Supporting Information for Monte Carlo Secondand Third-Order Many-Body Green's Function Methods with Frequency-Dependent, Non-Diagonal Self-Energy

Alexander E. Doran and So Hirata*

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,

USA

E-mail: sohirata@illinois.edu

1 Integrand of the third-order self-energy

The integrand of the third-order self-energy is

$$f_{pq}^{(3)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4, \mathbf{r}_5, \mathbf{r}_6, \tau_1, \tau_2, \omega) = \sum_{n=1}^{84} f_{pq}^{(3:n)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4, \mathbf{r}_5, \mathbf{r}_6, \tau_1, \tau_2, \omega),$$
(1)

where

$$f_{pq}^{(3:n)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4, \mathbf{r}_5, \mathbf{r}_6, \tau_1, \tau_2, \omega) = \frac{\bar{f}_{pq}^{(3:n)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4, \mathbf{r}_5, \mathbf{r}_6, \tau_1, \tau_2, \omega)}{r_{12}r_{34}r_{56}}$$
(2)

and r_{12} is the distance between \mathbf{r}_1 and \mathbf{r}_2 . The terms, $\bar{f}_{pq}^{(3:n)}$, with the arguments omitted for brevity are

$$\bar{f}_{pq}^{(3:1)} = -G^{+}(\mathbf{r}_{2}, \mathbf{r}_{6}, \tau_{1} + \tau_{2})G^{+}(\mathbf{r}_{4}, \mathbf{r}_{5}, \tau_{1})G^{-}(\mathbf{r}_{3}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{1}, -\tau_{1} - \tau_{2})G^{-}(\mathbf{r}_{6}, \mathbf{r}_{4}, -\tau_{1})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega\tau_{2}}$$

$$\begin{split} \tilde{f}_{pq}^{132} &= G^{*}(\mathbf{r}_{2},\mathbf{r}_{4},\tau_{2})G^{*}(\mathbf{r}_{3},\mathbf{r}_{6},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{5},\tau_{1})-\tau_{1}-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\ \tilde{f}_{pq}^{133} &= -G^{*}(\mathbf{r}_{2},\mathbf{r}_{5},\tau_{1}+\tau_{2})G^{*}(\mathbf{r}_{3},\mathbf{r}_{6},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{1},-\tau_{1}-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\ \tilde{f}_{pq}^{133} &= -G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{2},-\tau_{1}-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\ \tilde{f}_{pq}^{135} &= 2G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{1},-\tau_{1}-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\ \tilde{f}_{pq}^{136} &= -2G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{4},\mathbf{r}_{6},\tau_{1})G^{-}(\mathbf{r}_{3},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{1},-\tau_{1}-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\ \tilde{f}_{pq}^{136} &= 2G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{4},\mathbf{r}_{6},\tau_{1})G^{-}(\mathbf{r}_{3},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\ \tilde{f}_{pq}^{138} &= 2G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{4},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{3},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\ \tilde{f}_{pq}^{1310} &= 2G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{4},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{3},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{1})e^{-\omega r_{2}},\\\\ \tilde{f}_{pq}^{1310} &= G^{+}(\mathbf{r}_{1},\mathbf{r}_{5},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{4},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{1})\phi_{q}(\mathbf{r}_{3})e^{\omega r_{2}},\\\\ \tilde{f}_{pq}^{13131} &= G^{+}(\mathbf{r}_{$$

