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Proof of Rayleigh distribution 

From the probability density function (PDF) of diffusion displacements in the two orthotropic 

dimensions 
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we know that the joint probability density function of (𝑥, 𝑦) is  
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Hence, the cumulative distribution function of 𝑧 = √𝑥2 + 𝑦2 can be derived 
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where the integral area 𝐴 is the interior of a circle with radius 𝑧. 
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The PDF of 𝑟 is its derivative respect to 𝑧 

𝑝(𝑟) =
𝑟

𝜎2 exp (−
𝑟2
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Proof of 2D restricted motion obeying Rayleigh distribution 

approximatively 

We start with the one-dimensional restricted motion. Consider one-dimensional diffusion is 

confined between two reflecting boundaries at x = 0 and L. Let P (x2, t | x1, 0) be the probability that 

the position of a particle is x2 at time t, given that it is x1 at t=0. According to the reference1, the 

probability distribution of one-dimensional restricted motion can be described as   
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𝑃(𝑥2, 𝑡|𝑥1, 0) = 𝛿(𝑥2 − 𝑥1)     (𝑡 = 0)      (ES7) 

Based on this formula, let t equals to the exposure time of one frame, the probability distribution 

can be represented in Figure S1a. When 𝑥1 = 𝐿 2⁄ , the probability distribution (black line in Figure 

S1b) is exactly the same as the probability distribution of Brownian diffusion with the same 

diffusion coefficient (red dotted line in Figure S1b).  

As proven in Methods of main text, the diffusion displacement of Brownian diffusion along 
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each dimension is modeled as normal distribution, and when expending to 2D, the probability 

distribution of the diffusion displacement is a Rayleigh distribution. Therefore, when the initial 

position of particles is at the center of the restricted area, 2D restricted motion can be described by 

Rayleigh distribution completely. When it deviates from the center (𝐿 2⁄ ) of the restricted area less 

than 𝐿 3⁄ , the probability distribution (black line in Figure S1c) can also be fitted approximately by 

the probability distribution of Brownian diffusion with the same diffusion coefficient2 (red dotted 

line in Figure S1c). In summary, 2D restricted motion can be described by Rayleigh distribution for 

particles in most restricted areas where their positions are not too close to the boundaries. 

 

Synthesis of diffusion displacement data 

Although a discretized virtual cell membrane geometry can be used to synthetize the diffusion 

displacement data,3 the discretized step size will affect the diffusion displacement distribution 

evidently and it is very time-consuming for the synthesis of slow-diffusion data. For free diffusion 

and restricted diffusion, it is proven that the diffusion displacement in one-dimension defer to 

normal distribution. Therefore, we synthesized the diffusion displacement data as following. 

Given the state number 𝐾 , the state transition probability matrix 𝐴  and the initial state 

probability distribution 𝜋, we generated (𝑁 × 𝐿) random 𝐾-state Markov sequences with single 

sequence length 𝐿 and sample number 𝑁. Then refer to the states in the Markov sequences, we 

generated (𝑁 × 𝐿)  one-dimensional displacement data 𝑥  and 𝑦  of normal distribution 

𝑁(0, 𝜎𝑖
2 = 2𝐷𝑖𝜏 + 〈(Δ𝑥)2〉)  respectively. It can be proven that the diffusion displacement 

(𝑟 = √𝑥2 + 𝑦2) is in Rayleigh mixture distribution (Equation 4). 

 

Definition of various errors

In all the experiments on synthetic data, we estimated the variances from eleven calculations. The 

state number bias is defined as the deviation between the estimated state number and the actual state 

number. The variance of the state number is the overall variance of estimated state number from all 

eleven calculations. 



4 
 

The state dwell time bias is defined as the ratio of the counts of wrong state to the whole actual 

state in the state path. This bias would influence the estimates of the state mixture ratios and 

transition probability. 

The diffusion coefficient bias is defined as the ratio of the difference between the estimated 

diffusion coefficient and actual diffusion coefficient to the actual diffusion coefficient. 

The transition probability bias is defined as the difference between the estimated transition 

probability and the actual transition probability. 

The state mixture ratio bias is defined as the difference between the estimated state mixture ratio 

and the actual state mixture ratio. 

 

Validation on synthetic data 

On diffusion coefficient separation 

To check the influence of diffusion coefficient separation on the recovery accuracy, refer to the 

experimental diffusion coefficients of membrane proteins, we synthesized the diffusion 

displacement data with 2-state diffusion (Table S4). The procedure to generate the synthetic data is 

described above. 

Given the state transition probability matrix 𝐴 and the initial state probability distribution 𝜋, we 

generated (𝑁 × 𝐿)  random 2-state Markov sequences with sample number 𝑁 = 3000  and 

sequence length 𝐿 = 50 frames for each sample. Then refer to the states in the Markov sequences, 

under the localization uncertainty √〈(Δ𝑥)2〉 = 10, 20, 30, 40 and 50nm, we generated (𝑁 × 𝐿) 

displacement data 𝑥 and 𝑦 of normal distribution 𝑁(0, 𝜎𝑖
2 = 2𝐷𝑖𝜏 + 〈(Δ𝑥)2〉) respectively. It 

can be proven that the diffusion displacement (𝑟 = √𝑥2 + 𝑦2) is in Rayleigh mixture distribution 

(equation 4 with 𝐾 = 2 in the Methods).  

