure S4. Thermal ellipsoid plot of the intermolecular hydrogen bonds (blue lines) between two symmetry-related molecules A and B. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Mass Spectrum SmartFormula Report

Analysis Info

Acquisition Date 3/10/2017 3:16:30 PM Analysis Name D:\Data\Lukasz\kuba zlecone\AW20probkapost.d Method ewelina.m Operator **Bruker Customer** Sample Name DMSO Instrument / Ser# micrOTOF-Q 128 Comment

Acquisition Parameter

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\Lukasz\kuba zlecone\AW20_NAFT.d ewelina.m DMSO

Acquisition Date

3/10/2017 12:31:50 PM

128

Operator **Bruker Customer** Instrument / Ser# micrOTOF-Q

Acquisition Pa	arameter													
Source Type Focus Scan Begin Scan End	ESI Not active 100 m/z 1200 m/z	lor Se Se	n Polarity t Capillary t End Plate (t Collision Ce	Offset ell RF	Positi 4500 -500 200.0	ive V V V Vpp		50 50 50 50	et Nebuli et Dry He et Dry Ga et Divert	izer eater as Valve		0.4 Ba 220 °C 4.0 l/m Waste	r ; iin	
Intens. 141. x10 ⁵ 0.8 0.6 0.4 0.2	226.9514	379.0422	498.8996					838.83	376		+M	IS, 0.1-	0.7min	#(10-78)
0.0	200	400		600)			800	,-	1	000	,		m/z
Mea: m/	s. # Formula /z		m/z	err [pp m]	Me an err [pp m]	rdb	N- R ul e	e Conf	mSi gma	Std I	St d Me an m/ z	St d I Va rN or m	St d m/ z Dif f	Std Com b Dev
379.042	22 1 C 18 H 17 Br	N 2 Na O	379.0416	-1.6	-0.9	10.5	ok	even	21.3	22.7	0.7	7.7	1.3	842.7

S27

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\Lukasz\kuba zlecone\AW2p.d ewelina.m DMSO

Acquisition Date

3/10/2017 1:08:52 PM

128

Operator **Bruker Customer** Instrument / Ser# micrOTOF-Q

Acquisition Par	ameter												
Source Type Focus Scan Begin Scan End	ESI Not active 100 m/z 1200 m/z	lon Polarity Set Capilla Set End Pla Set Collisio	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			Positive 4500 V -500 V 200.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve			ar C min e	
Intens. x10 ⁵ 2.0 1.5 1.0			261.00	35						262.0	055	+MS, C	9.5min #62
0.0 260.00	260.25 260.5	0 260.75	261.00	0	261.25	5	261.50	26	1.75	262.0	0000 DO	262.2	, , , , 5 m/z
Meas m/z	. # Formula z	m/z	err [pp m]	Mea n err [pp m]	rdb	N- Ru Ie	e Conf	mSi gma	Std I	Std Me an m/z	Std I Var Nor m	Std m/z Diff	Std Comb Dev
261.003	5 1 C 12 H 10 Br N	2 261.0022	-5.0	-4.5	8.5	ok	even	12.9	14.3	1.3	4.9	1.0	842.7

Bruker Compass DataAnalysis 4.0

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\Lukasz\kuba zlecone\alkohol_3_1p.d ewelina.m DMSO

Acquisition Date

3/10/2017 12:38:10 PM

128

Operator **Bruker Customer** Instrument / Ser# micrOTOF-Q

Acquisition Para	meter													
Source Type Focus Scan Begin Scan End	ESI Not active 100 m/z 1200 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			Positiv 4500 V -500 V 200.0 V	e ∕ ∕pp		Set N Set D Set D Set D	ebulizer ry Heate ry Gas ivert Val	er ve	0.4 E 220 4.0 l/ Was			
Intens x10 ⁵ 4 3 2 1	226.94	171	242.12	277				264.1058			220		+MS,	0.8min #94
210	220	230	240		200		200	_	270		200		290	111/2
Meas. m/z	# Formula		m/z	err [pp m]	Me an err [pp m]	rdb	N- Ru Ie	e Conf	mSi gma	Std I	Std Me an m/z	Std I Var Nor m	Std m/z Diff	Std Comb Dev
242.1277	1 C 14 H 16	N 3 O	242.1288	4.6	6.5	8.5	ok	even	24.0	42.0	1.9	17.0	2.5	842.7