$$\begin{split} \tilde{f}_{pq}^{3(2)} &= -G^*(\mathbf{r}_2,\mathbf{r}_3,\tau_2)G^*(\mathbf{r}_4,\mathbf{r}_5,\tau_1)G^-(\mathbf{r}_3,\mathbf{r}_1,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_4,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_2,-\tau_1-\tau_2)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(2)} &= G^*(\mathbf{r}_2,\mathbf{r}_6,\tau_1+\tau_2)G^-(\mathbf{r}_3,\mathbf{r}_1,-\tau_2)G^-(\mathbf{r}_4,\mathbf{r}_2,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_4,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_3,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(2)} &= -G^*(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_4,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_3,\mathbf{r}_1,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_3,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_3,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(2)} &= -G^*(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_4,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_3,\mathbf{r}_1,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_3,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_1,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(2)} &= -2G^+(\mathbf{r}_2,\mathbf{r}_6,\tau_1+\tau_2)G^-(\mathbf{r}_3,\mathbf{r}_1,-\tau_2)G^-(\mathbf{r}_4,\mathbf{r}_2,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_3,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_4,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(2)} &= 2G^+(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_4,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_3,\mathbf{r}_1,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_3,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_4,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(2)} &= 2G^+(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_4,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_3,\mathbf{r}_1,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_3,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_4,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(20)} &= 2G^+(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_4,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_4,\mathbf{r}_2,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_3,-\tau_1)G^-(\mathbf{r}_6,\mathbf{r}_3,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(30)} &= 2G^+(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_4,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_4,\mathbf{r}_2,-\tau_2)G^-(\mathbf{r}_5,\mathbf{r}_1,-\tau_1-\tau_2)G^+(\mathbf{r}_6,\mathbf{r}_3,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(30)} &= -4G^+(\mathbf{r}_1,\mathbf{r}_3,\tau_2)G^+(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_3,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_4,\mathbf{r}_2,-\tau_2)G^-(\mathbf{r}_6,\mathbf{r}_4,-\tau_1)\phi_p^*(\mathbf{r}_5)\phi_q(\mathbf{r}_1)e^{-i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(30)} &= -G^+(\mathbf{r}_1,\mathbf{r}_3,\tau_2)G^+(\mathbf{r}_2,\mathbf{r}_4,\tau_2)G^+(\mathbf{r}_3,\mathbf{r}_6,\tau_1)G^-(\mathbf{r}_4,\mathbf{r}_2,-\tau_2)G^-(\mathbf{r}_6,\mathbf{r}_4,-\tau_1)\phi_p^*(\mathbf{r}_1)\phi_q(\mathbf{r}_5)e^{i\phi(\mathbf{r}_1+\tau_2)}, \\ \tilde{f}_{pq}^{3(32)} &= -G^+(\mathbf{r}_$$

$$\begin{split} \vec{f}_{pq}^{1340} &= 4G^{*}(\mathbf{r}_{1}, \mathbf{r}_{5}, \tau_{1} + \tau_{2})G^{*}(\mathbf{r}_{2}, \mathbf{r}_{4}, \tau_{2})G^{*}(\mathbf{r}_{3}, \mathbf{r}_{6}, \tau_{1})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{6}, \mathbf{r}_{3}, -\tau_{1})\phi_{p}^{*}(\mathbf{r}_{1})\phi_{q}(\mathbf{r}_{3})e^{o(\mathbf{r}_{1}+\mathbf{r}_{2})}, \\ \vec{f}_{pq}^{1341} &= -G^{+}(\mathbf{r}_{1}, \mathbf{r}_{4}, \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{6}, \tau_{1} + \tau_{2})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{1}, -\tau_{1} - \tau_{2})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{3})e^{o(\mathbf{r}_{1}+\mathbf{r}_{2})}, \\ \vec{f}_{pq}^{1343} &= -G^{+}(\mathbf{r}_{1}, \mathbf{r}_{3}, \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{6}, \tau_{1} + \tau_{2})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{4}, -\tau_{1})G^{-}(\mathbf{r}_{6}, \mathbf{r}_{1}, -\tau_{1} - \tau_{2})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{3})e^{-ovr_{1}}, \\ \vec{f}_{pq}^{1343} &= -G^{+}(\mathbf{r}_{1}, \mathbf{r}_{3}, \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{3}, \tau_{2})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{1}, -\tau_{1} - \tau_{2})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{3})e^{-ovr_{1}}, \\ \vec{f}_{pq}^{1344} &= -G^{+}(\mathbf{r}_{1}, \mathbf{r}_{5}, \tau_{1} + \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{3}, \tau_{2})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{1}, -\tau_{1} - \tau_{2})G^{-}(\mathbf{r}_{6}, \mathbf{r}_{4}, -\tau_{1})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{3})e^{-ovr_{1}}, \\ \vec{f}_{pq}^{1345} &= 2G^{+}(\mathbf{r}_{1}, \mathbf{r}_{3}, \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{4}, \tau_{2})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{1}, -\tau_{1} - \tau_{2})G^{-}(\mathbf{r}_{6}, \mathbf{r}_{4}, -\tau_{1})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{3})e^{-ovr_{1}}, \\ \vec{f}_{pq}^{1346} &= 2G^{+}(\mathbf{r}_{1}, \mathbf{r}_{3}, \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{4}, \tau_{2})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{2}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{1}, -\tau_{1} - \tau_{2})G^{-}(\mathbf{r}_{6}, \mathbf{r}_{3}, -\tau_{1})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{3})e^{-ovr_{1}}, \\ \vec{f}_{pq}^{1349} &= 2G^{+}(\mathbf{r}_{1}, \mathbf{r}_{5}, \tau_{1} + \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{4}, \tau_{2})G^{-}(\mathbf{r}_{4}, \mathbf{r}_{1}, -\tau_{2})G^{-}(\mathbf{r}_{5}, \mathbf{r}_{3}, -\tau_{1})G^{-}(\mathbf{r}_{6}, \mathbf{r}_{2}, -\tau_{1} - \tau_{2})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{3})e^{-ovr_{1}}, \\ \vec{f}_{pq}^{1349} &= 2G^{+}(\mathbf{r}_{1}, \mathbf{r}_{6}, \tau_{1} + \tau_{2})G^{+}(\mathbf{r}_{2}, \mathbf{r}_{6}, \tau_{1} + \tau_{2})G^{-}(\mathbf{r}_{4},$$