With MLE method as mentioned in the Methods of the main text, we estimated the variance 𝜎𝑖
2 

and hence 𝐷𝑖 for fixed state number 𝐾. By setting maximum probable state number  𝐾𝑚𝑎𝑥 = 10, 

using the histogram of the diffusion displacement data to approximate the PDF of the diffusion 

displacement, and calculating its deviation from the estimated Rayleigh mixture distribution under 

http://ct.dict-client.iciba.com/2013-01-22/?action=client&word=%E8%BF%91%E4%BC%BC%E7%9A%84&dictlist=201,2,1,101,6,104,7,105,5,103,203,202,8,9,204,205,10,11,3,4,&zyid=&hyzonghe_tag=0&nav_status=1&type=0&authkey=66be41485d427754ea811581e12a5654&uuid=70DD22E89D625B1C12FBB3520C7C6893&v=2014.05.16.044&tip_show=2,1,3,4,5,6,&fontsize=0&channel=1.00###


5 
 

increasing state number 𝐾, we can determinate the most probable state number 𝐾𝑝 with the least 

deviation, namely, 𝐾𝑝 = 2. 

We trained the HMM by initializing the state number with 𝐾𝑝 = 2, the state transition probability 

matrix randomly, the initial state probability distribution with α̂, and fixing the emission probability 

as 𝑝(𝑟|𝜔𝑖 , �̂�𝑖
2), and then put this trained HMM to the synthetic diffusion displacement data to 

extract the initial state probability distribution �̂�, the state transition probability matrix �̂�. With the 

Viterbi algorithm, we extracted the most probable state path of every trajectory and further 

calculated the state mixture ratios and state dwell time of every state. 

Figures S2 and S3 show the biases and standard deviations of the four parameters under the 

localization uncertainty 10-50nm and different diffusion coefficients separation 0.9231 ≤

(𝐷2 − 𝐷1) 𝐷1⁄ ≤ 18.23. Under all the localization uncertainty and diffusion coefficients separation, 

MLE estimated the state number correctly (Figure S2a). Under all the localization uncertainty, with 

the increase of diffusion coefficients separation, the diffusion coefficient biases (Figure S2c) 

eventually fluctuate at about 3% for 𝐷1 (left), only 1% for 𝐷2(right). Even in the worst situation, 

the diffusion coefficient biases are acceptable (14.0% for 𝐷1  and 4.2% for 𝐷2 ). Under the 

localization uncertainty 10 nm and 20 nm, when (𝐷2 − 𝐷1) 𝐷1⁄ ≥ 1.69, the transition probability 

biases are less than 0.03 (Figure S3). But under the localization uncertainty larger than 30 nm 

(Figure S3), to get the same transition probability biases, larger diffusion coefficients separation is 

needed. We can always get acceptable state dwell time biases under all the localization uncertainty 

(Figure S2b). Even in the worst situation, the state dwell time bias is 27.1% ((𝐷2 − 𝐷1) 𝐷1⁄ = 0.92 

and localization uncertainty 50nm). 

On varied trajectory number 

To check the dependence of recovery accuracy on the trajectory number, under the localization 

uncertainty 10 nm, 20 nm, 30 nm and 40 nm, we synthesized a series of 3-state diffusion 

displacement data with a fixed trajectory length (𝐿 = 20 frames) and a varied trajectory number 

𝑁 = 100 − 10000 (Table S5). The procedure to generate the synthetic data and to estimate the 

parameters with MLE/HMM are similar to that in the previous section. 
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Under the localization uncertainty √〈(Δ𝑥)2〉 =10 nm, 20 nm, 30 nm and 40 nm, the MLE 

estimated the state number correctly when the trajectory number 𝑁 ≥ 600, 700, 1000 and 2700 

respectively (Figure S4a). 

Under the localization uncertainty 10 nm and 20 nm, with the increase of trajectory number, the 

diffusion coefficient biases eventually fluctuate at about 9% for 𝐷1 (left), 10% for 𝐷2 (middle) 

and only 2% for 𝐷3 (right). It is still acceptable although there are larger biases and standard 

deviations in the diffusion coefficient under the localization uncertainty 30 nm and 40 nm (Figure 

S4c). 

Under the localization uncertainty 10 nm and 20 nm, the biases of the transition probability 

between different states are nearly zeros, while standard deviations under the localization 

uncertainty 20 nm are larger (Figure S5). Under the localization uncertainty 30 nm and 40 nm, the 

biases of transition probability become larger, especially for the transition probability 𝐴22. Even if 

the trajectory length further increases, we cannot get smaller biases (Figure S5). 

With the increasing of localization uncertainty, the biases and standard deviations of the state 

dwell time increased correspondingly (Figure S4b). 

