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Characterizations: The morphologies and structures of the samples were characterized with field-
emission scanning electron microscopy (FESEM; JEOL JSM 6700) and transmission electron
microscopy (TEM; JEOL 3010). The chemical composition of the samples were analysed by EDX
attached to JSM 6701F. The X-ray diffraction (XRD) patterns of the as-prepared samples were
obtained on a X-ray diffractometer (Bruker D2 Phase, Cu Ka). Raman spectra were collected in a
Renishaw InVia Reflex Raman with a 514 nm excitation wavelength. The N> and the CO> sorption
measurements were carried out on an ASAP2020M analyser at 77 and 273 K, respectively. X-ray
photoelectron spectroscopy (XPS) characterizations were performed on a PHI Quantum 2000 XPS
system with a monochromatic Al Ka source and a charge neutralizer. All XPS peaks were calibrated
against the C1s signal of contaminant carbon at a binding energy of 284.6 eV. The ICP-OES tests
were performed on Agilent 720 ICP-OES. Photoluminescence (PL) tests for the reaction mixtures
were conducted with and without addition of the catalyst under light irradiation on Edinburgh
Analytical Instruments FL/FSTCSPC920 coupled with a time-correlated single-photo-counting
system at room temperature. The photocurrent measurements were conducted in the reaction mixtures
with and without the Ni@GC catalyst using a CHI 660E electrochemical workstation in a typical
three-electrode system: the ITO glass as the working electrode, the Pt net as the counter electrode and

an Ag/AgCl electrode as the reference electrode.
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Figure S1. (a) XRD pattern, (b, c) FESEM images, (d) TEM image, (e) size distribution plot and (f)
EDX spectrum of the Ni-MOF spheres.
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Figure S2. TGA results of Ni-MOF in a N, atmosphere with a heating rate of 5 € min™.
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Figure S3. The Ni size distribution plot of Ni@GC.

- D

n [N
(=] a
n 1

Percentage (%)
-

L
I

2 3 4 5 6 7 8 9
size (nm)

‘,,i; (M) 7

10

N e A
8 9 10 11 12 13
size (nm)

Figure S4. (a,b,d,e) TEM images and (c,f) the corresponding Ni size distribution plots of (a-c)
Ni@GC-500 and (d-f) Ni@GC-700.

S4



Ni
5
s
=
7
c
L
=
10
Energy
Figure S5. EDX spectrum of Ni@GC.
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Figure S6. CO2-TPD profile of Ni@GC catalyst. The signal peak at 86 <C is attributed to the
desorption of physically adsorbed CO2, while the other peak at 330 <C corresponds to the desorption
of chemisorbed CO:..

S5



(a)

I

JCPDS: 04-0850 (Ni)

J L

50 60 70 80f

Intensity (a.u.)

10 2'0 3‘0 4‘0

Figure S7. (a) XRD pattern and (b-d) FESEM images of Ni NPs.
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Figure S8. (a) XRD pattern and (b,c) FESEM images of graphite carbon support. (d) XRD pattern
and (e,f) FESEM images of the Ni/GC catalyst.
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Figure S9. Photocatalytic CO> reduction performance of the Ni@GC catalysts after etching in 4 M

HCI solution at room temperature for different durations. The reaction conditions were kept the

same as those stated in the caption of Figure 5d.
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Figure S10. Photocatalytic CO> reduction activity of the Ni@GC-500, Ni@GC and Ni@GC-700

samples. The percentage refers to the corresponding CO selectivity of the samples.
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Figure S11. Photographs showing the separation of the Ni@GC catalyst by using an external

magnet.
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Table S1. Comparison of photocatalytic CO> reduction performance of Ni@GC with some catalysts
reported recently in similar reaction systems under visible light irradiation (A > 420 nm).

Catalyst Photosensitizer ~ Product-releasing  COzreduction  Stability  Refs.
Sacrificial agent rate (pumol h-l) Selectivity (%)

Ni@GC Ru(bpy)s?* CO: 27 75.0 5 repeats, This
TEOA H2: 9 almost work
After acid 68.6 unchanged
treatment: CO: 35
Hy: 16
Co0304 Ru(bpy)s?* CO: 35.2 77.1 5 repeats, 1
TEOA H,: 10.5 ~5%
decrease
Co-ZIF-9 Ru(bpy)s?* CO: 41.8 58.3 5 repeats, 2
TEOA H.,: 29.9 almost
unchanged
CdS QD [Ni(terpy)]?* CO: 11.43 92.0 N/A! 3
TEOA Ho: 1
Ni(TPA/TEG) Ru(bpy)s* CO: 26.6 ca. 100 5 repeats, 4
TEOA ~5%
decrease
Nis(HITP), Ru(bpy)s?* CO: 69 97.0 N/A 5
TEOA Hz: 2.1
Col/C Ru(bpy)s®* CO: 22.4 64.2 3 repeats, 6
TEOA Hy: 12.6 10%
decrease
CoSn(OH)e Ru(bpy)s** CO: 18.7 86.2 5 repeats, 7
TEOA H.: 3.0 ~5%
decrease
Ni MOLs'" Ru(bpy)s** CO: 125 97.8 N/A 8
TEOA H.: 0.28
NC@NiC0,04 Ru(bpy)s?* CO: 26.2 88.6 5 repeats, 9
TEOA H,: 3.4 almost
unchanged
CulnSy/ZnS'i FeTPP CO:11.2 83.6 N/A 10
DMSO Hy: 2.2

N/A: not available; "Ni MOLs: Ni metal-organic framework monolayers; ", = 450 nm.
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