Supporting Information

In Situ Atomic-Scale Study on the Ultralarge Bending Behaviors of TiO₂-B/Anatase Dual-Phase Nanowires

Qiong Liu,^a Haifei Zhan,^a Huaiyong Zhu,^a Hongwei Liu,^b Ziqi Sun,^a John Bell^a, Arixin Bo^{a*} and Yuantong Gu^{a*}

^aSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, 4001, Brisbane, QLD, Australia.

^bAustralian Centre for Microscopy and Microanalysis and School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia

Supporting movie information

Movie S1. In situ TEM bending test of a TiO₂-B/anatase dual-phase nanowire.

Supporting figures information

Figure S1. Observation of the phase transition with the bending strain increasing from 2.5% to 4.2%. (a) and (c) HRTEM images showing the lattice revolution of a mixed-phase area with the bending strain increasing from 2.5% to 4.2%, respectively. Scale bars: 2 nm. (b) and (d) The FFT patterns corresponding to the same region in the square box in (a) under the bending strains of 2.5% and 4.2%, respectively.

Figure S2. TB behaviors of a bending $TiO_2 NW$ viewed along the [001] zone axis of TiO_2 -B. (a) low-magnified and (b) HRTEM images of the NW before bent. (c) low-magnified and (d) HRTEM images of the same NW after bent. Scale bars: 200 nm in (a) and (c), 2 nm in (b) and (d).

Figure S3. Dislocation patterns of the bent NW with a bending strain of 20.3%. (a,b) HRTEM images corresponding to the compressive and tensile regions of the framed area in the inset of (a), respectively. Scale bars: 5 nm in (a) and (b), 100 nm in the inset of (a).