Supporting information

Liquid Densities and Excess Quantities for the Green Esterification Process

¹Achsah Rajendran Startha Christabel, ¹Anantharaj Ramalingam*, ¹Danish John Paul Mark Reji, ¹Shruthi Nagaraj, ²Siddharth Ravichandran

¹Department of Chemical Engineering, SSN College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, Tamilnadu-603110. ²Davidson School of Chemical Engineering, Purude University, 480 W Stadium Ave, West Lafayette, IN 47907

*Author to whom all correspondence should be addressed

E-mail : anantharajr@ssn.edu.in Tel: 044-32909138-263 Fax: 044-32909138

Figure S1: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 293.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S2: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 298.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S3: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 303.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S4: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 308.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S5: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 313.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S6: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 318.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S7: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 323.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S8: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 328.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S9: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 333.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S10: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 338.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S11: Excess molar volume for n-butyl acetate + n-butanol with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 343.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S12: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 293.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S13: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 298.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S14: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 303.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S15: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 308.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S16: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 313.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S17: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 318.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S18: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 323.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S19: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 328.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S20: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 333.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S21: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 338.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S22: Excess molar volume for n-butyl acetate + Acetic acid with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 343.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S23: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 293.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S24: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 298.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S25: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 303.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S26: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 308.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S27: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 313.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S28: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 318.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S29: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 323.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S30: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 328.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S31: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 333.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S32: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 338.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S33: Excess molar volume for DES_1 (ChCl-Gly) + [EMIM][HSO_4] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 343.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S34: Excess molar volume for DES₂ (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 293.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S35: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 298.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S36: Excess molar volume for DES₂ (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 303.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S37: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 308.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S38: Excess molar volume for DES₂ (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 313.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S39: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 318.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S40: Excess molar volume for DES₂ (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 323.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S41: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 328.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S42: Excess molar volume for DES₂ (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 333.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S43: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 338.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S44: Excess molar volume for DES₂ (ChCl-Acetic acid) + [EMIM][HSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 343.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

FigureS45: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 293.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S46: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 298.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S47: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 303.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S48: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 308.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S49: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 313.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S50: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 318.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S51: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 323.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S52: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 328.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S53: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 333.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S54: Excess molar volume for DES₂ (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 338.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S55: Excess molar volume for DES_2 (ChCl-Acetic acid) + [EMIM][EtSO₄] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 343.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S56: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 293.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S57: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 298.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S58: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 303.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S59: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 308.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S60: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 313.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S61: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 318.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S62: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 323.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S63: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 328.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S64: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 333.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S65: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 338.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S66: Excess molar volume for DES_2 (ChCl-Acetic acid) + [BMIM][OAc] with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 343.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S67: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 293.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S68: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 298.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S69: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 303.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S70: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 308.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S71: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 313.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S72: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 318.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S73: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 323.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S74: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 328.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S75: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 333.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S76: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 338.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S77: Excess molar volume for DES_1 (ChCl-Gly) + DES_2 (ChCl-Acetic acid) with respect to mole fraction x_1 (n-butyl acetate) from 0 to 1 at temperature 343.15 K. The lines are fitted with Redlich-Kister-type fittings representing four parameters.

Figure S78: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 293.15 K.

Figure S79: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 298.15 K.

Figure S80: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 303.15 K.

Figure S81: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 308.15 K.

Figure S82: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 313.15 K.

Figure S83: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 318.15 K.

Figure S84: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 323.15 K.

Figure S85: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 328.15 K.

Figure S86: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 333.15 K.

Figure S87: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 338.15 K.

Figure S88: Partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 343.15 K.

Figure S89: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 293.15 K.

Figure S90: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 298.15 K.

Figure S91: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 303.15 K.

Figure S92: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 308.15 K.

Figure S93: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 313.15 K.

Figure S94: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 318.15 K.

Figure S95: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 323.15 K.

Figure S96: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 328.15 K.

Figure S97: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 333.15 K.

Figure S98: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 338.15 K.

Figure S99: Partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 343.15 K.

Figure S100: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 293.15 K.

Figure S101: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 298.15 K.

Figure S102: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 303.15 K.

Figure S103: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 308.15 K.

Figure S104: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 313.15 K.

Figure S105: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 318.15 K.

Figure S106: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 323.15 K.

Figure S107: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 328.15 K.

Figure S108: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 333.15 K.

Figure S109: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 338.15 K.

Figure S110: Excess partial molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 343.15 K.

Figure S111: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 293.15 K.

Figure S112: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 298.15 K.

Figure S113: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 303.15 K.

Figure S114: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 308.15 K.

Figure S115: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 313.15 K.

Figure S116: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 318.15 K.

Figure S117: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 323.15 K.

Figure S118: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 328.15 K.

Figure S119: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 333.15 K.

Figure S120: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 338.15 K.

Figure S121: Excess partial molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 343.15 K.

Figure S122: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 293.15 K.

Figure S123: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 298.15 K.

Figure S124: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 303.15 K.

Figure S125: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 308.15 K.

Figure S126: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 313.15 K.

Figure S127: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 318.15 K.

Figure S128: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 323.15 K.

Figure S129: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 328.15 K.

Figure S130: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 333.15 K.

Figure S131: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 338.15 K.

Figure S132: Apparent molar volume 1 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 343.15 K.

Figure S133: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 293.15 K.

Figure S134: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 298.15 K.

Figure S135: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 303.15 K.

Figure S136: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 308.15 K.

Figure S137: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 313.15 K.

Figure S138: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 318.15 K.

Figure S139: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 323.15 K.

Figure S140: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 328.15 K.

Figure S141: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 333.15 K.

Figure S142: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 338.15 K.

Figure S143: Apparent molar volume 2 of mixed systems with respect to mole fraction of component 1 from 0 to 1 at temperature 343.15 K.

