Supporting Information

Hydrothermally Shape-Controlled Synthesis of TiO₂/Graphene for Fluoride Adsorption Studies

¹Sapna Nehra, Manjula Nair² and ^{1,3}Dinesh Kumar^{*}

¹Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India

²Heriot Watt University, Dubai Campus, UAE

School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India *Corresponding author's email: <u>dinesh.kumar@cug.ac.in</u>

2.2. Synthesis of GO

Basically, the modified Hummers methods was utilized for the synthesis for graphene oxide. Firstly, we have taken the 5 g of graphite powder than added 2.5 g of NaNO₃ further mix with the 60 ml of sulfuric acid in 5 L of conical flask with continues stirring in an ice bath containing the temperature around 10 °C for 30 min. consequently, added 15 g of KMnO₄ with slowly mixing for 3h. Further the homogenous solution was transferred over the water bath at 30 °C temperature for 1 h. Afterward 100 mL of distilled water was mixed carefully, the temperature of the mixture was kept under 60 °C for next 6 h till appearance of bright yellow color from the yellowish-brown color of solution. mixture. Then 30% of moderate H_2O_2 were added with continuous stirring for 2 h until superfluous potassium permanganate was eliminated. Obtained mixture was filtered through Whatman filter paper 42. Collected residue consecutively cleaned by 3% HCl and the distilled water till filtrate become free from the sulfate ions which confirmed by the barium chloride test. Obtained pure residue further dried by vacuum freeze-drying.

Figure S1. Flow chart of GO synthesis.

Figure S2. IPD and elovich kinetics models at three concentration 10, 20, 30 mg/L at different temperatures 308, 303, 298 K (a-f).

Component	CAS Reg.	Suppliers	Purity	Purification method
	No.			
Titanium	7550-45-0	Sigma Aldrich	99 %	None
chloride		Chemicals Private		
		Limited		
Graphite	7782-42-5	Sigma Aldrich	-	None
powder		Chemicals Private		
		Limited		
Sodium	7681-49-4	Sigma Aldrich	99 %	None
fluoride		Chemicals Private		
		Limited		
Hydrochloric	7647-01-0	Sigma Aldrich	30-35 %	None
acid	/01/ 01 0	Chemicals Private	50 55 70	TUNE
delta		Limited		
Ethanol	64-17-5	Sigma Aldrich	99.5 %	None
solution		Chemicals Private		
		Limited		

Table S1. Detail of Chemicals, CAS Reg. No. and Suppliers

	C1S scan		
Bonding	Peak position	Area	% concentration
Pristine GO	I can position	/ II cu	
C-C	284.03	4009.1	35.70
C-0	286.56	2805.1	24.98
C=0	288.10	4198.2	37 38
O=C-O	289 50	217.7	1 94
TiO2-GO before	207.50	217.7	1.91
C-C	284 90	625.9	59.81
C-0	286.40	332.4	21.85
C=0	289 37	563.3	37.02
TiO ₂ -GO after			01102
C-C	283.95	2103.0	41.14
C-0	285.26	348.2	9.90
C=O	287.39	1065.3	30.29
	O1S scan		
Pristine GO			
O=C-OH	531.85	2151.1	81.64
C-OH	530.86	326.8	12.40
C=O	533.74	156.9	5.95
TiO ₂ -GO before			
M-O ₂ -	529.36	6481.4	48.06
Ti-O-Ti	530.25	3898.1	35.64
H ₂ O	532.52	244.3	2.23
Ti-OH	314.0	531.76	14.41
TiO ₂ -GO after			
$M-O_2^-$	530.01	4948.9	35.67
Ti-O-Ti	530.95	7667.0	55.39
H ₂ O	531.87	611.0	4.41
Ti-OH	530.10	614.0	2.87
	Ti 2p scan		
Ti 2p scan before	-		
Ti 2p _{3/2}	458.42	5642.9	63.38
Ti $2p_{1/2}$	464.11	2423.3	30.04
Ti 2p scan after			
Ti 2p _{3/2}	457.76	4253.9	71.85
Ti 2p _{1/2}	463.50	1667.0	28.15
	F 1S scan		
TiO-F	687.90	5041.1	71.47
F1S after	684.46	2825.73	28.53

Table S2. Peak Positions, Area and % Concentration of Different Bonded Peaks

Optimized constituents	Before adsorption	After adsorption
рН	8.9	7
TDS/mg/L	836	402
F ⁻ /mg/L	10.23	1.40
SO4 ²⁻ /mg/L	92	81
HCO3 ⁻ /mg/L	98	75
PO4 ³⁻ /mg/L	82.3	42.2
Cl ⁻ /mg/L	55.1	33.9

 Table S3. The Outcomes of Adsorbent with Real Water Analysis