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1. The computational methods

All geometric optimization of crystals was performed within the density

functional theory as implemented within the Vienna ab initio simulation package

(VASP)1,2 with projected augmented wave (PAW) method3,4 and the

exchange-correlation interactions were treated within spin-polarized gradient

approximation and Perdew-Burke-Ernzerhof generalized gradient approximation

(PBE-GGA).5 The plane-wave cutoff energy is taken as 500 eV and 12  ×   9  ×  

1 k-points sampling are used for the ground state calculation. The lattice geometries

and atomic positions were fully relaxed until the energy and force were converged to

10-6 eV and 0.01 eV/Å.

For high-throughput calculations, phonon dispersions were calculated by density

functional perturbation theory (DFPT)6 using a 4 × 4 × 1 supercell. The phonon

calculations of six selected materials were performed using a 5×5×1 supercell with

the finite displacement method.7, 8 Ab initio molecular dynamics (AIMD) simulations

were performed at 300 K using canonical ensemble (NVT) with Nosé-Hoover

thermostat9, 10 lasting for 6 ps with a time step of 3 fs.

The carrier mobility (µ) was calculated based on the deformation potential

theory.11 The carrier mobility (µ) in 2D materials is given as
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here, ħ is the reduced Planck constant, kB is Boltzmann constant, and T is the

temperature (here 300 K in this work). C2D is the elastic modulus defined
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 , where E is the total energy of the supercell and S0 is the area

of the optimized supercell. 1222* ]kE(k)/[m   is the carrier effective mass

along x and y directions, and *
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xd mmm  is the carrier reduced effective mass. Ei

represents the deformation potential constant of the CBM (electron) and VBM (hole)

along the transport direction, defined by )/ΔE/(ΔE 0i ll , where ΔE is the energy

change of the CBM or VBM under proper cell compression and dilatation, 0l is the



lattice constant along the transport direction, and l is the length of deformation on

0l ( 0/Δ ll is set to be 0.3% in this work).

The GW approximation12, 13 was applied to obtain the quasiparticle (QP) energies

via the perturbative solution to the Dyson equation
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where em is the mass of electron,  is the reduced Planck constant, ionV is the

electrostatic potential contributed by ions, HV is the Hartree potential, and QP
nkE is

the quasi-particle energy.

The optical excitation energies and exciton wave functions are determined

through Bethe-Salpeter equation (BSE) 14, 15, 16
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where QP
ckE and QP

vkE are the quasi-particle energies for conduction and valence bands,

ehK and SΩ are the electron-hole interaction kernel and excitation energy,

respectively.

The imaginary part is evaluated from the excitation energies and exciton wave

functions with the following expression16
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where λ and v is the polarization vector of the incident light and velocity operator,

respectively, and Sv0 is the transition matrix element.

The absorption coefficient α(ω) is calculated as follows17
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where )ω(ε1 and )ω(ε2 are the real and imaginary parts of the dielectric function,

respectively.

The kinetic energy cutoff for GW and BSE is 250 eV, and 10 occupied and 10

unoccupied orbitals are used to build the electron-hole interaction kernel.



We use the element-related properties data from the python mendeleev package

0.4.118 and the valence electron orbit radius of atoms from Ref.[19].

2. Gradient boosting regression

The machine-learning was created using the Gradient boosted regression (GBR)
20, 21 in the open-source scikit-learn package.22 The algorithm is based on the learning

principle that finding many weakly accurate prediction algorithms can be much easier

than finding a single highly accurate algorithm. After multiple iterations, the final

regression algorithm is to combine several weak regression algorithms obtained by

each of training into a single more accurate than any single weak algorithm, which

reads


M

m
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where (x)hm are the weak regressions, x is the input data, mγ is the weight of each

regression, and M is the number of the weak regressions. At each of iteration, the

weight mγ of next weak algorithms is obtained by minimizing the loss function for all

data (count N) )]h(xγ)(xF,L[yminargγ im

N
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where )(xF i1-m is the current model.

