Mass Spectrometry-compatible Subcellular Fractionation for Proteomics

Takeshi Masuda¹, Naoyuki Sugiyama², Masaru Tomita³,

Sumio Ohtsuki¹, Yasushi Ishihama*²

Correspondence and requests for materials should be addressed to Y.I. (email: yishiham@pharm.kyoto-u.ac.jp).

Table of Contents

Supplementary Table S1. Peak picking parameters used in Mass Navigator v1.2.

Supplementary Figure S1. Optimization of the EG concentration in organellar fractionation.

Supplementary Figure S2. Enrichment ratios of marker proteins in S-PEK.

Supplementary Figure S3. Reproducibility of the developed protocol.

Supplementary Figure S4. Enrichment ratios of marker proteins from 3.5×10^5 HeLa cells.

Supplementary Figure S5. Application of the developed protocol to several cell lines.

Supplementary Figure S6. Effect of subcellular fractionation on the identification efficiency.

Supplementary Figure S7. Changes in lamin A/C subcellular localization depending on the phosphorylation state.

Supplementary Figure S8. Subcellular localization of CTND1 with phosphor-null (S864A) and phosphomimetic (S864E) mutations.

Supplementary Figure S9. Full blots of all immunoblotting results.

Supplementary Table S2. Peptide list used for calculation of enrichment ratios.

Supplementary Table S3. Phosphorylated peptide list used for calculation of enrichment ratios

Supplementary Table S4. Comparison of the enrichment ratios between the phosphopeptides and the corresponding proteins.

Parameters	LTQ-Orbitrap					
Precursor charge state	auto					
Survey scan centroid height percentage	50%					
Survey scan, centroid merge distance	0.1					
MSMS scan, centroid height percentage	50%					
MSMS scan, centroid merge distance	0.1					
Minimum nool with intervity	0.1 % of the highest peak					
Minimum peak with intensity	or 10 absolute intensity					
Minimum peak number in MSMS spectra	10					
Precursor mass tolerance for grouping	0.1					
Max number cycles between groups	10					
Max number cycles between groups	1					

Supplementary Table S1 Peak picking parameters used in Mass Navigator v1.2.