				α *10)-4 K-1				
T (K)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
			n-b	outyl aceta	te+n-buta	anol			
293.1	9 7385	10.864	10.798	10.782	11.795	11.707	11.649	11.542	11.470
5).1505	4	0	8	9	4	6	4	1
298.1	9.7864	10.919	10.853	10.838	11.859	11.771	11.714	11.608	11.536
5		10.075	6 10.010	8	11.025	9 11 020	8 11 701	11 675	11 602
303.1 5	9.8354	10.975	10.910	10.896	11.925	11.838	11./81	11.0/5	11.603
308 1		11 033	10 968	10 954	∠ 11 991	11 905	11 849	0	11 672
5	9.8853	11.000	7	2	8	5	3	11.744	4
313.1	0.02(2	11.091	11.027	11.013	12.059	11.074	11.918	11.813	11.742
5	9.9363	5	8	6	7	11.9/4	2	6	5
318.1	9 9883	11.151	11 088	11.074	12.128	12 044	11.988	11.884	11.813
5	7.7005	2	11.000	2	7	12.044	7	7	6
323.1	10.041	11.212	11.149	11.136	12.199	12.115	12.060	11.957	11.886
220 1	4	11.074	5	11 100	3	3	3	10.020	1
328.1	10.095	11.2/4	11.212	11.199	12.2/1	12.188	12.133	12.030	11.96
3331	10 151	∠ 11 337	4	11 263	4 12 3/4	12 262	4 12 208	/	12 035
555.1	3	9	8	11.203 7	12.J 44 9	12.202	12.208	12.106	12.055
338.1	10.208	11.403	11.342	11.329	12.420	12.338	12.284	12.182	12.112
5	2	1	7	9	2	4	4	6	1
343.1	10.266	11.469	11.410	11.397	12.497	12.416	12.362	12.260	12.190
5	7	9	2	6	2	2	3	9	5
			n-b	utyl aceta	te+acetic	acid			
293.1	10.595	10.771	11.030	11.170	11.383	11.531	11 688	11.957	12.177
5	5	7	0	9	7	1	11.000	3	6
298.1	10.651	10.829	11.090	11.232	11.447	11.595	11.753	12.025	12.247
C 2021	/	l 10.007	4	11 204	L	8	l 11 010	12 004) 12 210
505.1	10.709	10.887	11.132	11.294 7	11.311 Q	11.001 7	11.019	12.094	12.319
308 1	10 766	10 946	11 214	/	11 577	11 728	11 887	12 165	12 391
5	9	7	3	11.358	7	6	7	5	9
313.1	10.825	11.006	11.277	11.422	11.644	11.796	11.956	12.237	10 400
5	6	7	5	2	3	5	4	3	12.466
318.1	10.885	11.067	11.341	11.487	11.711	11.865	12.026	12.310	12.541
5	2	6	7	4	7	6	5	4	5
323.1	10.945	11.129	11.406	11.553	11.780	11.935	12.097	12.384	12.618
220 1	5	4	9	8	5	8	12 170	12 4 60	3
328.1	11.006	11.192	11.473	11.621	11.850	12.007	12.1/0	12.460	12.696
د ۲333 1	0 11.068	ے 11 256	11 540	11 689	د 11 م21	2 12 070	э 12 244	0 12 537	12 776
555.1	7	0	2	6	3	12.079	12.244	1 <i>2.331</i> 9	12.770
338.1	11.131	11.320	11.608	11.759	11.993	12.153	12.319	12.616	12.858
5	8	7	5	4	5	8	5	6	1

Table S1: Isobaric thermal expansion coefficient for all the studied binary mixtures for entire mole fractions at different temperatures from 293.15 K to 343.15 K.

343.1	11.195	11.386	11.678	11.830	12.067	12.229	12.396	12.696	12.941
3	9	Í I	$DES_1(ChC)$	Cl-Gly) +	IL ₁ ([EMI	Z M][HSO4	.]) _]	9	3
293.1 5	4.4577	4.5110	4.5663	4.6254	4.7017	4.7508	4.8112	4.8661	4.9419
298.1 5	4.4679	4.5214	4.5767	4.636	4.7125	4.7618	4.8224	4.8775	4.9534
303.1 5	4.4782	4.5318	4.5872	4.6466	4.7235	4.7729	4.8338	4.8889	4.9652
308.1 5	4.4884	4.5398	4.5977	4.6574	4.7345	4.7842	4.8452	4.9005	4.977
313.1 5	4.4985	4.5502	4.6083	4.6682	4.7456	4.7955	4.8567	4.9122	4.9889
318.1 5	4.5086	4.5606	4.6189	4.6791	4.7568	4.8068	4.8683	4.924	5.0009
323.1 5	4.5189	4.5710	4.6296	4.69	4.7679	4.8182	4.8799	4.9357	5.013
328.1 5	4.5291	4.5814	4.6403	4.7009	4.7792	4.8296	4.8915	4.9475	5.025
333.1 5	4.5394	4.5919	4.651	4.7118	4.7904	4.8411	4.9032	4.9594	5.0372
338.1 5	4.5497	4.6024	4.6618	4.7228	4.8017	4.8526	4.9149	4.9713	5.0495
343.1 5	4.5600	4.6130	4.6726	4.7339	4.8131	4.8641	4.9267	4.9833	5.0618
-		DES	2(ChCl-A	cetic acid	$1) + IL_1([1])$	EMIM][H	[SO ₄])		
293.1 5	4.4940	4.5800	5.4307	5.5559	5.6598	5.7723	5.9286	6.0372	7.0341
298.1 5	4.5049	4.5912	5.4446	5.5709	5.6757	5.7892	5.9470	6.0566	7.0576
303.1 5	4.5156	4.6026	5.4586	5.586	5.6917	5.8062	5.9655	6.0762	7.0813
308.1 5	4.5262	4.614	5.4727	5.6011	5.7078	5.8232	5.984	6.0958	7.1051
313.1 5	4.5369	4.6255	5.4868	5.6163	5.7238	5.8403	6.0026	6.1155	7.129
318.1 5	4.5477	4.6369	5.5009	5.6314	5.7399	5.8574	6.0212	6.1353	7.1529
323.1 5	4.5584	4.6484	5.515	5.6465	5.756	5.8746	6.0399	6.155	7.1771
328.1 5	4.5692	4.6599	5.5291	5.6617	5.7721	5.8918	6.0587	6.1749	7.2012
333.1 5	4.58	4.6713	5.5432	5.6769	5.7883	5.909	6.0775	6.195	7.2256
338.1 5	4.5908	4.6828	5.5573	5.6922	5.8045	5.9264	6.0964	6.215	7.2501
343.1 5	4.6016	4.6944	5.5715	5.7075	5.8208	5.9438	6.1155	6.2352	7.2746
		DES	2(ChCl-A	cetic acid	$+ IL_2([E$	EMIM][Et	(SO ₄])		