On varied single trajectory length 

Under the localization uncertainty 10 nm, 20 nm, 30 nm and 40 nm, we synthesized the diffusion 

displacement data with 3-state diffusion to check the recovery accuracy at different trajectory length 

as well (Table S6). The single trajectory length 𝐿 varied from 10 to 500 frames and trajectory 

number is fixed at 𝑁 = 1000.  

Under the localization uncertainty 10 nm and 20 nm, MLE estimated all the state number correctly, 

and there are a few wrong estimated state numbers under the localization uncertainty 30 nm, but 

when the localization uncertainty is larger than 40 nm, MLE can hardly estimate the state number 

(Figure S6a). 

From Figure S6c, we can see that, with the increased localization uncertainty, larger biases and 

standard deviations appear in the diffusion coefficients. But under the localization uncertainty 10 

nm and 20 nm, the biases and standard deviations in the diffusion coefficients are roughly equal, 

and the diffusion coefficient biases fluctuate at about 12% for 𝐷1(left), 25% for 𝐷2(middle) and 

only 2% for 𝐷3(right). 
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On varied state number 

To check the influence of state number on the recovery accuracy of state dwell time, we 

synthesized a series of diffusion displacement data with 2 to 5 states and kept both dwell time of 

each state and the diffusion coefficient separation roughly the same. The single trajectory length 𝐿 

varied from 200 to 500 frames and trajectory number was fixed at 𝑁 = 2000. The procedure to 

generate the synthetic data and to estimate the parameters with MLE/HMM were similar to that in 

the previous section. 

As shown in Figure S8, with the increase of state number in a trajectory, the state dwell time bias 

increase almost linearly. When the state number increases to 5, the state dwell time bias fluctuate at 

about 32%, which is still acceptable. 

On varied state mixture ratio 

To check the influence of state mixture ratio on the recovery accuracy of state number. We 

synthesized a series of diffusion displacement data with 2 states. The single trajectory length and 

trajectory number are fixed at L=50 and N=2000. The diffusion coefficients of state 1 and state 2 

are 0.0260 𝜇𝑚2 s⁄  and 0.0790 𝜇𝑚2 s⁄  respectively, which are similar to the diffusion of dimeric 

and monomeric receptors on cell membrane (Table S7). 

As shown in Figure S9, when the mixture ratio of a state is larger than 5%, the state number can 

be estimated completely correct. When the mixture ratio of a state is between 1% and 5%, it is 

possible to generate erroneous estimates during eleven calculations, the error rate is 45% for the 

slow diffusion state 1 at the mixture ratio of 2%, and 64% for fast diffusion state 2 at the mixture 

ratio of 1%. When the mixture ratio of a state is less than 1%, the state number can hardly be 

estimated correctly. Overall, for the state with its ratio above 5%, our method can accurately identify 

the state number. 

Comparison of the performance of RmHMM and vbSPT 

We compared the performance of RmHMM with the vbSPT method using simulated trajectories 

and checked the effects of trajectory number on the recovery accuracy of both methods. We 

synthesized a series of 3-state diffusion trajectories with a mean trajectory length of around 20 

frames (2 < L < 40) and a varied trajectory number (N = 100-10000) in which the diffusion 

coefficients were similar to those of membrane proteins (Table S8). 
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To imitate the real experimental data analysis in practice, where the real number of diffusion 

states is not prior knowledge, the maximum of hidden states (Kmax) cannot be set too small. We set 

it to 8 in RmHMM and 10 in vbSPT according to their recommended values. However, even when 

the trajectory number 𝑁 = 10000, the vbSPT method falsely estimated that the state number (K) 

as 6. Then we reduced the Kmax from 10 to 6 and found the K was always falsely estimated as 6. 

When the Kmax was set to 5, 4 or 3 separately, the K was estimated as 5, 4 or 3 correspondingly. In 

contrast, using RmHMM, the state number can always be estimated as 3 correctly. It demonstrated 

that vbSPT was unsuitable for analyzing diffusivity change of membrane proteins, which was 

explained in the introduction part of main text that some underlying assumption in vbSPT would 

often be false in two-dimensional systems. Overall, for intracellular molecules that diffuse rapidly 

(𝐷 > 0.1 𝜇𝑚2 s⁄  ), it has been confirmed that vbSPT can estimate changes of diffusion states 

accurately. But for membrane proteins, which diffuse slower (𝐷 < 0.1 𝜇𝑚2 s⁄ ), it has been revealed 

that vbSPT tends to overfit and find excessive states.  

In addition, when we pre-determined the state number as 3 (Kmax=3) in vbSPT, we compared the 

recovery accuracy of two methods on diffusion coefficient, state mixture ratio and state transition 

probability (Figure S10). It showed that the diffusion coefficients estimated by RmHMM were much 

more accurate than them of vbSPT. And for state mixture ratio and state transition probability, 

RmHMM can get accurate results with fewer trajectories. 

Therefore, our RmHMM method performs better than the other method, especially for the slow-

diffusion membrane proteins. 

