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1. Theoretical prediction of the interfacial structure of the CNTs
Note S1
Calculation of the average number of sp2-hybridized bonds 
The rate constant matrix contraction (RCMC) methodS1 classifies the local energy-
minimum structures, the so-called equilibrium structures (EQs), into super states (SSs), 
which are defined as the states where all the EQs in each SS achieve a Boltzmann 
distribution for the given timescale at a given temperature. The RCMC method is a fuzzy 
clustering method, i.e., the responsibility weight, , ranges from 0 to 1. For example, ic

if , half of the ith EQ belongs to the th SS. The average number of sp2-0.5ic 

hybridized bonds in the th SS is represented by:
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where  is the number of EQs,  the inverse temperature,  the structural EQN  iE

energy of the ith EQ, and  the number of sp2-hybridized bonds in the structure of 
2sp

iN

the ith EQ. Here, bond lengths in the range of 0.138–0.149 nm are considered sp2-
hybridized bonds. With the given initial population, the populations of the th SS at the 

given time, , , can be calculated by the full (f)-RCMC method. Then, the average t  t

number of sp2-hybridized bonds at time t is:
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In this study, we have assumed that the population of the initial structure was unity and 
all others were zero.
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Figure S1. Top 10 most populated local energy-minimum structures after one-minute 
annealing at 2000 K predicted by the f-RCMC method. CNTs are shown in line 
representation, while amorphous carbon atoms are shown in stick representation. The 
right figures in each column are the top views, while the left figures are the cut views. 
The unit cell is doubled along the axial direction of the CNTs for clarity. The number of 
sp2-hybridized bonds is shown in parentheses. The molecular graphics were created using 
the Visual Molecular Dynamics (VMD) programS2.
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2. Fabrication and characterization of the CNT yarns

Figure S2. The annealing temperature of a CNT yarn as a function of the applied electrical 
power. The temperature was measured using a radiation thermometer. The typical applied 
power was 5 W; therefore, the temperature of the CNT yarn during annealing was ~ 2000 
K.
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Figure S3. The number of CNT walls obtained from TEM images. One hundred CNTs 
were evaluated.
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Figure S4. Inner (a) and outer (b) diameter of the CNTs obtained from TEM images. One 
hundred CNTs were evaluated.



S8

Figure S5. Absorption spectra. Optical transmission spectra of the CNT webs in the 
terahertz, mid-IR, visible, and ultraviolet regions. The absorption spectra did not change 
significantly after annealing.
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Figure S6. Raman G/D ratio of annealed CNT yarns as a function of the electrical power. 
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3. Thermoelectric and mechanical properties of the CNT yarns

Figure S7. Temperature dependence of the Seebeck coefficients of the pristine, Joule-
annealed (JA), PEI-doped, as well as PEI-doped and Joule-annealed CNT yarns.
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Figure S8. Temperature dependence of the electrical conductivity of the pristine, Joule-
annealed (JA), PEI-doped, as well as PEI-doped and Joule-annealed CNT yarns.
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Figure S9. Temperature dependence of the thermoelectric power factors of the pristine, 
Joule-annealed (JA), PEI-doped, as well as PEI-doped and Joule-annealed CNT yarns.
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Figure S10. The thermal diffusivity of the CNT yarns measured by modified AC 
calorimetry.S3 The thermal diffusivity from amplitude ( ) (a) and phase ( ) (b) are 𝛼a 𝛼p

given by  and , where  and  the amplitude 𝐴 ∝ exp( ―𝑥 𝜔/2𝛼a) 𝜃 ∝ ―𝑥 𝜔/2𝛼p 𝐴 𝜃
and phase of temperature-modulation measured by a thermocouple, , and  are the 𝑥 𝜔
heated position from the thermocouple and angular frequency ( ,  = 10 Hz). 𝜔 = 2𝜋𝑓 𝑓
The thermal diffusivity ( ) is given by . The thermal diffusivity of the CNT 𝛼 𝛼 = 𝛼a ∙ 𝛼p

yarns was measured to be 3.27 ± 0.01 × 10– 5 m2/s. Thermal conductivity ( ) was 𝑘
calculated with the density ( ) and specific heat ( ) of the material as . As 𝜌 𝑐 𝛼 = 𝑘/𝜌𝑐
mentioned in the main text, density and specific heat of the material are 1.0 g/cm3 and 
0.74 J/g·K, respectively.S4
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