$$\begin{split} \tilde{f}_{pq}^{3399} &= -2G^{+}(\mathbf{r}_{1},\mathbf{r}_{4},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{1},-\tau_{1}-\tau_{2})\phi_{p}^{+}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{5})e^{\omega\tau_{1}},\\ \tilde{f}_{pq}^{3369} &= 4G^{+}(\mathbf{r}_{1},\mathbf{r}_{4},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{+}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{5})e^{\omega\tau_{1}},\\ \tilde{f}_{pq}^{3362} &= -2G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{6},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{3},-\tau_{1})\phi_{p}^{+}(\mathbf{r}_{1})\phi_{q}(\mathbf{r}_{1}),\\ \tilde{f}_{pq}^{3363} &= -4G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{3},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{+}(\mathbf{r}_{1})\phi_{q}(\mathbf{r}_{1}),\\ \tilde{f}_{pq}^{33641} &= 4G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{3},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{4},-\tau_{1}-\tau_{2})\phi_{p}^{+}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{3}),\\ \tilde{f}_{pq}^{33661} &= -2G^{+}(\mathbf{r}_{1},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{5},\tau_{1}+\tau_{2})G^{-}(\mathbf{r}_{4},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{+}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{3}),\\ \tilde{f}_{pq}^{3366} &= 2G^{+}(\mathbf{r}_{1},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{5},\tau_{1}+\tau_{2})G^{-}(\mathbf{r}_{4},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{+}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{3}),\\ \tilde{f}_{pq}^{3369} &= 2G^{+}(\mathbf{r}_{1},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{-}(\mathbf{r}_{4},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{+}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{3}),\\ \tilde{f}_{pq}^{3369} &= 2G^{+}(\mathbf{r}_{1},\mathbf{r}_{3},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{-}(\mathbf{r}_{3},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{+}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{3}),\\ \tilde{f}_$$

$$\begin{split} \bar{f}_{pq}^{(3;78)} &= G^{+}(\mathbf{r}_{1},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{4},\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{5},\mathbf{r}_{1},-\tau_{1}-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{4}), \\ \bar{f}_{pq}^{(3;79)} &= 2G^{+}(\mathbf{r}_{1},\mathbf{r}_{5},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{-}(\mathbf{r}_{3},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{4}), \\ \bar{f}_{pq}^{(3;80)} &= -2G^{+}(\mathbf{r}_{1},\mathbf{r}_{4},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{5},\tau_{1})G^{-}(\mathbf{r}_{5},\mathbf{r}_{1},-\tau_{1}-\tau_{2})G^{-}(\mathbf{r}_{6},\mathbf{r}_{2},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{3})\phi_{q}(\mathbf{r}_{4}), \\ \bar{f}_{pq}^{(3;81)} &= G^{+}(\mathbf{r}_{1},\mathbf{r}_{3},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{4},\tau_{2})G^{+}(\mathbf{r}_{4},\mathbf{r}_{6},\tau_{1})G^{-}(\mathbf{r}_{3},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{1},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{6}), \\ \bar{f}_{pq}^{(3;82)} &= -G^{+}(\mathbf{r}_{1},\mathbf{r}_{4},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{-}(\mathbf{r}_{3},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{3},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{6}), \\ \bar{f}_{pq}^{(3;83)} &= -2G^{+}(\mathbf{r}_{1},\mathbf{r}_{3},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{4},\tau_{2})G^{+}(\mathbf{r}_{3},\mathbf{r}_{6},\tau_{1})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{1},-\tau_{1}-\tau_{2})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{6}), \\ \bar{f}_{pq}^{(3;84)} &= 2G^{+}(\mathbf{r}_{1},\mathbf{r}_{3},\tau_{2})G^{+}(\mathbf{r}_{2},\mathbf{r}_{6},\tau_{1}+\tau_{2})G^{-}(\mathbf{r}_{3},\mathbf{r}_{1},-\tau_{2})G^{-}(\mathbf{r}_{4},\mathbf{r}_{2},-\tau_{2})G^{-}(\mathbf{r}_{5},\mathbf{r}_{4},-\tau_{1})\phi_{p}^{*}(\mathbf{r}_{5})\phi_{q}(\mathbf{r}_{6}). \end{split}$$