Here, the five optimized hyper-parameters in the GBR model are obtained by grid

searching method: loss function (least squares), learning rate (0.1), maximum depth of

the individual regression estimators (7), maximum leaf nodes of the individual

regression estimators (7) and the number of learning algorithms (200).



3. Model evaluation

The coefficient of determination ( 2R ), employed to evaluate the goodness of fit,

is defined as
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where True
iy is the true value, Pred

iy is the predicted value, N is the number of data

and p is the number of fitting parameters. The closer to 1 the value of 2R , the better

the fitting degree on true values.

The mean squared error (MSE) represents the expected value of the square of the

difference between the fitting values and true data, which is defined as
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The correlation between predictive value and real value can be reflected by

Pearson coefficient (r):
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The value is between -1 and +1. If r is larger than zero, implying that the two

variables are positively correlated. If r is less than zero, suggesting two variables are

negatively correlated. Moreover, the greater the absolute value of r, the stronger the

correlation.
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4. Initial features

Features Definition

rA, rB1, rB2, rX1, rX2 ion radii of A, B1, B2, X1 and X2-site atoms

�ꏰᤣ�� First distorted stacked octahedral factor defined as
B2B1

B2A

rr
rr




�ꏰᤣ�� Second distorted stacked octahedral factor defined as
X1B2

B2

rr
r


�ꏰᤣ�� Third distorted stacked octahedral factor defined as
X1B1

X1A

rr
rr




�ꏰᤣ�� Fourth distorted stacked octahedral factor defined as
X1B2

X1

rr
r


�ꏰᤣ�� Fifth distorted stacked octahedral factor defined as
B2B1

B1A

rr
rr




�ꏰᤣ�� Sixth distorted stacked octahedral factor defined as
X2B1

B1

rr
r


�ꏰᤣ�� Seventh distorted stacked octahedral factor defined as
B2X2

X2A

rr
rr




�ꏰᤣ�� Eighth distorted stacked octahedral factor defined as
X2B1

X2

rr
r


IEA, IEB1, IEB2, IEX1,

IEX2

Ionization energy of A, B1, B2, X1 and X2-site atoms

EAB1, EAB2, EAX1,

EAX2

Electron affinity of B1, B2, X1 and X2-site atoms

PA, PB1, PB2, PX1,

PX2

Ionic polarizability of A, B1, B2, X1 and X2-site atoms

XA, XB1, XB2, XX1,

XX2

Martynov-Batsanov electronegativity of A, B1, B2, X1 and X2-site

atoms

ICA, ICB1, ICB2, ICX1,

ICX2

Ionic charge of A, B1, B2, X1 and X2-site atoms

Table S1. 62 Initial features with definition



nA, nB1, nB2, nX1,

nX2

Number of valence electrons of A, B1, B2, X1 and X2-site atoms

nA(in), nA(out) Number of valence electrons in the inner/outer shell of A atom

rA(in), rA(out) Inner/outer valence electrons orbital radius of A atom

nB1(s), nB1(p), nB2(s),

nB2(p), nX1(s), nX1(p),

nX1(s), nX2(p)

Number of s, p valence electrons of B1, B2, X1 and X2-site atoms

rB1(s), rB1(p), rB2(s),

rB2(p), rX1(s), rX1(p),

rX1(s), rX2(p)

The s, p valence electrons orbital radius of B1, B2, X1 and X2-site

atoms



5. Feature reduction

As shown in Figure S1, using the principal component analysis (PCA) method23,

we acquire the importance of all 62 initial features, and then we perform a feature

reduction by excluding the features with less impact until R2 achieves a maximum

(0.835). In the end, we find that 26 features form an optimal vector of features.

