Assessment of Full-Scale N₂O Emission Characteristics and Testing of Control Concepts in an Activated Sludge Wastewater Treatment Plant with Alternating Aerobic and Anoxic Phases

Xueming Chen^{1,*}, Artur Tomasz Mielczarek², Kirsten Habicht³, Mikkel Holmen Andersen³, Dines Thornberg², Gürkan Sin^{1,*}

¹Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. ²Biofos A/S, Refshalevej 250, 1432 Copenhagen, Denmark.

³Unisense Environment A/S, Tueager 1, DK-8200 Aarhus N, Denmark.

*Corresponding authors:

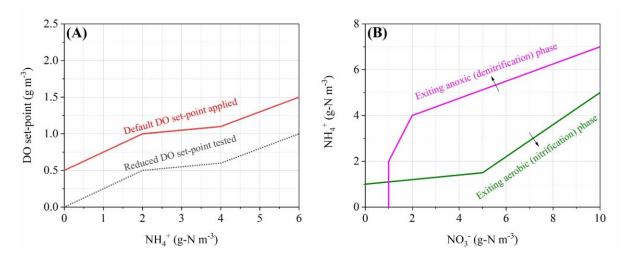
Dr. Xueming Chen, Phone: +45 8194 8080, E-mail: xuem.chen@hotmail.com

Dr. Gürkan Sin, Phone: +45 2381 1148, E-mail: gsi@kt.dtu.dk

Number of pages: 5

Number of figures: 3

Pearson's partial correlation analysis


Partial correlation is a method used to describe the relationship between two variables (e.g., x and y) whilst removing the effect of other variables (e.g., t). It firstly considers linear regression to predict x and y from t, and then correlates the residuals (i.e., $x - \hat{x}$ and $y - \hat{y}$) to quantify the strength of the relationship between x and y when the effect of t has been excluded. The Pearson's partial correlation coefficient is calculated using the equation below.

$$r_{xy,t} = \frac{r_{xy} - r_{xt} * r_{yt}}{\sqrt{(1 - r_{xt}^2) * (1 - r_{yt}^2)}}$$
(S1)

Where $r_{xy,t}$ = partial correlation between x and y controlling for t

 r_{xy} = correlation between x and y r_{xt} = correlation between x and t r_{yt} = correlation between y and t

As indicated in Eq. S1, the coefficient, $r_{xy,t}$, calculated through the Pearson's partial correlation which removes the effect of other variables should be different from r_{xy} calculated directly using the Pearson's correlation.

Figure S1. (**A**) Default and tested DO set-point based on NH_4^+ concentration and (**B**) default relationship between NH_4^+ and NO_3^- concentrations that regulates exiting of aerobic/anoxic phase in the STAR Control[®].

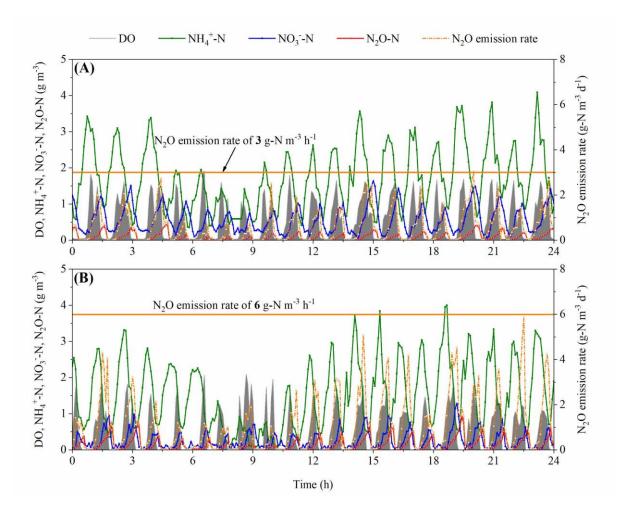
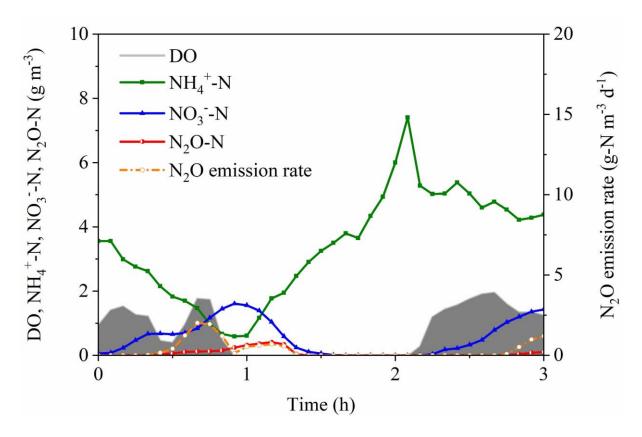



Figure S2. Dynamic profiles of process variables on June 26, 2018 in (A) Reactor 1 and (B) Reactor 3 with similar concentrations and behavior of NH_4^+ , NO_3^- , and DO but different ranges and responses of N₂O.

Figure S3. Cyclic data showing lack of nitrification activity in the anoxic phase (DO as electron acceptor for nitrification was strictly 0 and nitrate didn't reappear after depletion, while ammonium increased consistently due to influent supply).