293.1 5	5.7217	5.7933	5.8508	5.9267	5.9851	6.0475	6.1355	7.0803	7.1539			
298.1 5	5.7380	5.8102	5.8682	5.9449	6.0038	6.0668	6.1556	7.1041	7.1785			
303.1 5	5.7544	5.8272	5.8858	5.9632	6.0226	6.0862	6.1759	7.1281	7.2033			
308.1 5	5.7708	5.8442	5.9034	5.9815	6.0415	6.1058	6.1964	7.1522	7.2282			
313.1 5	5.7872	5.8613	5.921	5.9998	6.0604	6.1253	6.2169	7.1764	7.2533			
318.1 5	5.8037	5.8785	5.9387	6.0182	6.0795	6.1449	6.2375	7.2007	7.2784			
323.1 5	5.8201	5.8956	5.9564	6.0367	6.0985	6.1647	6.2582	7.2251	7.3037			
328.1 5	5.8366	5.9128	5.9741	6.0552	6.1176	6.1845	6.2789	7.2496	7.3291			
333.1 5	5.8532	5.9300	5.9919	6.0738	6.1368	6.2043	6.2998	7.2742	7.3546			
338.1 5	5.8697	5.9473	6.0098	6.0924	6.1561	6.2242	6.3207	7.2990	7.3803			
343.1 5	5.8864	5.9646	6.0277	6.1111	6.1754	6.2443	6.3417	7.3239	7.4061			
$DES_2(ChCl-Acetic acid) + IL_3([BMIM][OAc])$												
293.1 5	5.6384	5.6127	6.5124	6.4672	6.4721	6.4416	6.4224	6.3975	7.2932			
298.1 5	5.6548	5.6295	6.5324	6.4877	6.4925	6.4625	6.4435	6.4191	7.3182			
303.1 5	5.6715	5.6465	6.5525	6.5084	6.5132	6.4836	6.4650	6.4410	7.3436			
308.1 5	5.6883	5.6636	6.5726	6.5292	6.5339	6.5047	6.4864	6.4629	7.3690			
313.1 5	5.7052	5.6806	6.5929	6.5501	6.5547	6.5260	6.5080	6.4849	7.3946			
318.1 5	5.7220	5.6977	6.6132	6.5710	6.5755	6.5474	6.5297	6.5070	7.4203			
323.1 5	5.7389	5.7149	6.6336	6.5921	6.5965	6.5688	6.5514	6.5292	7.4462			
328.1 5	5.7558	5.7321	6.6541	6.6131	6.6175	6.5903	6.5733	6.5516	7.4723			
333.1 5	5.7728	5.7493	6.6745	6.6343	6.6386	6.6119	6.5952	6.5740	7.4985			
338.1 5	5.7899	5.7666	6.6952	6.6556	6.6598	6.6337	6.6173	6.5966	7.5249			
343.1 5	5.8070	5.7840	6.7159	6.6770	6.6810	6.6555	6.6394	6.6193	7.5515			
$DES_1(ChCl-Gly) + DES_2(ChCl-Acetic acid)$												
293.1 5	6.2872	6.2295	6.1676	6.1146	6.0707	5.1650	5.1129	5.0808	5.0407			
298.1 5	6.3084	6.2497	6.1868	6.1328	6.0883	5.1794	5.1266	5.0939	5.0532			

303.1 5	6.3297	6.2700	6.2062	6.1513	6.1060	5.1940	5.1404	5.1073	5.0659
308.1 5	6.3512	6.2906	6.2257	6.1699	6.1239	5.2087	5.1542	5.1206	5.0786
313.1 5	6.3728	6.3111	6.2452	6.1886	6.1418	5.2234	5.1682	5.1341	5.0914
318.1 5	6.3946	6.3319	6.2649	6.2073	6.1598	5.2383	5.1822	5.1476	5.1043
323.1 5	6.4165	6.3527	6.2847	6.2262	6.1779	5.2531	5.1962	5.1611	5.1173
328.1 5	6.4385	6.3737	6.3045	6.2451	6.1962	5.2681	5.2104	5.1747	5.1303
333.1 5	6.4606	6.3948	6.3246	6.2642	6.2145	5.2832	5.2246	5.1885	5.1434
338.1 5	6.4829	6.4160	6.3447	6.2834	6.2330	5.2983	5.2389	5.2023	5.1565
343.1 5	6.5054	6.4374	6.3650	6.3028	6.2516	5.3136	5.2533	5.2162	5.1698

 $\overline{u(T)} = \pm 0.01 \text{K}, u(\alpha^*) = \pm 4.5 \times 10^{-5} \text{ K}^{-1}.$

