Supporting Information

An Efficient Synthetic Method to Prepare High-Performance Ni-rich LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ for Lithium-Ion Batteries

Binhua Huang ^{a,b}, Dongqing Liu ^{a,*}, Lihan Zhang ^{a,b}, Kun Qian ^{a,b}, Kai Zhou ^{a,b}, Xingke Cai ^c, Feiyu Kang ^{a,b}, and Baohua Li ^{a,*}

^a Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
 ^b School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 ^c Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China

* Corresponding Author

E-mail address: liu.dongqing@sz.tsinghua.edu.cn; libh@mail.sz.tsinghua.edu.cn

Figure S1. ICP-OES result for the chemical composition analysis of the as-prepared samples.

Figure S2. Cyclic voltammograms of RC-NCM and SD-NCM within the voltage window of 2.8-4.5 V at a sweep rate of 0.05 mVs⁻¹ for the 1st cycle.

The relationship of the cathodic and anodic peak current density (I_p) and the scan rate of CV $(v^{1/2})$ can be expressed by the following equation, from which the diffusion coefficient could be calculated as follows:

$$I_{p} = 2.69 \times 10^{5} \times n^{3/2} \times A \times D^{1/2} \times v^{1/2} \times C_{o}$$

where n is the numbers of electrons for specific electrochemical reactions, A is the area of the electrode (cm²), D is the diffusion coefficient of lithium (cm² s⁻¹), v is the scan rate (V s⁻¹), and C_o is the initial concentration of lithium ion (mol cm⁻³).

Samples	Method	Temperature (°C)	Capacity	Capacity	Electrochemical	References
Al ₂ O ₃ @	Coprecipitation	RT	195 (0.2 C)	87.5 (0.2 C, 100 cycles)	2.7-4.5	(1)
$Li[Ni_{0.8}Co_{0.2}]_{0.7}[Ni_{0.2}Mn_{0.8}]_{0.3}O_2$		55	205~210 (0.2 C)	89 (0.2 C, 50 cycles)		
Concentration gradient- LiNi0 _{.75} Co _{0.15} Mn _{0.15} O ₂	Coprecipitation	25	197.4 (0.2 C)	88.3 (0.2 C, 100 cycles)	2.7-4.5	(2)
$LiNi_{0.81}Co_{0.10}Al_{0.09}O_2$	Coprecipitation	24	188 (0.2 C)	85 (1 C, 200 cycles)	3.0-4.5	(3)
		60	206 (1 C)	59 (1 C, 200 cycles)		
LiNi _{0.72} Co _{0.10} Mn _{0.18} O ₂	Coprecipitation	25	190 (0.2 C)	85.7 (0.2 C, 100 cycles)	2.7-4.5	(4)
		55	218 (0.5 C)	70.2 (0.5 C, 100 cycles)		
Li ₂ MnO ₃ @LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	Coprecipitation	25	207 (0.1 C)	75 (0.1 C, 100 cycles)	2.0-4.5	(5)
LiAlO ₂ @LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	Spray drying	RT	177.6 (1C)	81.1 (1 C, 150 cycles)	2.8-4.5	
		55	181.7 (1C)	85.14 (1 C, 150 cycles)	2.8-4.3	(6)
$LiNi_{0.76}Mn_{0.14}Co_{0.10}O_{2}$	Coprecipitation	30	215 (0.1 C)	79.0 (0.33 C, 200 cycles)	2.7-4.5	(7)
		60	230 (0.2 C)	84.0 (0.5 C, 100 cycles)		
Core-Shell	Coprecipitation	25	116 (10 C)	73.7 (10 C, 200 cycles)	3.0-4.3	(8)
$LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$		55	181 (at 0.2 C)	65.1 (1 C, 100 cycles)		
LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	Coprecipitation	30	212 (0.5 C)	90 (0.5C, 100 cycles)	2.7-4.5	(9)
LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	Rapid coprecipitation with spray drying	25	190.5 (0.2 C)	86.0 (1 C, 200 cycles)	2.8-4.5	This work
		60	206.1 (at 0.2 C)	81.9 (1 C, 200 cycles)	2.8-4.3	

Table S1. Comparison of the electrochemical performance of Ni-rich NCM prepared via traditional methods and our method.

Samples	C 1s	O 1s	F 1s	Р 2р
RC-Before	65.10	17.99	16.75	0.16
RC-After	30.49	19.76	45.28	4.47
SD-Before	73.48	6.58	19.84	0.10
SD-After	59.47	14.85	24.32	1.36

Table S2. Atomic concentration of each element on the surface of the as-synthesized NCM materials before and after the cycling process.

Reference

(1) Liao, J.-Y.; Manthiram, A. Surface-Modified Concentration-Gradient Ni-Rich Layered Oxide Cathodes for High-Energy Lithium-Ion Batteries. *J Power Sources* **2015**, *282*, 429-436.

(2) Sun, Y. K.; Chen, Z.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries. *Nat. Mater.* **2012**, *11*, 942-947.

(3) Jo, M.; Noh, M.; Oh, P.; Kim, Y.; Cho, J. A New High Power LiNi_{0.81}Co_{0.1}Al_{0.09}O₂ cathode Material for Lithium-Ion Batteries. *Adv. Energy Mater.* **2014**, *4*, 1301583.

(4) Zheng, J.; Kan, W. H.; Manthiram, A. Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi_{0.8-X}Co_{0.1}Mn_{0.1+X}O₂ ($0.0 \le X \le 0.08$) Cathodes for Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2015**, *7*, 6926-6934.

(5) Yang, J.; Hou, M.; Haller, S.; Wang, Y.; Wang, C.; Xia, Y. Improving the Cycling Performance of the Layered Ni-Rich Oxide Cathode by Introducing Low-Content Li₂MnO₃. *Electrochim Acta* **2016**, *189*, 101-110.

(6) Du, K.; Xie, H.; Hu, G.; Peng, Z.; Cao, Y.; Yu, F. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al₂O₃. *ACS Appl. Mater. Interfaces* **2016**, *8*, 17713-17720.

(7) Zheng, J.; Yan, P.; Estevez, L.; Wang, C.; Zhang, J.-G. Effect of Calcination Temperature on the Electrochemical Properties of Nickel-Rich LiNi_{0.76}Mn_{0.14}Co_{0.10}O₂ Cathodes for Lithium-Ion Batteries. *Nano Energy* **2018**, *49*, 538-548.

(8) Li, Q.; Dang, R.; Chen, M.; Lee, Y.; Hu, Z.; Xiao, X. Synthesis Method for Long Cycle Life Lithium-Ion Cathode Material: Nickel-Rich Core-Shell LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂. *ACS Appl. Mater. Interfaces* **2018**, *10*, 17850-17860.

(9) Kim, J.-H.; Park, K.-J.; Kim, S. J.; Yoon, C. S.; Sun, Y.-K., A method of increasing the energy density of layered Ni-rich Li[Ni_{1-2x}Co_xMn_x]O₂ cathodes (x=0.05,0.1,0.2), *J. Mater. Chem. A* **2019**, *7*, 2694-2701.