Figure S1. Determination coefficient (R2) of GBR model with

increasing the feature numbers. The position of the red pot is the

maximum value of R2 (0.835), corresponding to 26 feature numbers.
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6. Algorithm selection

We have tested various algorithms such as the support vector regression (SVR),24

random forest regression (RFR),25 bagging26 and gradient boosting regression (GBR),

which all have been successfully used for machine-learning prediction in materials.27

In Figure S2, the results of 10-fold cross-validation regression analysis and grid

searching best hyper-parameters technique show that the GBR model outperforms

others and is the best model with the lowest mean square error (MSE = 0.086) and

largest coefficient of determination value (R2= 0.835).

Figure S2. Ten-fold cross-validation plots for the four Machine-learning algorithms
to predict the band gaps. Models are evaluated with coefficient of determination
(R2) and mean squared error (MSE) of (a) gradient boosted regression (GBR), (b)
support vector regression (SVR), (c) random forest regression (RFR) and (d)
bagging. The inset of (a) is the convergence of learning curve for ten-fold
cross-validation split of the data.
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7. Comparison of various feature combinations

We consider �ꏰᤣ� as better features than ᤣ� since �ꏰᤣ� can describe the

geometric relation of the inequitable atoms in octahedrons in an even better fashion.

To verify, we compare four different feature vectors (features of element-related

properties; features of element-related properties plus ᤣ�; features of element-related

properties plus �ꏰᤣ�; features of element-related properties plus both �ꏰᤣ� and ᤣ�),

and find that the feature vectors including element-related properties and �ꏰᤣ� give

the best prediction accuracy among the others (see Table S2).

Feature combinations R2 MSE

�ꏰᤣ� + element-related properties 0.835 0.086

�ꏰᤣ� + ᤣ� + element-related properties 0.736 0.139

ᤣ� + element-related properties 0.741 0.152

Element-related properties 0.748 0.147

Table S2. Determination coefficient (R2) and mean square errors (MSE) on test data

for various feature combinations with the GBR algorithm
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8. Comparison between Machine-learning-predicted and DFT-calculated band

gaps

No. Structure EML
g EDFTg

1 As2O2BrI 1.364 1.597

2 Sb2O2BrF 1.083 1.597

3 Sb2O2BrI 0.926 1.589

4 In2OSBrF 1.062 1.577

5 As2O2ClI 1.342 1.550

6 Bi2S2BrF 1.403 1.550

7 Al2Se2I2 1.250 1.518

8 Al2Se2BrI 1.229 1.514

9 P2O2Cl2 1.070 1.507

10 Bi2S2ClF 1.330 1.503

11 In2OSeCl2 1.200 1.495

12 Al2OSeClI 1.234 1.470

13 In2OSClI 1.384 1.469

14 Al2Se2ClBr 1.443 1.436

15 Ga2S2ClBr 1.348 1.430

16 In2SSeI2 1.252 1.429

17 Bi2SSeBr2 1.295 1.424

18 Ga2S2Cl2 1.252 1.418

19 Al2OSeBrI 1.176 1.411

20 Bi2OSClF 1.409 1.406

21 Al2Se2Cl2 1.264 1.398

22 In2OSeBr2 1.280 1.385

23 Bi2OSClBr 1.568 1.381

24 Bi2OSClI 1.524 1.374

25 In2SSeClBr 1.083 1.373

26 Bi2OSFI 1.459 1.367

27 P2O2F2 1.221 1.363

Table S3. Preliminary screened 73 OOHs, the comparison between the band gaps

predicted by Machine-learning and DFT calculations and mean squared error (MSE)