α ^E * 10 ⁻⁴ K ⁻¹										
T (K)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
000.1			n-b	outyl aceta	te+n-buta	anol				
293.1 5	- 0.1678	0.8628	0.6109	0.3306	1.0508	0.7074	0.4697	0.2578	0.1370	
298.1 5	- 0.1650	0.8714	0.6170	0.3330	1.0568	0.7105	0.4712	0.2583	0.1372	
303.1 5	- 0.1637	0.8784	0.6221	0.3344	1.0623	0.7132	0.4719	0.2584	0.1368	
308.1 5	-0.1628	0.8853	0.6272	0.3362	1.0687	0.7171	0.4741	0.2599	0.1380	
313.1 5	- 0.1621	0.8921	0.6321	0.3375	1.0745	0.7203	0.4753	0.2606	0.1384	
318.1 5	- 0.1616	0.8988	0.6365	0.3384	1.0797	0.7229	0.4760	0.2604	0.1378	
323.1 5	- 0.1609	0.9058	0.6416	0.3401	1.0863	0.7270	0.4781	0.2620	0.1389	
328.1 5	- 0.1606	0.9127	0.6465	0.3415	1.0926	0.7305	0.4796	0.2627	0.1392	
333.1 5	- 0.1600	0.9199	0.6517	0.3431	1.0992	0.7345	0.4820	0.2641	0.1400	
338.1 5	- 0.1596	0.9271	0.6568	0.3445	1.1055	0.7380	0.4831	0.2645	0.1399	
343.1 5	- 0.1592	0.9344	0.6620	0.3462	1.1123	0.7423	0.4851	0.2654	0.1404	
			n-b	utyl aceta	te+acetic	acid				
293.1 5	0.0970	0.1877	0.2965	0.2557	0.3018	0.3264	0.4067	0.6347	0.8366	
298.1 5	0.0966	0.1874	0.2976	0.2556	0.3021	0.3265	0.4065	0.6369	0.8406	
303.1 5	0.0963	0.1871	0.2986	0.2552	0.3018	0.3260	0.4058	0.6386	0.8441	
308.1 5	0.0961	0.1872	0.3001	0.2557	0.3029	0.3268	0.4068	0.6419	0.8493	
313.1 5	0.0959	0.1872	0.3013	0.2555	0.3030	0.3267	0.4065	0.6443	0.8538	
318.1 5	0.0959	0.1872	0.3023	0.2549	0.3022	0.3258	0.4055	0.6457	0.8573	
323.1 5	0.0959	0.1876	0.3040	0.2553	0.3028	0.3263	0.4062	0.6488	0.8627	
328.1 5	0.0959	0.1879	0.3054	0.2551	0.3026	0.3259	0.4059	0.6513	0.8674	
333.1 5	0.0960	0.1883	0.3069	0.2552	0.3028	0.3259	0.4059	0.6542	0.8727	
338.1 5	0.0965	0.1889	0.3084	0.2551	0.3023	0.3251	0.4053	0.6562	0.8772	

Table S2: Excess isobaric expansivity for all the studied systems at different temperatures from 293.15 K to 343.15 K for entire mole fractions.