2 Data for Table 4 of the Main Text

τ -Integration ^{<i>a</i>}	Molecule	Formula	$n_{\rm ele}{}^b$	$N_{\rm MC}{}^c$	Time	$\sigma^{2 d}$
MC	Methane	CH ₄	10	19393536	$1.393 \cdot 10^{5}$	$8.634 \cdot 10^{-1}$
MC	Propane	C_3H_8	26	1577984	$1.243 \cdot 10^{4}$	$5.536 \cdot 10^{1}$
MC	Benzene	C_6H_6	42	17617920	$1.400 \cdot 10^{5}$	$2.773 \cdot 10^{2}$
MC	Nonane	C_9H_{20}	74	1571840	$1.239\cdot 10^4$	$5.189 \cdot 10^{3}$
MC	Decane	$C_{10}H_{22}$	82	1555456	$1.237\cdot 10^4$	$6.280 \cdot 10^{3}$
MC	Pentacene	$C_{22}H_{14}$	146	17075200	$1.400 \cdot 10^{5}$	$8.417 \cdot 10^4$
Quadrature	Methane	CH_4	10	40960	$1.295 \cdot 10^{5}$	$4.442 \cdot 10^{-1}$
Quadrature	Propane	C_3H_8	26	35840	$1.175 \cdot 10^{5}$	$1.788\cdot 10^1$
Quadrature	Benzene	C_6H_6	42	38912	$1.293 \cdot 10^{5}$	$8.336 \cdot 10^{1}$
Quadrature	Nonane	$C_{9}H_{20}$	74	56320	$1.804 \cdot 10^{5}$	$1.647 \cdot 10^{3}$
Quadrature	Decane	$C_{10}H_{22}$	82	71680	$2.351 \cdot 10^{5}$	$3.176 \cdot 10^{3}$
Quadrature	Pentacene	$C_{22}H_{14}$	146	56320	$1.879 \cdot 10^{5}$	$1.173 \cdot 10^4$

Table 1: The number of Monte Carlo steps, variances (in E_h^2), and total simulation times (in seconds) of the MC-GF3 calculations used in Table 4.

^{*a*} 'MC' stands for the direct Monte Carlo integration, while 'quadrature' a 21-point Gauss–Kronrod quadrature.

^bThe number of electrons.

^{*c*}The number of Monte Carlo steps.

^dVariance of the diagonal element of the third-order self-energy matrix associated with the HOMO.

3 Data for Figures 5 and 6 of the Main Text

Molecule	Formula	$n_{\rm ele}{}^a$	N _{MC} ^b	σ^2 (diagonal) ^c	$\sigma^2 (\text{non-diagonal})^d$
Methane	CH ₄	10	6745088	$8.679 \cdot 10^{-1}$	$1.477 \cdot 10^{0}$
Acetylene	C_2H_2	14	6673408	$1.066 \cdot 10^{0}$	$1.417\cdot 10^0$
Ethylene	C_2H_4	16	6650880	$4.200 \cdot 10^{0}$	$4.502 \cdot 10^{0}$
Ethane	C_2H_6	18	5740544	$1.442 \cdot 10^1$	$2.690 \cdot 10^1$
Butadiyne	C_4H_2	26	5728256	$1.088 \cdot 10^{1}$	$1.722\cdot 10^1$
Propane	C_3H_8	26	5671936	$5.724 \cdot 10^1$	$6.691 \cdot 10^{1}$
Butadiene	C_4H_6	30	5680128	$6.190 \cdot 10^{1}$	$9.359 \cdot 10^{1}$
Butane	$C_{4}H_{10}$	34	5598208	$1.708 \cdot 10^{2}$	$2.052 \cdot 10^2$
Pentane	$C_{5}H_{12}$	42	5531648	$4.223 \cdot 10^{2}$	$5.330 \cdot 10^{2}$
Benzene	C_6H_6	42	5657600	$2.570 \cdot 10^{2}$	$8.888 \cdot 10^{3}$
Hexatriene	C_6H_8	44	5564416	$4.189 \cdot 10^{2}$	$1.076 \cdot 10^{3}$
Hexane	$C_{6}H_{14}$	50	6178816	$1.137 \cdot 10^{3}$	$2.096 \cdot 10^{3}$
Heptane	$C_{7}H_{16}$	58	6102016	$1.796 \cdot 10^{3}$	$3.306 \cdot 10^{3}$
Octane	$C_{8}H_{18}$	66	5965824	$3.173 \cdot 10^{3}$	$1.208\cdot 10^4$
Napthalene	$C_{10}H_8$	68	6147072	$2.076 \cdot 10^{3}$	$7.139 \cdot 10^{3}$
Nonane	C_9H_{20}	74	5856256	$5.153 \cdot 10^{3}$	$2.692 \cdot 10^4$
Decane	$C_{10}H_{22}$	82	5769216	$9.502 \cdot 10^{3}$	$4.667\cdot 10^4$
Anthracene	$C_{14}H_{10}$	94	5892096	$9.582 \cdot 10^{3}$	$7.081\cdot 10^4$
Naphthacene	$C_{18}H_{12}$	120	5569536	$2.501 \cdot 10^4$	$3.293 \cdot 10^5$
Pentacene	$C_{22}H_{14}$	146	5328896	$1.114 \cdot 10^{5}$	$7.458 \cdot 10^{6}$