28 Al2Se2ClI 1.121 1.348

29 Bi2OSCl2 1.459 1.341

30 In2SSeBrI 1.158 1.339

31 In2SSeCl2 0.958 1.338

32 P2O2ClBr 0.955 1.324

33 Al2S2FI 1.030 1.323

34 Ga2OSBrF 1.131 1.280

35 In2OSI2 1.338 1.255

36 In2SSeClI 0.995 1.255

37 Al2SSeClF 1.290 1.243

38 Al2SSeBrF 1.309 1.206

39 Sb2O2FI 0.964 1.198

40 Bi2OSBr2 1.557 1.183

41 Bi2Se2I2 1.169 1.175

42 Bi2Se2Br2 1.193 1.172

43 Bi2SSeBrF 1.171 1.171

44 Bi2Se2BrI 1.223 1.165

45 Bi2OSF2 1.341 1.122

46 Sb2S2Cl2 0.921 1.118

47 Al2OSFI 1.387 1.109

48 In2OSFI 1.111 1.100

49 Bi2OSI2 1.469 1.072

50 Al2OSeF2 1.438 1.067

51 Al2OSI2 1.419 1.062

52 Sb2S2BrF 1.013 1.051

53 As2O2FI 1.551 1.049

54 Sb2S2Br2 1.147 1.047

55 In2OSeClI 1.107 1.028

56 Ga2S2BrI 1.306 1.025

57 Ga2SSeBr2 0.937 1.016

58 Bi2Se2ClF 1.008 1.012

59 Al2OSeBrF 1.599 1.002

60 P2O2ClI 0.957 0.960



61 In2S2FI 1.074 0.960

62 Sb2S2BrI 0.903 0.950

63 Al2OSeFI 1.142 0.946

64 Ga2S2I2 1.398 0.943

65 In2S2BrF 1.094 0.941

66 Ga2OSBrI 1.052 0.903

67 Al2TeSeII 1.047 0.777

68 Bi2OSeFI 0.917 0.763

69 Ga2OSClI 1.063 0.754

70 Bi2OSeBrF 1.103 0.739

71 Al2S2BrF 1.264 1.877

72 Bi2S2Cl2 1.505 1.815

73 Al2OSClI 1.434 1.725

MSE 0.071



9. Structural details

Structure Spacegroup Lattice Constants Atom positions

Bi2Se2Br2 Pmmn: No.59 a=4.2052 Å

b=5.8758 Å

Bi1: (0, 0, 0.18858)

Bi2: (0.5 ,0.5, 0.06713)

Se1: (0, 0.5, 0.16846)

Se2: (0.5, 0, 0.08725)

Br1: (0, 0.5, 0.96540)

Br2: (0.5, 0, 0.29031)

Bi2Se2BrI Pmm2: No.25 a=4.2627 Å

b=5.8645 Å

Bi1: (0, 0, 0.18637)

Bi2: (0.5 ,0.5, 0.0649)

Se1: (0, 0.5, 0.16533)

Se2: (0.5, 0, 0.08629)

Br: (0, 0.5, 0.96412)

I: (0.5, 0, 0.30012)

Bi2Se2I2 Pmmn: No.59 a=4.3204 Å

b=5.8538 Å

Bi1: (0, 0, 0.18852)

Bi2: (0.5 ,0.5, 0.06719)

Se1: (0, 0.5, 0.16630)

Se2: (0.5, 0, 0.08941)

I1: (0, 0.5, 0.95429)

I2: (0.5, 0, 0.30142)

In2S2BrF Pmm2: No.25 a=3.6994 Å

b=5.3477 Å

In1: (0, 0, 0.18556)

In2: (0.5 ,0.5, 0.08249)

S1: (0, 0.5, 0.17437)

S2: (0.5, 0, 0.09386)

Br: (0, 0.5, 0.98393)

F: (0.5, 0, 0.24692)

In2SSeClBr Pmm2: No.25 a=3.8386 Å

b=5.5574 Å

In1: (0, 0, 0.17912)

In2: (0.5 ,0.5, 0.0761)

S: (0, 0.5, 0.16456)

Se: (0.5, 0, 0.0844)

Table S4. Structural details for Bi2Se2Br2, Bi2Se2BrI, Bi2Se2I2, In2S2BrF, In2SSeClBr
and In2SSeCl2 monolayers



Cl: (0, 0.5, 0.98713)

Br: (0.5, 0, 0.27581)

In2SSeCl2 Pmm2: No.25 a=3.7990 Å

b=5.5521 Å

In1: (0, 0, 0.18028)

In2: (0.5 ,0.5, 0.07792)

S: (0, 0.5, 0.16705)

Se: (0.5, 0, 0.08479)

Cl1: (0, 0.5, 0.98844)

Cl2: (0.5, 0, 0.26864)

Figure S3. Crystal structures of three candidates of OOHs.
Top view from z axis and side view from x axis of 2×2 unit
cell of (a) Bi2Se2Br2, (b) Bi2Se2BrI and (c) Bi2Se2I2.