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

Name D:\Data\Lukasz\kuba zlecone\alkohol_5_1p.d ewelina.m Name DMSO

Acquisition Date 3/1

ate 3/10/2017 3:32:25 PM

Operator Bruker Customer Instrument / Ser# micrOTOF-Q 1

Ser#	micrOTOF-Q	128

Acquisitio	on Para	mete	ər													
Source Type E Focus N Scan Begin 1 Scan End 1		ESI Not active 100 m/z 1200 m/z		lon Polarit Set Capilla Set End P Set Collisi	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			re / / Vpp		Set N Set D Set D Set D	lebulizer Pry Heate Pry Gas Pivert Valv	r ve	0.4 E 220 ° 4.0 I/ Wasi	0.4 Bar 220 °C 4.0 I/min Waste		
Intens. x10 ⁵ 5 4 3 2 1	158.9	609	256.1433	3	37										+MS, (0.4min #46
0		200	0		400		600		1	80	0	I	1000		1	m/z
	Meas. m/z	#	Formul	а	m/z	err [pp m]	Me an err [pp m]	rdb	N- Ru Ie	e Conf	mSi gma	Std I	Std Me an m/z	Std I Var Nor m	Std m/z Diff	Std Com b Dev
25	56.1433	1	C 15 H	18 N 3 O	256.1444	4.3	8.8	8.5	ok	even	75.9	123.9	3.1	49.3	4.8	842.7

S49

aw16 18 T: FTMS	0516122613 #3-3 + p NSI Full ms [16	11 RT: 0.01-0.72 6 7000-2500.000	2 AV: 309 0] 346 C H	NL: 5.62E9 1914 24 O N 3								
100 95 90 85 75 70 65 60 15 10 10 10 10 10 10 10 10 10 10 10 10 10	344.2290 C ₂₄ H ₂₆ O N 81.7886 ppm	345.1799 C ₂₂ H ₂₃ O N ₃ -10.5049 ppm	-0.012 -0.012	29 ppm 347 C ₂₂ H -17.18 347.0246 347.0246	1932 25 O N3 96 ppm	348.1961 C ± H ± 0 N ± -31.3689 ppm 348.3531	349 2016	350.2101 C 25 H20 O N 160.4701 ppm	3512442 C25H21ON 234.6510 ppm	352.1827 C 25 H22 O N 37.1016 ppm	262	
	344	345	346	347		348	349 m/z	350	351	352	353	354

S62

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\Lukasz\kuba zlecone\weglan_5_1.d ewelina.m DMSO

Acquisition Date

3/10/2017 1:41:26 PM

128

Operator **Bruker Customer** Instrument / Ser# micrOTOF-Q

Acquisitio	on Paran	nete	er												
Source Type Focus Scan Begin Scan End		E N 1	ESI Not active 100 m/z 1200 m/z	lon Polarity Set Capillar Set End Pla Set Collisio	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			Positive 4500 V -500 V 200.0 Vpp			oulizer Heater Gas ert Valve	9	0.4 Bar 220 °C 4.0 I/min Waste		
Intens. x10 ⁵ 3 2 1	135.0903	2	38.1350		566.22	248 600			800			+	MS, 0.1	-1.3mir	, #(11-155) , m/z
	Meas. m/z	#	Formula	m/z	err [pp m]	Me an err [pp m]	rdb	N- Ru Ie	e Conf	mS igm a	Std I	Std Me an m/z	Std I Var Nor m	Std m/z Diff	Std Com b Dev
56	56.2248	1	C 28 H 32 N 5 O 8	566.2245	-0.5	0.2	15.5	ok	even	6.5	12.9	0.7	5.3	1.8	842.7

S88