0.0969	0.1896	0.3102	0.2550	0.3022	0.3247	0.4050	0.6588	0.8824
	Ι	DES ₁ (ChC	Cl-Gly) + C	IL ₁ ([EMI	M][HSO ₄])		
0.0710	0.1075	0.1260	0.1199	0.0994	0.0302	0.0235	0.0528	0.0218
0.0712	0.1079	0.1260	0.1196	0.0987	0.0289	- 0.0255	- 0.0552	0.0243
0.0716	0.1082	0.1264	0.1200	0.0990	0.0291	- 0.0254	- 0.0552	0.0242
0.0718	0.1062	0.1268	0.1204	0.0994	0.0293	- 0.0254	- 0.0553	- 0.0242
0.0717	0.1064	0.1270	0.1207	0.0997	0.0294	- 0.0254	- 0.0554	- 0.0241
0.0720	0.1068	0.1276	0.1212	0.1001	0.0296	0.0254	- 0.0555	0.0242
0.0724	0.1073	0.1282	0.1218	0.1006	0.0298	- 0.0254	0.0555	0.0242
0.0728	0.1078	0.1288	0.1224	0.1011	0.0301	- 0.0254	- 0.0550	0.0242
0.0732	0.1084	0.1294	0.123	0.1016	0.0302	- 0.0254	0.0550	0.0242
0.0736	0.1089	0.1301	0.1236	0.1021	0.0305	0.0254	0.0559	0.0242
0 0741	0 1096	0 1308	0 1243	0 1027	0.0307	0.0254	0.0561	0.0242
0.0711	DES	₂ (ChCl-A	cetic acid	$(102) + IL_1([E))$	EMIM][H	0.0253 SO ₄])	0.0562	0.0242
0.0930	0.106	0.7946	0.6271	0.2815	0 1801	0 6062	- 0 9460	- 0 1946
0.0938	0.1067	0.7968	0.6286	0.2810	- 0.1820	- 0.6107	- 0.9517	0 1972
0.0945	0.1075	0.7992	0.630	0.2805	0.1029	0.0107	0.9517	0.1972
0 0950	0 1082	0.8015	0.6314	0 2800	0.1858	0.6152	0.9573	0.1998
0.0750	0.1002	0.0015	0.0314	0.2000	0.1888	0.6198	0.9630	0.2024
0.0955	0.1089	0.8037	0.6327	0.2793	0.1918	0.6244	0.9686	0.2050
0.0962	0.1098	0.8061	0.6341	0.2788	- 0.1948	-0.629	0.9742	0.2075
0.0973	0.1111	0.8088	0.6358	0.2784	- 0.1976	- 0.6335	- 0.9799	0.2100
0.0978	0.1118	0.8109	0.6370	0.2776	- 0.2007	- 0.6382	- 0.9857	- 0.2126
0.0986	0.1127	0.8133	0.6384	0.2770	- 0 2038	- 0 6429	- 0 9914	0 2153
0.0994	0.1136	0.8157	0.6398	0.2763	0.2050	0.6477	- 0.9974	0.2179
					0.2007	0.0477	0.7774	0.2177
0.1002	0.1146	0.8182	0.6413	0.2759	-	-	-	-
	0.0969 0.0710 0.0712 0.0716 0.0718 0.0717 0.0720 0.0724 0.0728 0.0732 0.0732 0.0732 0.0732 0.0736 0.0731 0.0930 0.0938 0.0945 0.0955 0.0955 0.0955 0.0955 0.0955 0.0955	0.09690.18960.07100.10750.07120.10790.07160.10820.07170.10640.07170.10640.07200.10680.07240.10730.07320.10840.07360.10890.07410.10960.09300.10670.09310.10670.09550.10820.09550.10820.09560.10820.09730.11110.09740.11270.09860.1127	0.0969 0.1896 0.3102 0.0710 0.1075 0.1260 0.0712 0.1079 0.1260 0.0716 0.1082 0.1264 0.0716 0.1082 0.1264 0.0718 0.1062 0.1268 0.0717 0.1064 0.1270 0.0718 0.1063 0.1270 0.0717 0.1064 0.1270 0.0720 0.1063 0.1282 0.0724 0.1073 0.1288 0.0732 0.1078 0.1284 0.0734 0.1078 0.1284 0.0735 0.1078 0.1284 0.0736 0.1078 0.1304 0.0736 0.1089 0.1304 0.0737 0.1089 0.1304 0.0930 0.1075 0.7946 0.0933 0.1075 0.7946 0.0945 0.1075 0.8037 0.0955 0.1089 0.8037 0.0956 0.1018 0.8041 0.0973 <	0.0969 0.1896 0.3102 0.2550 0.0710 0.1075 0.1260 0.1199 0.0712 0.1079 0.1260 0.1196 0.0716 0.1082 0.1264 0.1200 0.0718 0.1062 0.1268 0.1204 0.0717 0.1064 0.1270 0.1207 0.0718 0.1063 0.1270 0.1207 0.0717 0.1064 0.1270 0.1207 0.0720 0.1068 0.1276 0.1212 0.0724 0.1073 0.1282 0.1212 0.0732 0.1084 0.1294 0.1234 0.0732 0.1089 0.1301 0.1236 0.0734 0.1096 0.1308 0.1241 0.0735 0.1089 0.1301 0.1236 0.0741 0.1096 0.1308 0.1243 0.0930 0.1067 0.7968 0.6326 0.0938 0.1075 0.7992 0.6301 0.09950 0.1088 0.8037	0.0969 0.1896 0.3102 0.2550 0.3022 0.0710 0.1075 0.1260 0.1199 0.0994 0.0712 0.1079 0.1260 0.1196 0.0987 0.0716 0.1082 0.1260 0.1196 0.0990 0.0718 0.1062 0.1268 0.1200 0.0990 0.0717 0.1064 0.1270 0.1207 0.0991 0.0710 0.1064 0.1270 0.1207 0.0991 0.0717 0.1064 0.1270 0.1201 0.0991 0.0720 0.1068 0.1276 0.1212 0.1001 0.0723 0.1068 0.1284 0.1212 0.1011 0.0734 0.1073 0.1284 0.1212 0.1011 0.0735 0.1084 0.1294 0.123 0.1016 0.0736 0.1089 0.1308 0.1243 0.1021 0.0741 0.1086 0.7946 0.6271 0.2816 0.0938 0.1067 0.7968 0.6314	0.0969 0.1896 0.3102 0.2550 0.3022 0.3247 0.0710 0.1075 0.1260 0.1199 0.0994 0.0302 0.07112 0.1079 0.1260 0.1190 0.0994 0.0291 0.07112 0.1082 0.1264 0.1200 0.0990 0.0291 0.07118 0.1062 0.1268 0.1204 0.0994 0.0293 0.07171 0.1064 0.1270 0.1207 0.0997 0.0294 0.07170 0.1064 0.1270 0.1207 0.0997 0.0294 0.07172 0.1064 0.1270 0.1207 0.0997 0.0294 0.0718 0.1064 0.1270 0.1212 0.1011 0.0298 0.0718 0.1073 0.1282 0.1213 0.1011 0.0294 0.0724 0.1073 0.1284 0.1212 0.1011 0.0301 0.0733 0.1084 0.1294 0.123 0.1012 0.307 0.0741 0.1086 0.1308	0.0969 0.1896 0.3102 0.2550 0.3022 0.3247 0.4050 DEF1(CHC1-GIV) + TL1([EMI][HSO4]] 0.0710 0.1075 0.1260 0.1199 0.0994 0.0302 0.0235 0.07112 0.1079 0.1260 0.1196 0.0987 0.0291 0.0254 0.0716 0.1082 0.1268 0.1200 0.0990 0.0291 0.0254 0.0717 0.1064 0.1270 0.1097 0.0294 0.0254 0.0717 0.1064 0.1270 0.1097 0.0294 0.0254 0.0718 0.1068 0.1270 0.1097 0.0294 0.0254 0.0717 0.1064 0.1270 0.1091 0.0294 0.0254 0.0724 0.1073 0.1282 0.1011 0.0301 0.0254 0.0728 0.1078 0.1284 0.1011 0.0301 0.0254 0.0732 0.1084 0.1294 0.1011 0.0301 0.0254 0.0733 0.1089 0.1301 0.1235 <td>0.0969 0.1896 0.3102 0.2550 0.3022 0.3247 0.4050 0.6588 DEF1(CHC-GIY) + L1(EMUUTISO4) 0.0710 0.1075 0.1260 0.1196 0.0994 0.0235 0.0255 0.0552 0.0711 0.1079 0.1260 0.1196 0.0997 0.0294 0.0255 0.0552 0.0711 0.1082 0.1268 0.1204 0.0990 0.0293 0.0254 0.0553 0.0711 0.1062 0.1268 0.1207 0.0997 0.0294 0.0254 0.0553 0.0717 0.1064 0.1270 0.1097 0.0294 0.0254 0.0555 0.0720 0.1068 0.1270 0.1001 0.0296 0.0254 0.0555 0.0724 0.1073 0.1282 0.1212 0.1001 0.0296 0.0254 0.0556 0.0724 0.1073 0.1284 0.1212 0.1011 0.0254 0.0556 0.0732 0.1089 0.1281 0.1012 0.0305 0.0254 0.055</td>	0.0969 0.1896 0.3102 0.2550 0.3022 0.3247 0.4050 0.6588 DEF1(CHC-GIY) + L1(EMUUTISO4) 0.0710 0.1075 0.1260 0.1196 0.0994 0.0235 0.0255 0.0552 0.0711 0.1079 0.1260 0.1196 0.0997 0.0294 0.0255 0.0552 0.0711 0.1082 0.1268 0.1204 0.0990 0.0293 0.0254 0.0553 0.0711 0.1062 0.1268 0.1207 0.0997 0.0294 0.0254 0.0553 0.0717 0.1064 0.1270 0.1097 0.0294 0.0254 0.0555 0.0720 0.1068 0.1270 0.1001 0.0296 0.0254 0.0555 0.0724 0.1073 0.1282 0.1212 0.1001 0.0296 0.0254 0.0556 0.0724 0.1073 0.1284 0.1212 0.1011 0.0254 0.0556 0.0732 0.1089 0.1281 0.1012 0.0305 0.0254 0.055

