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Appendix A: Validity of the Steady-State Approximation
As stated in the main text, there are currently two major approaches to calculate the 

kinetics of chemical reactions: the pre-equilibrium assumption and the steady-state 

approximation. Here, we have used the steady-state approximation because we also 

intended to consider reaction conditions where a pre-equilibrium does not exist (i.e., a 

mechanism where the rate-limiting step and the step preceding it have similar kinetics). 

The main argument against the steady-state approximation is that it implicitly assumes that 

the intermediate concentration is infinitely small relative to the concentration of the reactant 

and product.1 This is true when there is a closed system with a fixed amount of reactant. 

Namely, in a closed system, mass balance indicates
2[H2] +  [Hads] +  [H + ] =  const.  Eq. S1

The initial concentration of the intermediate [Hads] and product [H+] can be assumed to be 

zero before the reaction occurs. As the steady state approximation sets  to zero, this 
∂[Hads]

∂𝑡

indicates that . Integration leads to [H2] + [H+] = [H2]t=0.This is compatible 2
∂[H2]

∂𝑡 +
∂[𝐻 + ]

∂𝑡 = 0

with Eq. S1 only if [H2] >>[Hads].

However, in the case of an open system, the boundary conditions indicated by Eq. S1 are 

not necessarily required, and under these conditions, the coverage of the intermediate can 

increase without conflict.
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Appendix B: Definition of “Large” Driving Force
The condition of large E is equivalent to the case where the back reaction of reaction 1 can 

be ignored (k2 >> k-1) as shown below:

exp (2𝐹𝐸)
𝐾 =

𝑘0
2exp (𝑓𝐸)

𝑘0
1exp ( ―𝑓𝐸)

∗
exp (𝑓𝐸1)
exp (𝑓𝐸1) =

k2

𝑘 ―1
Eq. S2

∴ exp (2𝑓𝐸) ≫ 𝐾 ↔𝑘2 ≫ 𝑘 ―1 Eq. S3

In this case, the back reaction of reaction 2 can also be ignored (k2 >> k-2), because:
𝑘2

𝑘 ―2
=

exp (𝑓(𝐸 + 𝐸1))
exp (𝑓( ―𝐸 ― 𝐸1))

= exp (2𝑓(𝐸 + 𝐸1)) ≫ 1 Eq. S4

Under this condition, the two forward reactions must be equal rate to yield a steady state, 

as can be confirmed easily below:

 𝑣1 = 𝑘0
1exp (𝑓𝐸 ― 𝑓𝐸1) = 𝑘0

1exp (𝑓𝐸)
1
𝐾

 = 𝑘0
1𝑘0

2exp (𝑓𝐸)  Eq. S5

𝑣2 = 𝑘0
2exp (𝑓𝐸 + 𝑓𝐸1) = 𝑘0

2(𝑓𝐸) 𝐾 = 𝑘0
1𝑘0

2exp (𝑓𝐸) Eq. S6
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Appendix C: Alternative Method of Obtaining the Optimum Binding Energy
Although the most direct and intuitive method of obtaining the maximum current in Eq. 20 

of the main text is to take the derivative of the denominator as shown in the main text, a more 

mathematically facile approach is shown below. 

As explained in the main text, the goal is to obtain the conditions for A and B which allow 

the denominator to be minimized. 

(𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) = (𝐾𝐴 +
1
𝐴)1

𝐵 + (𝐾
𝐴 + 𝐴)𝐵 Eq. S7

For two positive values x and y, their arithmetic mean is larger than their geometric mean, 

with the equality being satisfied when x = y. By taking 

𝑥 = (𝐾𝐴 +
1
𝐴)1

𝐵  Eq. S8

and

𝑦 = (𝐾
𝐴 + 𝐴)𝐵 Eq. S9

we obtain

(𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) ≥ (𝐾𝐴 +
1
𝐴) (𝐾

𝐴 + 𝐴)  Eq. S10

with the equality being satisfied when 

𝐵 =
𝐾𝐴 +

1
𝐴

𝐾
𝐴 + 𝐴

=
𝐾𝐴2 + 1
𝐾 + 𝐴2    Eq. S11

This is equivalent to the optimum binding energy obtained in the main text.
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Appendix D: Value of Optimum K for a Given Binding Energy
The relationship of the optimum binding energy and kinetics (Eq. 23 of the main text) yields 

the following relationship between K and j:

𝑗 =  
𝑛𝐹𝑁𝑘0

2𝐾 (𝐴4 ― 1)

2𝐴 𝐾𝐴2 + 1 𝐴2 + 𝐾 
Eq. S12

By setting  as in the main text, the following expression can be obtained:𝑘0
1𝑘0

2 = 1

𝑗 =
𝑛𝐹𝑁(𝐴4 ― 1)

2𝐴  
𝐾

(𝐾𝐴2 + 1)(𝐴2 + 𝐾) Eq. S13

Technically, this current density expression has a maximum at K = 1, because the contents 

of the square root shows a minimum at K = 1 based on:

(𝐾𝐴2 + 1)(𝐾 + 𝐴2)
𝐾 = 𝐴4 + 1 + 𝐴2(𝐾 +

1
𝐾) Eq. S14

However, the plateau region is essentially flat and becomes larger upon increasing the 

driving force (E) as shown in Figure 3 of the main text. Therefore, it should be possible to 

achieve activity similar to the optimum catalyst (log K = ∆GH = 0), even with a catalyst with a 

non-zero ∆GH. 
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