			12 M EG		9 M EG			6 M EG			3 M EG			
	UniProt ID	Protein	Cytoplasm	Organelle	Nucleus	Cytoplasm	Organelle	Nucleus	Cytoplasm	Organelle	Nucleus	Cytoplasm	Organelle	Nucleus
۶	LDHA_HUMAN		92.8%	2.3%	4.9%	84.3%	15.1%	0.6%	80.5%	18.1%	1.3%	93.1%	6.4%	0.6%
S.	LDHB HUMAN		61.2%	4.9%	33.9%	76.9%	20.2%	3.0%	64.9%	25.2%	10.0%	71.6%	28.0%	0.5%
ë	TBB4B HUMAN	0 Turkudia	76.9%	6.0%	17.2%	73.9%	23.3%	2.9%	70.4%	20.4%	9.1%	91.5%	8.3%	0.3%
,top	TBB5 HUMAN	p rubulin	70.9%	4.1%	25.0%	72.3%	21.5%	6.2%	34.4%	47.0%	18.5%	85.9%	13.0%	1.1%
े	HSP71 HUMAN	110070	75.5%	4.5%	20.0%	74.7%	19.8%	5.5%	73.9%	22.8%	3.3%	86.2%	12.8%	1.0%
Ŭ	HSP74 HUMAN	HSP70	88.9%	5.1%	6.0%	89.3%	9.9%	0.8%	89.4%	9.9%	0.7%	90.6%	8.9%	0.5%
σ	CPSM HUMAN	CPS 1	37.3%	16.6%	46 1%	16.7%	82.2%	1 1%	5.4%	93.5%	1 1%	21.8%	74.4%	3.7%
-	CI H1 HUMAN	Clathrin	62.4%	12.7%	24.9%	37.9%	59.7%	2.4%	17.5%	78.0%	4.4%	65.3%	34.2%	0.5%
ä	AT5F1 HUMAN	ATP synthase	0.4%	0.4%	99.1%	0.3%	85.5%	14.2%	0.3%	99.4%	0.3%	0.3%	99.4%	0.3%
õ	CALX HUMAN	Calnexin	2.9%	9.2%	87.9%	1.3%	91.6%	7.1%	2.3%	90.7%	7.0%	1.2%	92.2%	6.6%
0	NCPR HUMAN	P450	1.6%	3.8%	94.6%	1.4%	96.3%	2.3%	0.4%	93.0%	6.7%	1.4%	83.3%	15.3%
í			0.29/	0.0%	00.6%	0.29/	10.6%	90.19/	0.29/	10 70/	94.09/	0.49/	20.09/	60.49/
			1.00/	0.2%	99.0%	0.3%	2.0%	09.1%	0.3%	2 00/	01.0%	2.0%	30.2%	04.0%
			0.6%	0.0%	07.0%	0.0%	2.070	07 70/	0.4%	2.00/	05.0%	29.0%	20.5%	54.070
			4.0%	Z.Z./0	J1.2./0	0.270	2.170	00.6%	0.4 %	10.0%	77.00/	20.076	20.376	70.0%
			4.0%	4.0%	91.3%	3.4%	0.0%	90.0%	0.5%	19.2%	07.0%	14.470 5.29/	15.4%	70.2%
			1.0%	0.1%	00.00/	0.9%	0.0%	00.1%	0.3%	2.3%	00.00/	1.4%	2.2%	06.5%
s	H2A2D HUMAN		0.2%	0.1/0	30.370 00.49/	0.0%	0.0%	00.49/	0.1%	0.0%	00 70/	1.4 /0	2.2./0	44.0%
en	H2AL HUMAN		38.8%	0.3%	51.4%	44.8%	3.7%	51.5%	3/ 3%	7.9%	57.7%	2 9%	42.1%	944.370 Q1 3%
2			2.2%	1.0%	96.1%	1 99/	1.5%	06 7%	1 29/	1.370	07.6%	2.570	14 494	97.5%
ž		Histone	Z.Z/0	1.0 /0	03.6%	18.3%	8.0%	73 7%	5.1%	1.170	91.0%	3/ 1%	14.4 /0	33.8%
_	H2B1C HUMAN	Tilotoric	10.4%	2.7%	77 0%	7 3%	3.1%	89.6%	3.3%	4.4 /0 5.8%	Q0.0%	9.7%	1/ 9%	75.3%
	H2B1D HUMAN		13.4%	6.5%	79.8%	16.0%	5.7%	78.3%	11.1%	7.6%	81.3%	6.7%	15.4%	77.9%
	H2B1.L HUMAN		2.1%	0.4%	97.4%	4.8%	0.2%	95.0%	1.7%	0.9%	97.4%	38.0%	31.1%	30.9%
	H2B1K HUMAN		3.4%	3.3%	93.4%	3.6%	7.1%	89.3%	6.8%	7.4%	85.8%	12.2%	18.5%	69.3%
	H2B1M HUMAN		0.5%	0.1%	99.4%	1.5%	0.7%	97.8%	0.2%	1.4%	98.8%	2.1%	8.5%	89.4%
	H2B3B HUMAN		31.5%	4.9%	63.5%	25.2%	29.3%	45.5%	7.5%	14.9%	77.6%	17.3%	54.9%	27.8%
	H31 HUMAN		13.3%	8.9%	77.8%	2.2%	1.5%	96.3%	1.0%	0.7%	97.6%	13.1%	16.0%	70.9%
	H4 HUMAN	1	8.4%	2.6%	89.0%	3.5%	3.0%	93.5%	11.1%	4.8%	84.1%	15.7%	12.4%	71.9%
	Average in the corre	esponding fraction	77.7%	8.5%	89.0%	78.5%	83.1%	87.6%	68.9%	90.9%	89.0%	86.5%	76.7%	68.1%
													0	1

Enrichment ratio

Supplementary Figure S1. Optimization of the EG concentration in organellar fractionation.