 

Application to experimental data 

On EGFR data 

Refer to the formula of the localization uncertainty in the two lateral dimensions, 4 

√〈(Δ𝑥)2〉 = √〈(Δ𝑦)2〉 = √𝑠2+𝑎2 12⁄

𝑁
+

4√𝜋𝑠3𝑏2

𝑎𝑁2     (ES8) 

where the standard deviation of the point spread function 𝑠, number of the collected photons 𝑁, 

and the background noise 𝑏 can be calculated with Gaussian fitting the single spark in the images, 

and 𝑎  is the pixel size of the sensor. We calculated the localization uncertainty of EGFR 
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trajectories. Figure S11a shows the comparison between diffusion displacement (green stars) and 

localization uncertainty (red circles), and Figure S11b shows the localization uncertainty 

distribution (black bars) in two orthotropic (X/Y) dimensions and the fitted Gaussian mixture 

models (red dashed curves) with the expected value 𝜇𝑖 and the mixture ratio 𝛼𝑖 (the inset tables 

show the parameters of the Gaussian mixture models). 

From the fitted Gaussian mixture models, we obtained the mean localization uncertainty in the 

two dimensions is all 22.3nm (corresponding to diffusion coefficients of 0.0025 μm2 s⁄  at the 

frame rate 10Hz), thus we used 22.3nm localization uncertainty in the calculation. 

Mixing up the trajectory data of diffusion displacements from single-molecule imaging of EGFR 

in resting and stimulated HeLa cells, with the MLE algorithm, we got the estimated most probable 

state number 𝐾𝑝, diffusion coefficients �̂�, and the Rayleigh mixture ratios �̂�. Figure S12a shows 

the MLE errors with the increase of state number, where MLE error is defined as the deviation value 

between the PDF of diffusion displacements and the estimated Rayleigh mixture distribution. The 

most probable state number 𝐾𝑝 is determined at the least MLE error, namely, 𝐾 = 5 in Figure 

S12a. It should be noticed that, because the determinate Rayleigh probability distribution, more state 

number does not guarantee smaller MLE error. 

Bootstrapping was used in the MLE to get robust estimates, in which, the total bootstrap number 

is 11 and 90% stochastic data of the data set was used in each iteration, the estimated most probable 

state number is selected as the state number. For example, in Figure S12b, there are 7 times when 

the state number is estimated as 4 in 11 calculations. 𝐾𝑝 = 4 is selected as the state number. 

Figure S13 shows the PDF (normalized histogram) of the diffusion displacements of EGFR 

trajectories in black solid curve and the estimated 4-state Rayleigh mixture distribution in red dashed 

curves, and the inset table are the estimated parameters with MLE. 

By initializing the state number with 𝐾𝑝 = 4, the state transition probability randomly, the initial 

state probability distribution with �̂� , and fixing the emission probability as the 4 Rayleigh 

distributions 𝑝(𝑟|𝜔𝑖 , �̂�𝑖
2), we trained the HMM with the trajectory data mentioned above (Table 

S9). 

Finally, we put this trained HMM to the EGFR trajectory data from the resting and the stimulated 

HeLa cells separately, to extract their initial state probability distribution �̂�  and the transition 

probability �̂� respectively, and meanwhile to get the most probable state path of every trajectory 
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with Viterbi algorithm and further to calculate the state dwell time and state mixture ratio of every 

state. 

Table S1 shows the extracted parameters in four diffusion states and in which, the rows labeled 

with “Resting” and “Stimulated” stand for the resting HeLa cells and EGF stimulated HeLa cells 

respectively. Figure S14a is a representative trajectory with unusual transition between the state 3 

and state 4, and Figure S14b shows the exponential decay of the dwell time of the 4th state with 

characteristic time 𝜏4 = 0.09s (smaller than the exposure time 0.1s). Hence we did not analyze the 

4th states in detail, and hypothetically attributed them to the large localization uncertainty or 

miscollecting. 

To validate the registration of the slow (2nd) and fast (3rd) diffusion states to dimeric EGFR and 

monomeric EGFR states, an EGFR mutant DelD (deletion of the entire dimerization arm) (Figure 

S15) was examined. We applied our RmHMM method to analyze DelD trajectories from both 

resting and EGF-treated Hela cells (Table S10). The RmHMM method also extracted four diffusion 

states from all the trajectories (Table S2).  

As shown from the RmHMM analyses, the DelD also exhibited two major diffusion states with 

diffusion coefficients 𝐷2 = 0.0213 ± 0.0025 μm2 s⁄  and 𝐷3 = 0.0691 ± 0.0050 μm2 s⁄ , which 

were considered as dimer and monomer, respectively. 

On TβRII data  

The method was performed on TRII-GFP trajectories (𝐿 ≥ 20 frames for each trajectory) from 

cells with or without TGF- stimulation (Table S11). 

Mixing up the trajectory data of diffusion displacements from single-molecule imaging of TRII 

in resting and stimulated HeLa cells, with the MLE algorithm, we got the estimated most probable 

state number 𝐾𝑝 = 5, diffusion coefficients �̂�, and the Rayleigh mixture ratios �̂�.  

