Supporting information

Probing the Crystal and Electronic Structures of Molybdenum Oxide in Redox Process: Implications for Energy Applications

Huayu Peng,¹ Weiwei Meng,¹ He Zheng, *,¹ Yanjie Wei,¹ Huaping Sheng,¹ Huihui Liu,¹ Lei Li,¹ Guangyu Wen,¹ Shuangfeng Jia,¹ Luying Li,² and Jianbo Wang*,¹

¹School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China

²Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

*Corresponding author email: wang@whu.edu.cn; zhenghe@whu.edu.cn.

Figure S1. (a, b) The BF images of Mo NPs and (c) their size distributions.

Figure S2. (a) The BF image of sample 2 and the average thickness of A-MoO₃ shell is 12.6 nm.(b) The BF image of sample 3 and the average thickness of A-MoO₃ shell is 19.8 nm (yellow)

circles represent the oxide layers are crystalline). (c) The BF image of sample 4, whose oxide layers are α -MoO₃ nanosheets.

Figure S3. The nucleation of A-MoO₃ (a) followed by the nucleation of α -MoO₃ (b) after 10 h and

40 h heat treatment in the Mo NP with a diameter of approximately 25 nm.

Figure S4. The EELS spectra recorded on the amorphous and crystalline oxide layers of samples 3 (a) and 4 (b), respectively.

(a)	(b) • • •	. (C)	(d)	(e)
		- · · · · · · · · · · · · · · · · · · ·	0.00	· • • •
		202	▶ 020	▶ 002
: • • • :	• • ● ≻•11	0 • • • • • • • • • • • • • • • • • • •		• • • • •
				▶•211
· · · · · · · · · · · · · · · · · · ·	• • • [111]	Mo	[001]MoO2	[120]MoO ₂

Figure S5. (a) The composite simulated SAED pattern of the NP with the coexistence of Mo: (b)

 $[\overline{1}11]_{M_0}$, and three types of MoO₂: (c) $[101]_{M_0O_2}$, $[\overline{1}0\overline{1}]_{M_0O_2}$, (d) $[00\overline{1}]_{M_0O_2}$, $[001]_{M_0O_2}$, (e) $[\overline{1}20]_{M_0O_2}$ and $[1\overline{2}0]_{M_0O_2}$ variants.

(a) (b)	•	•	• •	(C)		(d) .		(e)
· · · · ·	•	•	►•020 ·	• •		•	· • •	
	•	•	▶•110 •	· · · •	 ►-020 	•	►•011	▶ •210
					▶•011		- 212	▶•011
	•	•	• •	•••	• • •	•	•	
			[001]Mo		. [100]MoO ₂	•	[122]MoO ₂	[122]MoO2

Figure S6. (a) The composite simulated SAED pattern of the NP with the coexistence of Mo: (b) $[001]_{Mo}$, three types of MoO₂ (c) $[100]_{MoO_2}$, $[\overline{100}]_{MoO_2}$, (d) $[122]_{MoO_2}$, $[\overline{122}]_{MoO_2}$, (e) $[\overline{122}]_{MoO_2}$ and $[1\overline{22}]_{MoO_2}$ variants.

Figure S7. (a) The BF image and the corresponding SAED pattern (b) of a core-shell NP after ebeam irradiation. (c) DF images acquired by sequentially selecting $(110)_{Mo}$ and $(200)_{MoO_2}$ diffraction spots from the diffraction pattern in (b).

Figure S8. (a-c) *In-situ* HRTEM images of a single Mo/A-MoO₃ core-shell NP under e-beam irradiation. (d-f) The FFT images corresponding to (a-c) respectively.

Figure S9. (a) HAADF-STEM image of a Mo/A-MoO₃ core-shell NP. (b) EELS spectra recorded on unirradiated and irradiated A-MoO₃ shell in (a) showing the ELNES of O-K edges.

E-beam effect during the reduction

There are several mechanisms for the interactions between e-beam and materials in TEM/STEM, including elastic (knock-on effects) and nonelastic collisions (radiolysis, thermal effects) between electrons and atoms.¹ Generally, the irradiation effects of conductor materials are dominated by elastic scattering, while non-conductor materials are mainly affected by inelastic scattering. Based on the knock-on mechanism, the maximum kinetic energy acquired by the O atom at 200 kV is 32.8 eV. There is no report on the threshold displacement energy of the O atom in A-MoO₃, while in most oxides the value is more than 40 eV.¹ Furthermore, the surface threshold displacement energy should be one-fifth of the bulk displacement energy in most cases.¹ Therefore, the knock-on effect is more likely to cause sputtering of the surface O atom in A-MoO₃ layer mainly in the surface area. However, the *in-situ* HRTEM observation indicates that the reduction of A-MoO₃ initially occurred closed to the metal core (Figure S8), indicating that the knock-on effect may not be the main cause.

The theoretical calculations indicate that α -MoO₃ with 1.95 eV indirect bandgap is a semiconductor, while MoO₂ is metallic (Figure 7).² Therefore, the inelastic scattering effect should be considered: (1) Thermal effects. Figure S10a shows a single NP whereas a small portion of the NP was irradiated. It is noticed that the crystallization only occurred within the area irradiated by the e-beam (Figure S10b), illustrating that the heating effect does not play a major role;¹ (2) radiolysis. Since Mo⁶⁺ has no valence electrons, when the core electrons of A-MoO₃ shell are

ionized by the incident electrons, the valence electrons of O^{2-} fill into the holes, and the energy released by this process can cause another valence electron of O^{2-} to be emitted in Auger electron. In this sense, O^0 and even O^+ are produced, resulting in the desorption of O atom¹ and the reduction of A-MoO₃ to monoclinic MoO₂. After the formation of conductive MoO₂, the radiolysis effect is negligible which explains why the MoO₂ structures were pretty stable (Figure 4e) and did not further reduce into Mo metals under irradiation. Moreover, the rate of crystallization is beam current density dependent. It takes ~10 min to form MoO₂ at an electron beam current density of ~1 A/cm², and only ~1 min at ~10³ A/cm², which is in accordance with the characteristics of radiolysis mechanism. As such, the radiolysis plays a major role in the crystallization of A-MoO₃ rather than knock-on effects.

Figure S10. (a, b) Low-magnification TEM image showing the Mo/A-MoO₃ core-shell NP before (a) and after 300 s e-beam irradiation (b). The white dotted circle indicates the area irradiated by the e-beam.

References

 Jiang, N., Electron beam damage in oxides: A review. *Rep. Prog. Phys.* 2016, 79, 016501.
 Scanlon, D. O.; Watson, G. W.; Payne, D. J.; Atkinson, G. R.; Egdell, R. G.; Law, D. S. L., Theoretical and experimental study of the electronic structures of MoO₃ and MoO₂. *J. Phys. Chem. C* 2010, *114*, 4636-4645.