(A) Subcellular fractionation was performed with 3.5×10^6 HeLa cells. Four different MSC-RIPA buffers with concentrations of 12, 9, 6, and 3 M were used to extract the organellar fractions. After fractionation, SILAC-labeled whole cell lysate proteins (L-D₄-lysine and L-¹³C₆¹⁵N₄-arginine) were added to each fraction prior to shotgun proteomics. A total of 29 marker proteins identified in this examination, consisting of six cytoplasmic, five organellar, and 18 nuclear markers, were used to evaluate the developed protocol. Enrichment ratios in the appropriate fractions were averaged. The enrichment ratios in each appropriate fraction were shown by a heat map ranging from white to blue for regions with low to high enrichment ratios.

	Marker	proteins		Average	e (n = 3)		SD (n = 3)				
	UniProt ID	Protein	Cytoplasm	Organelle	Nucleus	Cytoskeleton	Cytoplasm	Organelle	Nucleus	Cytoskeleton	
	LDHA_HUMAN	Трн	91.4%	8.5%	0.0%	0.1%	740.1%	65.9%	0.1%	0.1%	
- E	LDHB_HUMAN	LDIT	99.7%	0.2%	0.0%	0.1%	562.1%	0.3%	0.0%	0.0%	
B	HS74L_HUMAN	LIED	99.9%	0.0%	0.0%	0.0%	199.8%	0.0%	0.0%	0.0%	
ēΙ	HSP71_HUMAN	ПЭF	99.4%	0.3%	0.2%	0.1%	482.3%	0.5%	0.6%	0.0%	
0	TBB4B_HUMAN	6 Tubulin	87.5%	8.5%	0.8%	3.3%	69.9%	4.1%	0.9%	1.2%	
	TBB5_HUMAN	prubuiin	99.9%	0.1%	0.0%	0.0%	1081.2%	0.1%	0.0%	0.0%	
	CALX_HUMAN	Calnexin	2.0%	88.4%	2.1%	7.6%	1.4%	41.9%	1.6%	10.2%	
≝	NCPR_HUMAN	P450	0.0%	100.0%	0.0%	0.0%	0.0%	342.7%	0.0%	0.0%	
a	AT5F1_HUMAN	ATP synthase	1.7%	88.6%	8.0%	1.8%	0.8%	290.1%	7.5%	0.0%	
ŝ	CPSM_HUMAN	CPS1	0.1%	99.9%	0.0%	0.0%	0.5%	569.1%	0.0%	0.0%	
Ŭ	CLH1_HUMAN	Clathrin	72.1%	27.7%	0.1%	0.0%	313.6%	289.7%	0.3%	0.0%	
	LMNA_HUMAN	Lamin A/C	0.5%	0.1%	99.0%	0.5%	2.9%	0.3%	1407.8%	0.5%	
	H2AY_HUMAN		0.0%	0.0%	96.9%	3.0%	0.0%	0.0%	397.9%	8.9%	
	H2A1A_HUMAN		2.9%	20.2%	0.0%	76.9%	0.0%	0.0%	0.0%	11.5%	
	H2B1M_HUMAN		99.9%	0.0%	0.1%	0.1%	518.9%	0.0%	0.0%	0.1%	
si	H2B1D_HUMAN		0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	374.2%	0.0%	
응	H4_HUMAN	Histone	0.0%	0.0%	99.5%	0.5%	0.0%	0.0%	546.2%	0.3%	
ž	H2A2B_HUMAN	TISTOLE	3.1%	0.4%	58.6%	37.9%	0.0%	0.2%	34.8%	0.0%	
	H2AZ_HUMAN		1.5%	0.7%	38.9%	58.9%	0.2%	0.0%	18.4%	0.0%	
	H2A2A_HUMAN		6.8%	6.8%	79.5%	6.8%	0.0%	0.0%	28.6%	0.0%	
	H2B1C_HUMAN		1.2%	0.7%	38.3%	59.9%	1.3%	0.4%	7.0%	59.8%	
	H2A1C_HUMAN		64.2%	0.8%	24.8%	10.2%	167.4%	0.4%	6.2%	10.2%	
Average in the corresponding fraction		96.3%	80.9%	57.8%]	522.6%	306.7%	256.5%			

Enrichment ratio

Supplementary Figure S2. Enrichment ratios of marker proteins in S-PEK.