293.1 5	0.0691	0.1073	0.0897	0.0255	- 0.1432	- 0.3939	- 0.6536	0.0004	- 0.0947			
298.1 5	0.0697	0.1083	0.0907	0.0262	- 0.1436	- 0.3958	- 0.6568	- 0.0009	- 0.0962			
303.1	0.0703	0.1093	0.0917	0.0269	0 1439	- 0 3977	- 0.6600	- 0.0022	- 0.0977			
308.1	0.0710	0.1104	0.0927	0.0276	- 0.143	- 0.3005	- 0.6632	- 0.0035	- 0.0002			
313.1	0.0716	0.1114	0.0937	0.0283	0.1445	0.3993	0.0032	- 0.0035	0.0992			
318.1	0.0723	0.1125	0.0948	0.0291	0.1440	0.4014	0.0004	- 0.0048	0.1000			
5 323.1	0.0729	0.1136	0.0959	0.0299	0.1449	-0.4052	0.6695	0.0061	0.1020			
5 328.1	0 0737	0 1147	0 0970	0.0307	0.1452	-	0.6726	0.0072	0.1034			
5 333.1	0.0743	0.1158	0.0970	0.0315	0.1454	0.4068	0.6758	0.0086	0.1048			
5 338.1	0.0750	0.1170	0.0901	0.0313	0.1457	0.4087	0.6790	0.0099	0.1062			
5 343 1	0.0750	0.1170	0.0992	0.0323	-0.146	0.4106	0.6823	0.0112	0.1077			
5	0.0758	0.1182	0.1004	0.0333	0.1461	0.4122	0.6852	0.0120	0.1087			
202 1		DES	₂ (CIICI-A	icetic acit	$1) + 1L_3([1$	SMIMI	JAC])					
293.1 5	0.0544	-0.113	0.7124	0.5290	0.3106	0.0263	0.3839	0.6902	0.0428			
298.1 5	0.0542	0.1126	0.7155	0.5315	0.3116	0.0270	0.3863	- 0.6938	0.0417			
303.1 5	- 0.0538	- 0.1122	0.7184	0.5342	0.3126	- 0.0275	- 0.3885	- 0.6974	0.0407			
308.1 5	- 0.0536	- 0.1119	0.7213	0.5368	0.3136	- 0.0280	- 0.3909	- 0.7009	0.0397			
313.1 5	- 0.0532	- 0.1116	0.7243	0.5394	0.3147	- 0.0285	- 0.3932	- 0.7045	0.0388			
318.1 5	- 0.0529	- 0.1114	0.7272	0.5420	0.3156	- 0.0290	- 0.3955	- 0.7080	0.0380			
323.1	- 0 0528	- 0 1111	0.7301	0.5447	0.3167	- 0 0295	0 3978	- 0 7115	0.0373			
328.1	0.0525	- 0 1108	0.7332	0.5473	0.3177	- 0.0300	- 0 4002	0 7150	0.0365			
333.1	- 0.0523	- 0.1105	0.7362	0.5500	0.3187	- 0.0306	- 0.4026	0.7190	0.0357			
338 1	0.0322	0.1105				0.0300	0.4020	0./10/				
5	0.0519	0.1102	0.7393	0.5527	0.3197	0.0311	0.4049	0.7222	0.0349			
5	0.0516	0.1098	0.7425	0.5555	0.3209	0.0313	0.4070	0.7255	0.0347			
202.1	$DES_{1}(CnCI-GIY) + DES_{2}(CnCI-Acetic acid)$											
293.1 5	0.9772	- 0.9134	0.7289	- 0.4044	0.0072	- 0.4644	0.1865	0.0163	0.0398			
298.1 5	- 0.9823	- 0.9189	- 0.7342	- 0.4088	0.0045	- 0.4679	- 0.1889	- 0.0180	0.0381			