Figure S16 shows the PDF (normalized histogram) of the diffusion displacements in black solid 

curve and the estimated 5-state Rayleigh mixture distribution in red dashed curves, and the inset 

table are the estimated parameters with MLE. 

By initializing the state number with 𝐾 = 5, the state transition probability randomly, the initial 

state probability distribution with �̂� , and fixing the emission probability as the 5 Rayleigh 

distributions 𝑝(𝑟|𝜔𝑖 , �̂�𝑖
2), we trained the HMM with the trajectory data as mentioned above. (Table 
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S11) 

Finally, we put this trained HMM to the TRII trajectory data from the resting and the stimulated 

HeLa cells separately, to extract their initial state probability distribution �̂�  and the transition 

probability distribution matrix �̂� respectively, and meanwhile to get the most probable state path 

of every trajectory with Viterbi algorithm and further to calculate the state dwell time and state 

mixture ratio of every state. Table S12 shows the extracted parameters in five diffusion states and 

in which, the rows labeled with “Resting” and “Stimulated” stand for the resting HeLa cells and 

TGF-stimulated HeLa cells respectively. 

 

Experimental Procedures 

Cell culture and transfection 

Plasmids of EGFR-EGFP and TRII-EGFP were constructed as previously described.5 The 

EGFR mutant DelD was generated by deletion the residues 242-259 of EGFR-EGFP.6 All the 

plasmids were confirmed by DNA sequencing. 

HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) 

supplemented with 10% fetal bovine serum (Hyclone) and antibiotics (50 mg/mL streptomycin, 50 

U/mL penicillin) at 37 °C in a 5% CO2 atmosphere. Cells were seeded in a 35-mm glass-bottom 

dish for 16 hours and then transfected with 0.5μg  TRII-EGFP, EGFR-EGFP or DelD-EGFP 

plasmids in the DMEM medium for 4 hours, respectively. Transfection was performed using 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions.  

For the ligand stimulation experiments, cells transfected with EGFR-EGFP or DelD-EGFP were 

added with 10ng/ml EGF (R&D) in phenol red-free DMEM for 10 min at 37 °C before fluorescence 

imaging. Cells transfected with TRII-EGFP were added with 10ng/ml TGF- (R&D) in phenol 

red-free DMEM for 15 min at 37 °C before fluorescence imaging. 

Single-molecule imaging 

Single molecule fluorescence imaging was performed by a home-built TIRF microscope using an 

inverted Olympus IX71 microscope equipped with a total internal reflective fluorescence 
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illuminator, a 100×/1.45 NA Plan Apochromatic TIRF objective and an electron-multiplying charge-

coupled device (EMCCD) camera (Andor iXon DU-897D BV). EGFP molecules were excited by a 

488nm laser at 1mW (60W/cm2) (Melles Griot, Carlsbad, CA, USA). The collected fluorescent 

signals were passed through a filter HQ 525/50 (Chroma Technology), and then directed to the 

EMCCD camera. The gain of the EMCCD camera was set at 300. Movies of 300 frames were 

acquired for each sample at a frame rate of 10 Hz. 

Single molecule tracking with U-Track software  

Time-lapse sequences of single-molecule image were acquired and then tracked with U-Track 

methods as described in reference.7 By fitting Gaussian kernels to approximate the two-dimensional 

point spread function of the microscope objective around local intensity maxima, the sub-pixel 

localization is achieved. To construct the trajectories, the algorithm first links the detected particles 

between consecutive frames, and then links the generated track segments to simultaneously close 

gaps and capture particle merging and splitting events. 

Statistics analysis 

For robust single-molecule analysis, we repeated the experiment three times to obtain three sets 

of data under each condition, and each set of data included thousands of single-molecule trajectories 

from 6 to 8 cells to be analyzed by RmHMM. 

The diffusion coefficient, mixture ratio and transition probability were shown as mean ± the 

standard deviation from three experiments. The results obtained from cells with ligand stimulations 

were compared to those of the resting cells using the unpaired Student’s t-test. (GraphPad Prism 

Software). The state dwell times were obtained from fitting of histograms of thousands trajectory 

segments and they were compared by non-parametric Mann-Whiteney U test. P-value less than 0.05 

is regarded as statistically significant. 
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Figure S1. The probability distribution of one-dimensional restricted diffusion when 

L equals to 1 μm (a) and the sectional view of it when 𝑥1 = 1 2 μm⁄  (b), or 𝑥1 =

1 6 μm⁄  (c). In (b) and (c), the black line is the actual probability distribution of 

restricted diffusion, the red dotted line is the probability distribution of Brownian 

diffusion with the same diffusion coefficient. 
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Figure S2. When the localization uncertainty √〈(𝛥𝑥)2〉 varied from 10, 20, 30, 40 to 50nm (blue, 

red, green, purple, orange respectively), changes of parameter biases and variances under different 

diffusion coefficient separation with bootstrapping number 11. (a) Biases and standard deviations 

of the state number. (b) Biases and standard deviations of the state dwell time. (c) Biases and 

standard deviations of the diffusion coefficients.  
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Figure S3. When the localization uncertainty √〈(𝛥𝑥)2〉 varied from 10 to 50nm (blue, red, green, 

purple, orange respectively), changes of biases and variances of the transition probabilities under 

different diffusion coefficients separation with bootstrapping number 11.   
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Figure S4. With the localization uncertainty √〈(𝛥𝑥)2〉 varied from 10nm, 20nm, 30nm to 40nm 

(blue, red, green, purple respectively), changes of parameter biases and variances under varied 

trajectory number with bootstrapping number 11. (a) Biases and standard deviations of the state 

number. (b) Biases and standard deviations of the state dwell time. (c) Biases and standard 

deviations of the diffusion coefficients. 