Subcellular fractionation was performed with S-PEK according to the instruction manual using 3.5×10^6 HeLa cells in triplicate. Acetone precipitation was conducted to remove incompatible surfactants prior to sample preparation for proteomics. SILAC-labeled whole cell lysate proteins (L-D₄-lysine and L-¹³C₆¹⁵N₄-arginine) were added to each fraction before reduction with DTT. A total of 23 marker proteins identified in this examination, consisting of six cytoplasmic, five organellar, and 12 nuclear markers, were used to evaluate the developed protocol. Their enrichment ratios were calculated as percentages by dividing the SILAC ratio by the total SILAC ratio over all fractions. To validate the accuracy of subcellular fractionation, the enrichment ratios in the corresponding fractions were averaged. The enrichment ratios were shown by a heat map ranging from white to blue for regions with low to high enrichment ratios.

Supplementary Figure S3. Reproducibility of the developed protocol.

The cytoplasmic, organellar, and nuclear fractions were collected from 3.5×10^6 HeLa cells in triplicate according to the developed protocol. SILAC-labeled whole cell lysate proteins (L-D₄-lysine and L-¹³C₆¹⁵N₄-arginine) were added to each fraction prior to reduction with DTT. Proteins with a minimum of two peptides with at least seven amino acid residues were employed for this evaluation. The enrichment ratios of 670 proteins quantified in all fractions were shown by a heat map ranging from white to blue for regions with low to high enrichment ratios. The Pearson correlation coefficient was calculated for each fraction.

۸			Developed protocol (n = 3)									
A	Marker	proteins		Average			S.D.					
	UniProt ID	Protein	Cyt	Org	Nuc	Cyt	Org	Nuc				
	LDHA_HUMAN		80.0%	18.6%	1.4%	1.1%	1.6%	1.8%				
ا s	LDHB_HUMAN	LDH	79.1%	19.1%	1.8%	4.7%	2.8%	2.8%				
ola	HSP74_HUMAN		49.5%	48.4%	2.1%	1.5%	2.2%	3.4%				
Ē	HSP71_HUMAN	пог	40.6%	48.3%	11.2%	3.5%	4.4%	1.1%				
δ	TBB4B_HUMAN	0 Tubulin	69.0%	27.9%	3.1%	1.7%	2.0%	3.4%				
	TBB5_HUMAN	niiudu i q	64.0%	31.5%	4.5%	3.3%	0.7%	4.0%				
Drganelle	CALX_HUMAN	Calnexin	0.3%	96.8%	2.9%	0.0%	2.8%	2.8%				
	NCPR_HUMAN	P450	2.1%	95.3%	2.6%	0.8%	3.4%	4.1%				
	AT5F1_HUMAN	ATP synthase	6.5%	66.6%	26.9%	3.2%	2.4%	4.8%				
	CPSM_HUMAN	CPS1	9.3%	50.9%	39.8%	1.4%	2.6%	2.4%				
0	CLH1_HUMAN	Clathrin	26.4%	70.5%	3.1%	0.9%	2.7%	3.6%				
	LMNA_HUMAN	Lamin A/C	4.4%	12.3%	83.4%	0.2%	1.7%	1.5%				
	H2AY_HUMAN		0.3%	0.3%	99.4%	0.1%	0.1%	0.2%				
s	H2A1A_HUMAN		1.4%	1.1%	97.5%	0.3%	0.2%	0.4%				
len	H2B1M_HUMAN		2.0%	1.9%	96.1%	0.5%	0.5%	0.9%				
2	H2B1D_HUMAN	Histone	1.4%	1.4%	97.1%	0.4%	0.4%	0.8%				
z	H4_HUMAN		1.1%	1.1%	97.8%	0.3%	0.6%	0.9%				
	H2AZ_HUMAN		4.4%	1.9%	93.7%	0.5%	0.2%	0.7%				
	H31_HUMAN		5.1%	5.3%	89.6%	0.3%	1.6%	1.5%				
	Average in the corr	esponding fraction	63.7%	76.0%	94.3%	2.6%	2.8%	0.9%				

