Magnetic Hollow Spheres Assembled from Graphene-Encapsulated Nickel

Nanoparticles for Efficient Photocatalytic CO₂ Reduction

Xiahui Lin,^{†,‡} Sibo Wang,[‡] Wenguang Tu,[‡] Haojing Wang,[‡] Yidong Hou,[†] Wenxin Dai,^{*,†} and Rong Xu^{*,‡}

[†] State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China

[‡] School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore

* Corresponding authors. Email: daiwenxin@fzu.edu.cn; rxu@ntu.edu.sg;

Characterizations: The morphologies and structures of the samples were characterized with fieldemission scanning electron microscopy (FESEM; JEOL JSM 6700) and transmission electron microscopy (TEM; JEOL 3010). The chemical composition of the samples were analysed by EDX attached to JSM 6701F. The X-ray diffraction (XRD) patterns of the as-prepared samples were obtained on a X-ray diffractometer (Bruker D2 Phase, Cu Ka). Raman spectra were collected in a Renishaw InVia Reflex Raman with a 514 nm excitation wavelength. The N₂ and the CO₂ sorption measurements were carried out on an ASAP2020M analyser at 77 and 273 K, respectively. X-ray photoelectron spectroscopy (XPS) characterizations were performed on a PHI Quantum 2000 XPS system with a monochromatic Al Ka source and a charge neutralizer. All XPS peaks were calibrated against the C1s signal of contaminant carbon at a binding energy of 284.6 eV. The ICP-OES tests were performed on Agilent 720 ICP-OES. Photoluminescence (PL) tests for the reaction mixtures were conducted with and without addition of the catalyst under light irradiation on Edinburgh Analytical Instruments FL/FSTCSPC920 coupled with a time-correlated single-photo-counting system at room temperature. The photocurrent measurements were conducted in the reaction mixtures with and without the Ni@GC catalyst using a CHI 660E electrochemical workstation in a typical three-electrode system: the ITO glass as the working electrode, the Pt net as the counter electrode and an Ag/AgCl electrode as the reference electrode.

Figure S1. (a) XRD pattern, (b, c) FESEM images, (d) TEM image, (e) size distribution plot and (f) EDX spectrum of the Ni-MOF spheres.

Figure S2. TGA results of Ni-MOF in a N₂ atmosphere with a heating rate of 5 °C min⁻¹.

Figure S3. The Ni size distribution plot of Ni@GC.

Figure S4. (a,b,d,e) TEM images and (c,f) the corresponding Ni size distribution plots of (a-c) Ni@GC-500 and (d-f) Ni@GC-700.

Figure S5. EDX spectrum of Ni@GC.

Figure S6. CO_2 -TPD profile of Ni@GC catalyst. The signal peak at 86 °C is attributed to the desorption of physically adsorbed CO_2 , while the other peak at 330 °C corresponds to the desorption of chemisorbed CO_2 .

Figure S7. (a) XRD pattern and (b-d) FESEM images of Ni NPs.

Figure S8. (a) XRD pattern and (b,c) FESEM images of graphite carbon support. (d) XRD pattern and (e,f) FESEM images of the Ni/GC catalyst.

Figure S9. Photocatalytic CO₂ reduction performance of the Ni@GC catalysts after etching in 4 M HCl solution at room temperature for different durations. The reaction conditions were kept the same as those stated in the caption of Figure 5d.

Figure S10. Photocatalytic CO₂ reduction activity of the Ni@GC-500, Ni@GC and Ni@GC-700 samples. The percentage refers to the corresponding CO selectivity of the samples.

Figure S11. Photographs showing the separation of the Ni@GC catalyst by using an external magnet.