 



17 
 

 

Figure S5. With the localization uncertainty √〈(𝛥𝑥)2〉 varied from 10nm, 20nm, 30nm to 40nm 

(blue, red, green, purple respectively), changes of biases and variances of the transition probabilities 

under varied trajectory number with bootstrapping number 11.   
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Figure S6. With the localization uncertainty √〈(𝛥𝑥)2〉 varied from 10nm, 20nm, 30nm to 40nm 

(blue, red, green, purple respectively), change of parameter biases and variances under varied single 

trajectory length with bootstrapping number 11. (a) Biases and standard deviations of the state 

number. (b) Biases and standard deviations of the state dwell time (Note: when the uncertainty is 

large such as 40nm, the state number could be sometimes falsely predicted, thus the dwell time bias 

could not be calculated in those cases, resulting in the disconnected purple line). (c) Biases and 

standard deviations of the diffusion coefficients. 
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Figure S7. With the localization uncertainty √〈(𝛥𝑥)2〉 varied from 10nm, 20nm, 30nm to 40nm 

(blue, red, green, purple respectively), changes of biases and variances of the transition probabilities 

under varied single trajectory length with bootstrapping number 11. 
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Figure S8. Changes of the state dwell time bias and standard variances under different state number 

with bootstrapping number 5. 

 

 

 

 

 

 

 

Figure S9. Changes of the state number bias and standard variances under different state mixture 

ratio with bootstrapping number 11. 
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Figure S10. Comparison of parameter biases of vbSPT (orange lines) and RmHMM (blue lines) 

under varied trajectory number for the synthesized series of 3-state diffusion trajectories (Table S8). 

The error bars are the standard deviations of three sets of data. (a) Biases of the diffusion coefficients. 

(b) Biases of the state mixture ratio. (c) Biases of the transition probabilities. The results of vbSPT 

were not shown when trajectory number was less than 400, because it falsely identified two diffusion 

states.  
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Figure S11. Diffusion displacement and localization uncertainty distribution calculated from EGFR 

data. (a) The comparison between diffusion displacement (green stars) and localization uncertainty 

(red circles). (b) The localization uncertainty distribution (black bars) in X (left) and Y (right) 

dimensions and the fitted Gaussian mixture models (red dashed curves). 

 

 

Figure S12. The estimation of state number K from the MLE (a) Changes of MLE error with 

increasing state number. The insert figure is the magnified view of state number from 4 to 6. (b) 

Bootstrapping process of calculating the state number.  
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Figure S13. The probability density distribution and its estimated 4-state Rayleigh mixture 

distribution of experimental data from EGFR imaging in resting and stimulated HeLa cells. The 

inset table are the estimated parameters with MLE. 

 

 

 

 

 

 

 

Figure S14. A representative trajectory of single EGFR molecule with unusual transition between 

the state 3 and state 4 (a) and the exponential decay of the dwell time of the 4th state (b). 
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Figure S15. Ribbon diagram of the dimeric EGFR extracellular domain structure. The dimerization 

arms (residues 242-259) of two receptors are shown in pink and red, respectively. (PDB accession 

no. 3LTF) 

 

 

 

 

Figure S16. The probability density distribution and its estimated 5-state Rayleigh mixture 

distribution of experimental data from TβRII imaging in resting and stimulated HeLa cells. The 

inset table displayed the estimated parameters with MLE. 
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Figure S17. The dwell time of the dimeric TβRII before (left panel) and after (right panel) ligand 

stimulation. The histograms were fitted with a single exponential function. The dotted lines are the 

fitting curves.  The τ values obtained from cells with ligand stimulations were compared to those 

of the resting cells using Mann-Whiteney U test. ***, P < 0.001. 
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Table S1. The extracted parameters in four diffusion states from EGFR data in resting and 

stimulated HeLa cells. 