В

			S-PEK (n = 3)									
	Marker	proteins		Ave	rage		S.D.					
	UniProt ID	Protein	Cyt	Org	Nuc	CSK	Cyt	Org	Nuc	CSK		
_	LDHA_HUMAN	IDU	46.2%	17.0%	11.3%	25.5%	5.1%	2.3%	1.3%	6.1%		
SI	LDHB_HUMAN	LDIT	45.8%	16.4%	13.2%	24.6%	3.9%	2.1%	1.9%	4.1%		
pla	HSP74_HUMAN	LICD	39.5%	15.3%	16.0%	29.2%	8.8%	3.1%	3.7%	8.5%		
5	HSP71_HUMAN	TIOF	30.3%	15.1%	16.7%	38.0%	7.4%	3.1%	2.1%	8.9%		
σ	TBB4B_HUMAN	ß Tubulin	45.8%	15.8%	10.0%	28.4%	7.2%	1.9%	1.1%	7.7%		
	TBB5_HUMAN	prubuiin	45.2%	17.2%	10.8%	26.8%	5.2%	0.5%	2.1%	4.7%		
	CALX_HUMAN	Calnexin	2.4%	44.6%	18.1%	34.9%	1.2%	13.2%	4.8%	8.3%		
e∥e∥	NCPR_HUMAN	P450	4.0%	49.4%	15.5%	31.1%	4.2%	8.2%	7.2%	0.5%		
Jan	AT5F1_HUMAN	ATP synthase	6.4%	18.7%	27.0%	48.0%	3.0%	6.0%	6.1%	2.7%		
ŝ	CPSM_HUMAN	CPS1	11.9%	30.7%	14.5%	42.9%	4.3%	9.3%	4.0%	16.7%		
<u> </u>	CLH1_HUMAN	Clathrin	25.2%	17.5%	13.2%	44.1%	4.0%	4.5%	2.2%	6.6%		
	LMNA_HUMAN	Lamin A/C	5.3%	1.8%	19.8%	73.2%	2.0%	0.4%	2.4%	1.6%		
	H2AY_HUMAN		2.3%	1.1%	35.7%	60.9%	2.4%	0.8%	5.6%	5.0%		
s	H2A1A_HUMAN		3.9%	1.8%	28.7%	65.6%	1.8%	0.2%	5.4%	5.5%		
len	H2B1M_HUMAN		4.8%	3.0%	30.0%	62.1%	1.4%	0.1%	5.4%	5.2%		
<u>n</u>	H2B1D_HUMAN	Histone	4.5%	2.1%	31.6%	61.7%	2.3%	0.2%	3.6%	3.2%		
z	H4_HUMAN		4.0%	3.4%	31.0%	61.7%	1.3%	0.6%	6.4%	6.2%		
	H2AZ_HUMAN		4.9%	1.0%	30.9%	63.2%	1.0%	0.1%	7.3%	7.1%		
	H31_HUMAN		7.1%	5.4%	29.8%	57.6%	1.7%	1.4%	3.5%	3.0%		
	Average in the corr	42.1%	32.2%	29.7%		6.3%	8.2%	4.9%				

Supplementary Figure S4. Enrichment ratios of marker proteins from 3.5×10^5 HeLa cells.