Catalyst	Photosensitizer Sacrificial agent	Product-releasing rate (µmol h ⁻¹)	CO ₂ reduction Selectivity (%)	Stability	Refs.
Ni@GC	Ru(bpy) ₃ ²⁺ TEOA	CO: 27 H ₂ : 9 After acid treatment: CO: 35	75.0 68.6	5 repeats, almost unchanged	This work
Co ₃ O ₄	Ru(bpy) ₃ ²⁺ TEOA	H ₂ : 16 CO: 35.2 H ₂ : 10.5	77.1	5 repeats, ~5% decrease	1
Co-ZIF-9	Ru(bpy) ₃ ²⁺ TEOA	CO: 41.8 H ₂ : 29.9	58.3	5 repeats, almost unchanged	2
CdS QD	[Ni(terpy) ₂] ²⁺ TEOA	CO: 11.43 H ₂ : 1	92.0	N/A ⁱ	3
Ni(TPA/TEG)	Ru(bpy) ₃ ²⁺ TEOA	CO: 26.6	<i>ca</i> . 100	5 repeats, ~5% decrease	4
Ni ₃ (HITP) ₂	Ru(bpy) ₃ ²⁺ TEOA	CO: 69 H ₂ : 2.1	97.0	N/A	5
Co/C	Ru(bpy) ₃ ²⁺ TEOA	CO: 22.4 H ₂ : 12.6	64.2	3 repeats, 10% decrease	6
CoSn(OH) ₆	Ru(bpy) ₃ ²⁺ TEOA	CO: 18.7 H ₂ : 3.0	86.2	5 repeats, ~5% decrease	7
Ni MOLs ⁱⁱ	Ru(bpy) ₃ ²⁺ TEOA	CO: 12.5 H ₂ : 0.28	97.8	N/A	8
NC@NiCo ₂ O ₄	Ru(bpy) ₃ ²⁺ TEOA	CO: 26.2 H ₂ : 3.4	88.6	5 repeats, almost unchanged	9
CuInS ₂ /ZnS ⁱⁱⁱ	FeTPP DMSO	CO: 11.2 H ₂ : 2.2	83.6	N/A	10

Table S1. Comparison of photocatalytic CO₂ reduction performance of Ni@GC with some catalysts reported recently in similar reaction systems under visible light irradiation ($\lambda > 420$ nm).

ⁱN/A: not available; ⁱⁱNi MOLs: Ni metal-organic framework monolayers; ⁱⁱⁱ $\lambda = 450$ nm.

References

- Gao, C.; Meng, Q.; Zhao, K.; Yin, H.; Wang, D.; Guo, J.; Zhao, S.; Chang, L.; He, M.; Li, Q. Co₃O₄ Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO₂. *Adv. Mater.* **2016**, *28* (30), 6485.
- (2) Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X. Cobalt Imidazolate Metal–Organic Frameworks Photosplit CO₂ under Mild Reaction Conditions. *Angew. Chem. Int. Ed.* 2014, 53 (4), 1034.
- Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective Photocatalytic CO₂ Reduction in Water through Anchoring of a Molecular Ni Catalyst on CdS Nanocrystals. J. Am. Chem. Soc. 2017, 139 (21), 7217.
- Niu, K.; Xu, Y.; Wang, H.; Ye, R.; Xin, H. L.; Lin, F.; Tian, C.; Lum, Y.; Bustillo, K. C.; Doeff, M. M.et al. A spongy nickel-organic CO₂ reduction photocatalyst for nearly 100% selective CO production. *Sci. Adv.* 2017, *3* (7), e1700921.
- (5) Zhu, W.; Zhang, C.; Li, Q.; Xiong, L.; Chen, R.; Wan, X.; Wang, Z.; Chen, W.; Deng, Z.; Peng, Y. Selective reduction of CO₂ by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. *Appl. Catal. B Environ.* **2018**, *238*, 339.
- (6) Zhao, K.; Zhao, S.; Gao, C.; Qi, J.; Yin, H.; Wei, D.; Mideksa, M. F.; Wang, X.; Gao, Y.; Tang, Z.et al. Metallic Cobalt–Carbon Composite as Recyclable and Robust Magnetic Photocatalyst for Efficient CO₂ Reduction. *Small* 2018, *14* (33), 1800762.
- Lin, X.; Gao, Y.; Jiang, M.; Zhang, Y.; Hou, Y.; Dai, W.; Wang, S.; Ding, Z. Photocatalytic CO₂ reduction promoted by uniform perovskite hydroxide CoSn(OH)₆ nanocubes. *Appl. Catal. B Environ.* 2018, 224, 1009.
- (8) Han, B.; Ou, X.; Deng, Z.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel Metal– Organic Framework Monolayers for Photoreduction of Diluted CO₂: Metal-Node-Dependent Activity and Selectivity. *Angew. Chem. Int. Ed.* **2018**, *57* (51), 16811.
- (9) Wang, S.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo₂O₄ double-shelled nanoboxes for enhanced visible light CO₂ reduction. *Energy Environ. Sci.* 2018, *11* (2), 306.
- (10) Lian, S.; Kodaimati, M. S.; Dolzhnikov, D. S.; Calzada, R.; Weiss, E. A. Powering a CO₂ Reduction Catalyst with Visible Light through Multiple Sub-picosecond Electron Transfers from a Quantum Dot. J. Am. Chem. Soc. 2017, 139 (26), 8931.