Diffusion coefficients 

(μm2 s⁄ ) 
Cell states Mixture ratios (%) State transition probability 

D1=0.0029±0.3e-3 

Resting α1=0.19±0.2 

A11=0.2523±0.1322  

A12=0.4044±0.0927  

A13=0.2753±0.1769  

A14=0.0681±0.0471 

Stimulated α1=0.92±0.79 

A11=0.3721±0.1423  

A12=0.4215±0.0208  

A13=0.1753±0.1291  

A14=0.0311±0.0284 

D2=0.0192±1.3e-3 

Resting α2=9.74±3.48 

A21=0.0448±0.0055  

A22=0.6906±0.0942  

A23=0.2216±0.0677   

A24=0.0430±0.0299 

Stimulated α2=25.48±5.85 

A21=0.0531±0.0090  

A22=0.7713±0.0738 

A23=0.1537±0.0565  

A24=0.0219±0.0154 

D3=0.0625±0.9e-3 

Resting α3=83.81±3.67 

A31=0.0105±0.0083  

A32=0.0634±0.0157  

A33=0.8160±0.0310  

A34=0.1101±0.0333 

Stimulated α3=68.46±6.65 

A31=0.0118±0.0095  

A32=0.0772±0.0175 

A33=0.8107±0.0316  

A34=0.1003±0.0383 

D4=0.3273±1.3e-2 

Resting α4=6.26±1.11 

A41=0.0111±0.0082  

A42=0.0776±0.0345  

A43=0.5616±0.0834  

A44=0.3497±0.0605 

Stimulated α4=5.14±1.01 

A41=0.0109±0.0083  

A42=0.0780±0.0293  

A43=0.5439±0.0836  

A44=0.3671±0.0795 
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Table S2. The extracted parameters in four diffusion states from DelD data in resting and 

stimulated HeLa cells. 

Diffusion coefficients 

(μm2 s⁄ ) 
Cell states Mixture ratios (%) State transition probability 

D1=0.0034±0.4e-3 

Resting α1=0.53±0.82 

A11=0.2511±0.2140 

A12=0.3850±0.0249 

A13=0.3049±0.1598    

A14=0.0590±0.0337 

Stimulated α1=0.45±0.58 

A11=0.2578±0.1870 

A12=0.4164±0.0450 

A13=0.2818±0.1333    

A14=0.0440±0.0201 

D2=0.0213±2.5e-3 

Resting α2=22.34±2.23 

A21=0.0519±0.0010 

A22=0.7282±0.0257 

A23=0.1937±00232    

A24=0.0263±0.0041 

Stimulated α2=26.72±5.15 

A21=0.0533±0.0052 

A22=0.7489±0.0145 

A23=0.1779±0.0169    

A24=0.0199±0.0010 

D3=0.0691±5e-3 

Resting α3=72.67±1.68 

A31=0.018±0.0093 

A32=0.0874±0.0138 

A33=0.8143±0.0266    

A34=0.0800±0.0154 

Stimulated α3=69.29±5.01 

A31=0.0190±0.0103 

A32=0.0911±0.0199 

A33=0.8194±0.0280    

A34=0.0706±0.0119 

D4=0.3167±2.2e-2 

Resting α4=4.45±1.25 

A41=0.0161±0.0081 

A42=0.0872±0.0052 

A43=0.5025±0.0487    

A44=0.3941±0.0368 

Stimulated α4=3.53±0.33 

A41=0.0170±0.0098 

A42=0.0883±0.0164 

A43=0.5127±0.0305    

A44=0.3819±0.0233 
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Table S3. Model parameters for figure 1. 

Parameters Values 

𝐾 3 

𝐷1 0.0057 

𝐷2 0.0260 

𝐷3 0.0790 

𝜋1 0.23 

𝜋2 0.34 

𝜋3 0.43 

𝐴11 0.839 

𝐴12 0.011 

𝐴13 0.150 

𝐴21 0.014 

𝐴22 0.976 

𝐴23 0.010 

𝐴31 0.075 

𝐴32 0.003 

𝐴33 0.922 

𝑁 10000 

𝐿 50 

√〈(Δ𝑥)2〉 0 nm 

 

 

Table S4. Model parameters for checking the dependence of recovery accuracy on the 

diffusion coefficients separation. 

Parameters Values 

𝐾 2 

𝐷1 0.026 

𝐷2 0.050-0.500 

𝜋1 0.43 

𝜋2 0.57 

𝐴11 0.939 

𝐴12 0.061 

𝐴21 0.024 

𝐴22 0.976 

𝑁 3000 

𝐿 50 

√〈(Δ𝑥)2〉 20 nm 
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Table S5. Model parameters for checking the dependence of recovery accuracy on the 

trajectory number. 

Parameters Values 

𝐾 3 

𝐷1 0.0057 

𝐷2 0.0260 

𝐷3 0.0790 

𝜋1 0.23 

𝜋2 0.34 

𝜋3 0.43 

𝐴11 0.839 

𝐴12 0.011 

𝐴13 0.150 

𝐴21 0.014 

𝐴22 0.976 

𝐴23 0.010 

𝐴31 0.075 

𝐴32 0.003 

𝐴33 0.922 

𝑁 100-10000 

𝐿 20 

√〈(Δ𝑥)2〉 20 nm 

  



30 
 

Table S6. Model parameters for checking the recovery accuracy at different trajectory length. 