10. Electronic structures

Detailed analysis of the influence of SOC effect on conduction band minima

(CBM) and the valence band maxima (VBM) reveals that the position of CBM moves

from S point to the point between G and Y. For Bi2Se2BrI and Bi2Se2I2 monolayers,

the position of VBM shifts from the point in the high symmetry path to the point inner

Brillouin zone (Figure S4(g) and (h)).

Figure S4. Electronic band structures of Bi2Se2Br2 (a) and (b), Bi2Se2BrI (c) and

(d), and Bi2Se2I2 (e) and (f) calculated at the PBE, and PBE+SOC level, as well

as the high symmetry points labeled in the first Brillouin zone (g) and (h).



For Bi2Se2Br2, Bi2Se2BrI and Bi2Se2I2 monolayers, the more elaborate hybrid

HSE06 method28 was further employed to obtain the accurate electronic band

structures. Spin-orbit coupling (SOC) was considered in calculations due to the

existence of heavy elements. But, at HSE06+SOC level, the band gaps become 1.371,

1.218 and 1.233 eV, respectively, indicating that indicating that these band gaps are

suitable for photovoltaic devices.

Figure S5. Electronic band structures of Bi2Se2Br2 (a) and (b), Bi2Se2BrI (c) and

(d) and Bi2Se2I2 (e) and (f) calculated at the HSE, and HSE+SOC level.



As is shown in Figure S6, the SOC effect is not pronounced and the band structures

obtained by PBE and PBE+SOC are almost same. Therefore, we neglected the SOC

effect on In2Se2BrF, In2SSeClBr and In2SSeCl2.

Figure S6. Electronic band structures and crystal structures. Band structures of

In2Se2BrF (a), In2SSeClBr (c) and In2SSeCl2 (e) calculated at the PBE (blue line), and

PBE+SOC level (red dash line). Top view from z axis and side view from x axis of

2×2 unit cell of In2Se2BrF (b), In2SSeClBr (d) and In2SSeCl2 (f).



11. Calculated phonon dispersions and AIMD evolutions for the monolayers

Figure S7. Calculated phonon dispersions and AIMD evolutions of average energy

per atom for Bi2Se2Br2 (a) and (b), Bi2Se2BrI (c) and (d), and Bi2Se2I2 (e) and (f)

monolayers. The insets show the snapshots of the three structures at 300 K after

12 ps AIMD simulations.



Figure S8. Calculated phonon dispersions and AIMD evolutions of average energy

per atom for In2Se2BrF (a) and (b), In2SSeClBr (c) and (d) and In2SSeCl2 (e) and (f)

monolayers. The insets show the snapshots of the three structures at 300 K after

12 ps AIMD simulations.



12. Carrier mobility

PBE Carrier direction C2D (N/m) m/m0 Ei (eV) μ (103 cm2V-1s-1)

Bi2Se2Br2

electron x 37.13 0.057 0.93 76.54

y 59.73 0.762 -11.04 0.065

hole x -1.375 -1.27 0.394

y -0.580 -3.61 0.187

Bi2Se2BrI

electron x 36.37 0.059 1.04 59.56

y 58.29 0.707 -11.06 0.069

hole x -1.693 -1.61 0.183

y -0.539 -3.16 0.240

Bi2Se2I2

electron x 35.04 0.061 0.92 67.66

y 57.06 0.727 -10.90 0.066

hole x -1.899 -1.99 0.106

y -0.449 -2.84 0.360

Table S5. PBE-calculated elastic modulus (C2D), effective mass (m/m0),
deformation potential constant (Ei), and carrier mobility (μ) in x and y directions
for Bi2Se2Br2, Bi2Se2BrI and Bi2Se2I2 monolayers at 300 K.