303.1	-	-	-	-	0 0028	-	-	-	0 0200	
5	0.9873	0.9243	0.7393	0.4126	0.0028	0.4698	0.1892	0.0173	0.0388	
308.1	-	-	-	-	0.0011	-	-	-	0.0206	
5	0.9923	0.9297	0.7444	0.4164	0.0011	0.4718	0.1896	0.0167	0.0396	
313.1	-	-	-	-	-	-	-	-	0.0402	
5	0.9973	0.9350	0.7494	0.4202	0.0006	0.4738	0.1901	0.0161	0.0402	
318.1	-	-	-	-	-	-	-	-	0.0400	
5	1.0022	0.9403	0.7545	0.4239	0.0023	0.4758	0.1906	0.0156	0.0409	
323.1	-	-	-	-	-	-	0 101	-	0.0415	
5	1.0070	0.9456	0.7594	0.4277	0.0039	0.4778	-0.191	0.0151	0.0413	
328.1	-	-	-	-	-	-	-	-	0.0422	
5	1.0120	0.9509	0.7645	0.4315	0.0056	0.4798	0.1915	0.0146	0.0422	
333.1	-	-	-	-	-	-	0.102	-	0.0420	
5	1.0170	0.9563	0.7696	0.4353	0.0074	0.4818	-0.192	0.0140	0.0429	
338.1	-	-	-	-	-	-	-	-	0.0425	
5	1.0219	0.9616	0.7747	0.4391	0.0090	0.4838	0.1924	0.0134	0.0435	
343.1	-	-	-	-	-	-	-	-	0.0442	
5	1.0263	0.9665	0.7794	0.4426	0.0104	0.4857	0.1928	0.0128	0.0443	
$u(T) = \pm 0$	$u(T) = \pm 0.01K$, $u(\alpha^{*E}) = \pm 7.2 \times 10^{-5} \text{ K}^{-1}$.									

	Molar volume V_i^0 (cm ³ mol ⁻¹)										
T(n-	n-	Aceti	DES ₁ (DES ₂ (IL ₁ ([EMIM	IL ₂ ([EMIM]	IL ₃ ([BMIM			
K)	butyl	butan	c	ChCl-	ChCl-][HSO ₄])	[EtSO ₄])][OAc])			
K)	acetat	ol	acid	Gly)	acetic						
	e				acid)						
293	131.7	91.5	57.1	89.513	78.959	152 00002	100 52410	187 82150			
.15	9033	4460	8067	26	29	152.09992	190.32419	10/.03139			
298	132.5	91.9	57.4	89.767	79.244	152 11209	101 05257	199 26607			
.15	5734	5916	8832	12	78	132.44396	191.03237	188.30097			
303	133.3	92.3	57.8	89.977	79.532	157 78818	101 58224	188 00540			
.15	4864	9706	0096	39	34	132./0040	171.30234	166.90340			
308	134.1	92.8	58.1	90.190	79.821	152 12454	102 11104	180 11871			
.15	3395	4846	1647	92	25	155.15454	172.11174	109.440/4			
313	134.9	93.3	58.4	90.405	80.110	153 48660	102 64200	180 00157			
.15	4424	1017	3657	45	80	155.48009	192.04290	109.99137			
318	135.7	93.7	58.7	90.622	80.400	153 82707	103 17364	100 53035			
.15	8025	8361	5964	54	95	133.82/9/	195.17504	190.33933			
323	136.6	94.2	59.0	90.839	80.691	154 16063	102 70414	101 08845			
.15	1061	6667	8688	90	71	134.10903	195./0414	191.00045			
328	137.4	94.7	59.4	91.058	80.985	154 51051	104 22427	101 62702			
.15	6746	6201	1838	31	34	154.51051	174.25457	191.03702			
333	138.3	95.2	59.7	91.278	81.280	154 85201	104 76751	102 18680			
.15	3512	6870	5481	55	36	134.03291	194./0/31	192.10009			
338	139.2	95.7	60.0	91.499	81.576	155 10567	105 20026	102 73805			
.15	3049	8950	9447	85	76	155.19507	195.50050	192.75805			
343	140.1	96.3	60.4	91.721	81.869	155 53762	105 83288	103 20050			
.15	3753	2354	3984	45	91	155.55705	173.03200	175.27030			

Table S3: Molar volumes of pure compounds at different temperatures from 293.15 K to 343.15 K.

Table S4: Regression coefficient for density of the mixed solvent systems with respect to mole fraction for temperatures from 293.15 K to 343.15 K.

x ₁	DES ₁ +IL ₁	DES_2+IL_1	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
0.0	0.9999	0.9999	1.0000	1.0000	1.0000
0.1	1.0000	1.0000	1.0000	1.0000	1.0000
0.2	0.9997	1.0000	1.0000	1.0000	1.0000
0.3	1.0000	1.0000	1.0000	1.0000	1.0000
0.4	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000
0.6	1.0000	1.0000	1.0000	1.0000	1.0000
0.7	1.0000	1.0000	1.0000	1.0000	1.0000
0.8	1.0000	1.0000	1.0000	1.0000	1.0000
0.9	1.0000	1.0000	1.0000	1.0000	1.0000
1.0	0.9998	1.0000	1.0000	1.0000	0.9998

T(K)	DES ₁ +IL ₁	DES ₂ +IL ₁	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
293.15	0.9734	0.9599	0.9864	0.9589	0.8894
298.15	0.9733	0.9594	0.9864	0.9590	0.8882
303.15	0.9729	0.9592	0.9863	0.9594	0.8886
308.15	0.9719	0.9591	0.9862	0.9599	0.8885
313.15	0.9721	0.9590	0.9861	0.9604	0.8890
318.15	0.9722	0.9587	0.9861	0.9611	0.8888
323.15	0.9722	0.9585	0.9860	0.9618	0.8883
328.15	0.9722	0.9582	0.9860	0.9623	0.8886
333.15	0.9722	0.9579	0.9859	0.963	0.8878
338.15	0.9722	0.9577	0.9859	0.9637	0.8883
343.15	0.9721	0.9575	0.9859	0.9644	0.8876

Table S5: Regression coefficient for excess molar volume for the mixed solvent systems with respect to mole fraction for temperatures from 293.15 K to 343.15 K.

Table S6: Regression coefficient for Partial molar volume of component 1 for the mixed solvent systems with respect to mole fraction for temperatures from 293.15 K to 343.15 K.