Table 2: The variances (in E_h^2) of the MC-GF3/aug-cc-pVDZ calculations used in Figures 5 and 6.

^{*a*}The number of electrons.

^bThe number of Monte Carlo steps.

^cVariance of the binding energy of the HOMO within the diagonal, frequency-independent approximation.

^dVariance of the binding energy of the HOMO within the frequency-independent approximation.

Molecule	Formula	$n_{\rm ele}{}^a$	$N_{\rm MC}{}^b$	σ^2 (diagonal) ^c	$\sigma^2 (\text{non-diagonal})^d$
Methane	CH ₄	10	5783552	$8.371 \cdot 10^{0}$	$2.230 \cdot 10^{1}$
Acetylene	C_2H_2	14	7341056	$1.061 \cdot 10^{1}$	$1.406\cdot10^1$
Ethylene	C_2H_4	16	7264256	$4.010 \cdot 10^{1}$	$4.812 \cdot 10^1$
Ethane	C_2H_6	18	7151616	$1.006 \cdot 10^{2}$	$1.224 \cdot 10^{2}$
Butadiyne	C_4H_2	26	7207936	$6.601 \cdot 10^{1}$	$3.517 \cdot 10^{2}$
Propane	C_3H_8	26	6890496	$1.320 \cdot 10^{3}$	$2.871 \cdot 10^{3}$
Butadiene	C_4H_6	30	6868992	$6.291 \cdot 10^{2}$	$1.055 \cdot 10^{3}$
Butane	$C_{4}H_{10}$	34	6649856	$1.724 \cdot 10^{3}$	$3.744 \cdot 10^{3}$
n-Pentane	$C_{5}H_{12}$	42	6409216	$7.221 \cdot 10^{3}$	$1.322 \cdot 10^{4}$
Benzene	C_6H_6	42	5254144	$2.328 \cdot 10^{3}$	$6.264 \cdot 10^{3}$
Hexatriene	C_6H_8	44	6598656	$2.745 \cdot 10^{3}$	$7.579 \cdot 10^{3}$
Hexane	$C_{6}H_{14}$	50	6907904	$9.220 \cdot 10^{3}$	$1.126 \cdot 10^{5}$
n-Heptane	$C_{7}H_{16}$	58	6601728	$1.434\cdot 10^4$	$6.014 \cdot 10^{4}$
n-Octane	$C_{8}H_{18}$	66	6304768	$2.988\cdot 10^4$	$1.753 \cdot 10^{5}$
Napthalene	$C_{10}H_8$	68	6832128	$1.796 \cdot 10^{4}$	$1.421 \cdot 10^{5}$
Nonane	C_9H_{20}	74	6037504	$4.470\cdot 10^4$	$2.403 \cdot 10^{5}$
n-Decane	$C_{10}H_{22}$	82	5585920	$5.422\cdot 10^4$	$6.886 \cdot 10^{5}$
Anthracene	$C_{14}H_{10}$	94	6159360	$9.449\cdot 10^4$	$1.553 \cdot 10^{6}$
Naphthacene	$C_{18}H_{12}$	120	5321728	$2.879 \cdot 10^{5}$	$1.048 \cdot 10^{7}$
Pentacene	$C_{22}H_{14}$	146	3533824	$1.147 \cdot 10^{6}$	$6.014 \cdot 10^{7}$

Table 3: The same as Table 2, but with the aug-cc-pVTZ basis set.

^aThe number of electrons. ^bThe number of Monte Carlo steps.

^cVariance of the binding energy of the HOMO within the diagonal, frequency-independent approximation.

 d Variance of the binding energy of the HOMO within the frequency-independent approximation.