PBE+SOC Carrier direction C2D (N/m) m/m0 Ei (eV) μ (103 cm2V-1s-1)

Bi2Se2Br2

electron x 35.14 0.09 -0.56 89.8

y 56.61 0.953 -4.31 0.23

hole x -1.722 -1.42 0.22

y -0.57 -3.75 0.15

Bi2Se2BrI

electron x 33.77 0.096 -0.64 56.16

y 52.30 1.089 -3.26 0.30

hole x -0.229 -2.23 1.66

y -0.62 -1.98 1.21

Bi2Se2I2

electron x 32.84 0.095 -0.72 47.7

y 53.05 0.947 -3.94 0.26

hole x -0.207 -1.87 2.37

y -0.801 -1.99 0.87

Table S6. PBE+SOC-calculated elastic modulus (C2D), effective mass (m/m0),
deformation potential constant (Ei), and carrier mobility (μ) in x and y directions
for Bi2Se2Br2, Bi2Se2BrI and Bi2Se2I2 monolayers at 300 K.



PBE Carrier direction C2D (N/m) m/m0 Ei (eV) μ (103 cm2V-1s-1)

In2S2BrF

electron x 77.42 0.362 -5.43 0.42

y 57.92 0.363 -0.52 34.2

hole x -2.1 -5.11 0.037

y -0.313 -1.96 1.25

In2SSeClBr

electron x 65.30 0.367 -9.10 0.13

y 47.49 0.338 1.70 2.93

hole x -1.895 -7.44 0.018

y -0.258 -0.90 7.04

In2SSeCl2

electron x 66.47 0.345 -8.66 0.16

y 50.10 0.350 -1.80 2.70

hole x -1.956 -7.82 0.017

y -0.244 -0.54 21.5

Table S7. PBE-calculated elastic modulus (C2D), effective mass (m/m0),
deformation potential constant (Ei), and carrier mobility (μ) in x and y directions
for In2S2BrF, In2SSeClBr and In2SSe2Cl2 monolayers at 300 K.



Figure S9. Relative energy between the total energy of unstrained and strained

Bi2Se2Br2 (a) and (b), Bi2Se2BrI (c) and (d), and Bi2Se2I2 (e) and (f) monolayers

along x and y directions, respectively, at PBE level. Corresponding elastic

modulus are marked in each figure.



Figure S10. Energy shift of CBM and VBM for Bi2Se2Br2 (a, b), Bi2Se2BrI (c, d) and

Bi2Se2I2 (e, f) monolayers with respect to the lattice stretch and compression

along x and y directions, respectively, at PBE level. Corresponding Deformation

Potential constants are marked in each figure.



Figure S11. Relative energy between the total energy of unstrained and strained

Bi2Se2Br2 (a, b), Bi2Se2BrI (c, d) and Bi2Se2I2 (e, f) monolayers along x and y

directions, respectively, at PBE+SOC level. Corresponding elastic modulus are

marked in each figure.



Figure S12. Energy shift of CBM and VBM for Bi2Se2Br2 (a, b), Bi2Se2BrI (c, d) and

Bi2Se2I2 (e, f) monolayers with respect to the lattice stretch and compression

along x and y directions, respectively, at PBE+SOC level. Corresponding

deformation potential constants are marked in each figure.



Figure S13. Relative energy between the total energy of unstrained and strained

In2S2BrF (a, b), In2SSeClBr (c, d) and In2SSeCl2 (e, f) monolayers along x and y

directions, respectively, at PBE level. Corresponding elastic modulus are marked in

each figure.



Figure S14. Energy shift of CBM and VBM for the In2S2BrF (a, b), In2SSeClBr (c, d)

and In2SSeCl2 (e, f) with respect to the lattice stretch and compression along x

and y directions, respectively, at PBE level. Corresponding deformation Potential

constants are marked in each figure.
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