HeLa cells were cultured in DMEM supplemented with 10% FCS. The number of cells was counted with a hemocytometer. (A) A 20 μ L-scale subcellular fractionation was conducted in triplicate using 3.5×10^5 HeLa cells. SILAC-labeled proteins (L-D₄-lysine and L-¹³C₆¹⁵N₄- arginine) were added to each fraction prior to shotgun proteomics. A total of 19 marker proteins identified in this examination, consisting of six cytoplasmic, five organellar, and eight nuclear markers, were used to evaluate the developed protocol. The averages and standard deviations of the enrichment ratios were obtained from triplicate analyses. The enrichment ratios in each fraction were shown by a heat map ranging from white to blue for regions with low to high enrichment ratios. (B) Subcellular fractionation using S-PEK was conducted in triplicate as per the instruction manual with minor modifications. We reduced the buffer volume to one-tenth. After separating into cytoplasmic, organellar, nuclear, and cytoskeletal (CSK) fractions, the incompatible surfactants were removed by acetone precipitation. The averages and standard deviations of the enrichment ratios of the enrichment ratios were obtained from triplicate analyses.

	HeLa			A549			DLD1			HepG2		
	Cyt	Org	Nuc	Cyt	Org	Nuc	Cyt	Org	Nuc	Cyt	Org	Nuc
LDHA	-			and the second						-	•	
Calnexin		-			-			-			-	,
Lamin A/C			Norten contage									Mainten
	Panc1		HT29			K562			MKN45			
	Cyt	Org	Nuc	Cyt	Org	Nuc	Cyt	Org	Nuc	Cyt	Org	Nuc
LDHA	-	•		_			_			-	-	
Calnexin		-				•		-			-	•11 11
Lamin A/C			-	allele.	724		N-AR					NUMBER OF

Supplementary Figure S5. Application of the developed protocol to several cell lines.

HeLa, A549, DLD1, HepG2, Panc1, HT29, K562, and MKN45 cells were used in this experiment. Cells were grown in DMEM or RPMI supplemented with 10% FCS. Cell numbers were counted with a hemocytometer. The developed protocol was applied to 3.5×10^6 cells. One-fiftieth by volume of each fraction was subjected to 10%–20% SDS-PAGE, and LDHA, calnexin, and lamin A/C were detected by immunoblotting using the appropriate antibody. Full blots are shown in Supplementary Figure S9.

S9

Supplementary Figure S6. Effect of subcellular fractionation on the identification efficiency.

For details, see legend to Figure 5. (A) Venn diagram showing the number of identified proteins in the fractionated and unfractionated samples. The numbers of proteins with a minimum of two peptides with at least seven amino acid residues identified in each fraction are shown. (B) The distribution of the copy number of proteins. The copy numbers referred to a previous paper reported by Beck et al¹⁹

В

Supplementary Figure S7. Changes in lamin A/C subcellular localization depending on the phosphorylation state.

(A) Average enrichment ratios were compared for lamin A/C protein and Ser-22 phosphopeptides in each fraction. Significant differences (*t*-test) in enrichment ratios were observed for all three fractions. For details, see the legend to Figure 6. Error bars represent the standard deviation. ** p < 0.01. (B) After separation using the developed protocol, one-fiftieth of the fractionated samples was subjected to 10%–20% SDS-PAGE, and lamin A/C and Ser-22 phosphorylated lamin A/C were detected by immunoblotting (IB). Full blots are shown in Supplementary Figure S9.

Supplementary Figure S8. Subcellular localization of CTND1 with phosphor-null (S864A) and phosphomimetic (S864E) mutations.

HeLa cells were transfected with plasmids expressing EGFP-fused CTND1 along with S864, S864A, or S864E. At 24 h after transfection, fluorescence images were acquired using BZ-X800.

Α

IB: Calnexin

IB: Lamin A/C

C (kDa) 75 50 37 25 15 10 IB: pLamin A/C (Ser-22)

Supplementary Figure S9. Full blots of all immunoblotting results.

Subcellular fractionation was performed using 3.5×10^6 cells. For details, see the legends of Figure 3 or Supplementary Figure S5. Full blots used in Figure 3, Supplementary Figure S5, and Supplementary Figure S7 are shown in (A), (B), and (C), respectively. The blots of HeLa cells (A) are also used in Supplementary Figure S5 and Supplementary Figure S7.