T(K)	DES ₁ +IL ₁	DES ₂ +IL ₁	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
293.15	0.9991	0.9979	0.9982	0.9995	1.0000
298.15	0.9991	0.9979	0.9982	0.9995	1.0000
303.15	0.9991	0.9978	0.9982	0.9995	1.0000
308.15	0.9991	0.9978	0.9982	0.9995	1.0000
313.15	0.9991	0.9978	0.9982	0.9996	1.0000
318.15	0.9991	0.9978	0.9981	0.9996	1.0000
323.15	0.9991	0.9978	0.9981	0.9996	1.0000
328.15	0.9991	0.9978	0.9981	0.9996	1.0000
333.15	0.9991	0.9978	0.9981	0.9996	1.0000
338.15	0.9991	0.9978	0.9981	0.9996	1.0000
343.15	0.9991	0.9978	0.9980	0.9996	1.0000

Table S7: Regression coefficient for Partial molar volume of component 2 for the mixed solvent systems with respect to mole fraction for temperatures from 293.15 K to 343.15 K.

T(K)	DES ₁ +IL ₁	DES ₂ +IL ₁	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
293.15	0.9997	0.9992	0.9996	0.9999	0.9999
298.15	0.9997	0.9992	0.9996	0.9999	1.0000
303.15	0.9997	0.9992	0.9996	0.9999	1.0000
308.15	0.9997	0.9992	0.9996	0.9999	1.0000
313.15	0.9997	0.9992	0.9996	0.9999	1.0000
318.15	0.9997	0.9992	0.9996	0.9999	1.0000
323.15	0.9997	0.9992	0.9996	0.9999	1.0000
328.15	0.9997	0.9992	0.9996	0.9999	1.0000
333.15	0.9997	0.9992	0.9996	0.9999	1.0000
338.15	0.9997	0.9992	0.9996	0.9999	1.0000
343.15	0.9997	0.9991	0.9996	0.9999	1.0000

Table S8: Regression coefficient for excess partial molar volume of component 1 for the mixed solvent systems with respect to mole fraction for temperatures from 293.15 K to 343.15 K.

T(K)	DES ₁ +IL ₁	DES ₂ +IL ₁	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
293.15	0.9720	0.9761	0.9888	0.9355	0.9860
298.15	0.9721	0.9760	0.9888	0.9359	0.9878
303.15	0.9719	0.9758	0.9887	0.9366	0.9879
308.15	0.9726	0.9758	0.9887	0.9375	0.9879
313.15	0.9728	0.9756	0.9886	0.9384	0.9880
318.15	0.9728	0.9754	0.9886	0.9394	0.9878
323.15	0.9729	0.9752	0.9885	0.9401	0.9877
328.15	0.9728	0.9750	0.9885	0.9409	0.9876
333.15	0.9728	0.9748	0.9884	0.9420	0.9873
338.15	0.9728	0.9747	0.9884	0.9429	0.9872
343.15	0.9727	0.9746	0.9884	0.9439	0.9871

T(K)	DES ₁ +IL ₁	DES ₂ +IL ₁	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
293.15	0.9624	0.9815	0.9913	0.9459	0.9891
298.15	0.9627	0.9812	0.9913	0.9460	0.9905
303.15	0.9619	0.9812	0.9912	0.9466	0.9906
308.15	0.9599	0.9812	0.9912	0.9473	0.9908
313.15	0.9601	0.9812	0.9912	0.9480	0.9910
318.15	0.9603	0.9811	0.9912	0.9491	0.9911
323.15	0.9603	0.9810	0.9911	0.9500	0.9911
328.15	0.9603	0.9809	0.9911	0.9507	0.9911
333.15	0.9604	0.9808	0.9910	0.9517	0.9911
338.15	0.9605	0.9807	0.9910	0.9526	0.9911
343.15	0.9604	0.9806	0.9910	0.9534	0.9910

Table S9: Regression coefficient for excess partial molar volume of component 2 for the mixed solvent systems with respect to mole fraction for temperatures from 293.15 K to 343.15 K.

Table S10: Regression coefficient for apparent molar volume of component 1 for the mixed solvent systems with respect to mole fraction for temperatures from 293.15 K to 343.15 K.

T(K)	DES ₁ +IL ₁	DES ₂ +IL ₁	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
293.15	0.9987	0.9965	0.9993	0.9977	0.9991
298.15	0.9987	0.9965	0.9993	0.9977	0.9991
303.15	0.9986	0.9965	0.9993	0.9978	0.9991
308.15	0.9985	0.9965	0.9993	0.9978	0.9990
313.15	0.9986	0.9965	0.9993	0.9979	0.9990
318.15	0.9986	0.9965	0.9993	0.9979	0.9990
323.15	0.9986	0.9964	0.9993	0.9980	0.9989
328.15	0.9986	0.9964	0.9992	0.9980	0.9989
333.15	0.9985	0.9964	0.9992	0.9980	0.9989
338.15	0.9985	0.9964	0.9992	0.9981	0.9989
343.15	0.9985	0.9963	0.9992	0.9981	0.9989

Table S11: Regression	coefficient for appare	ent molar volume	of component 2	for the mixed
solvent systems with res	spect to mole fraction	for temperatures	from 293.15 K to	o 343.15 K.

T(K)	DES ₁ +IL ₁	DES ₂ +IL ₁	DES ₂ +IL ₂	DES ₂ +IL ₃	DES ₁ +DES ₂
293.15	0.9996	0.9983	0.9996	0.9999	0.9987
298.15	0.9996	0.9983	0.9996	0.9999	0.9989
303.15	0.9996	0.9982	0.9996	0.9999	0.9989
308.15	0.9996	0.9982	0.9996	0.9999	0.9989
313.15	0.9996	0.9982	0.9996	0.9999	0.9988
318.15	0.9996	0.9981	0.9996	0.9999	0.9988
323.15	0.9996	0.9981	0.9995	0.9999	0.9988
328.15	0.9996	0.9981	0.9995	0.9999	0.9988
333.15	0.9996	0.9981	0.9995	0.9999	0.9988
338.15	0.9996	0.9980	0.9995	0.9999	0.9987
343.15	0.9996	0.9980	0.9995	0.9999	0.9987