Parameters Values 

𝐾 3 

𝐷1 0.0057 

𝐷2 0.0260 

𝐷3 0.0790 

𝜋1 0.23 

𝜋2 0.34 

𝜋3 0.43 

𝐴11 0.839 

𝐴12 0.011 

𝐴13 0.150 

𝐴21 0.014 

𝐴22 0.976 

𝐴23 0.010 

𝐴31 0.075 

𝐴32 0.003 

𝐴33 0.922 

𝑁 1000 

𝐿 10-500 

√〈(Δ𝑥)2〉 20 nm 

 

 

 

Table S7. Model parameters for checking the recovery accuracy at different state mixture 

ratio. 

Parameters Values 

𝐾 2 

𝐷1 0.0260 

𝐷2 0.0790 

𝜋1 0.001-0.20, 0.80-0.999 

𝜋2 0.001-0.20, 0.80-0.999 

𝐴11 1.0 

𝐴12 0.0 

𝐴21 0.0 

𝐴22 1.0 

𝑁 2000 

𝐿 50 

√〈(Δ𝑥)2〉 10 nm 
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Table S8. Model parameters for comparing the performance of RmHMM and vbSPT. 

Parameters Values 

𝐾 3 

𝐷1 0.0057 

𝐷2 0.0260 

𝐷3 0.0790 

𝜋1 0.23 

𝜋2 0.34 

𝜋3 0.43 

𝐴11 0.839 

𝐴12 0.011 

𝐴13 0.150 

𝐴21 0.014 

𝐴22 0.976 

𝐴23 0.010 

𝐴31 0.075 

𝐴32 0.003 

𝐴33 0.922 

𝑁 100-10000 

𝐿 2-40  

𝐿mean 20 

√〈(Δ𝑥)2〉 20 nm 

 

Table S9. The parameters for training RmHMM with the mixing data of EGFR in Hela cells 

Experiment No. 1 2 3 

𝑁 8902 4174 5140 

𝐿 ≥ 20 ≥ 20 ≥ 20

√〈(Δ𝑥)2〉 22.3 nm 20.5 nm 23.2 nm 

 

Table S10. The parameters for training RmHMM with the mixing data of DelD in Hela cells 

Experiment No. 1 2 3 

𝑁 5033 14396 8658 

𝐿 ≥ 20 ≥ 20 ≥ 20 

√〈(Δ𝑥)2〉 19.4 nm 22.6 nm 20.3 nm 

Table S11. The parameters for training RmHMM with the mixing data of TβRII in Hela 
cells 

Experiment No. 1 2 3 

𝑁 7589 8145 11479 

𝐿 ≥ 20 ≥ 20 ≥ 20 

√〈(Δ𝑥)2〉 24.6 nm 21.1 nm 19.8 nm 
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Table S12. The extracted parameters in five diffusion states from TβRII data in resting and 
stimulated HeLa cells. 

Diffusion coefficients 

(μm2 s⁄ ) 
Cell states Mixture ratios (%) State transition probability 

D1=0.0028±0.7e-3 

Resting α1=0.92±0.35 

A11=0.6492±0.0460  

A12=0.2615±0.0253  

A13=0.0657±0.0180    

A14=0.0068±0.0012   

A15=0.0168±0.0037 

Stimulated α1=1.31±1.35 

A11=0.7052±0.0362 

A12=0.2489±0.0373 

A13=0.0389±0.0055    

A14=0.0030±0.0010   

A15=0.0039±0.0023 

D2=0.0106±2.0e-3 

Resting α2=10.07±0.75 

A21=0.0427±0.0032 

A22=0.7900±0.0167 

A23=0.1448±0.0165    

A24=0.0161±0.0012   

A25=0.0066±0.0015 

Stimulated α2=14.99±0.92 

A21=0.0400±0.0111 

A22=0.8161±0.0134 

A23=0.1300±0.0078    

A24=0.0113±0.0015   

A25=0.0026±0.0015 

D3=0.0284±2.4e-3 

Resting α3=53.53±4.23 

A31=0.0039±0.0002 

A32=0.0475±0.0036 

A33=0.7993±0.0131    

A34=0.1189±0.0130   

A35=0.0304±0.0028 

Stimulated α3=60.73±1.25 

A31=0.0026±0.0015 

A32=0.0524±0.0035 

A33=0.8312±0.0099    

A34=0.0999±0.0043   

A35=0.0138±0.0056 

D4=0.0689±1.3e-3 

Resting α4=31.97±3.99 

A41=0.0006±0.0002 

A42=0.0071±0.0021 

A43=0.1502±0.0343    

A44=0.7650±0.0363   

A45=0.0771±0.0062 

Stimulated α4=21.4±2.49 

A41=0.0003±0.0002 

A42=0.0087±0.0011 

A43=0.1786±0.0025    

A44=0.7652±0.0159   

A45=0.0472±0.0139 
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D5=0.3811±5.6e-3 

Resting α5=3.52±0.48 

A51=0.0082±0.0012 

A52=0.0205±0.0066 

A53=0.2551±0.0582    

A54=0.4052±0.0577   

A55=0.3110±0.0106 

Stimulated α5=1.57±0.74 

A51=0.0048±0.0048 

A52=0.0236±0.0050 

A53=0.2824±0.0155    

A54=0.4193±0.0385  

A55=0.2700±0.0252 
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