Upconversional Nanoprobe with Highly Efficient Energy Transfer for Ultrasensitive Detection of Alkaline Phosphatase

Mengping Gao,^{a,†} Ruiying Wu,^{b,†} Qingsong Mei,^{a,*} Cuilan Zhang,^a Xiao Ling,^a Shengsong Deng,^{a,*} Hongbo He^a and Yong Zhang^{c,d,*}

^a School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.

^b Department of Traditional Chinese Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China

^c Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore

^d School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China

⁺ These authors contribute equally to this work.

E-mail: qsmei@hfut.edu.cn; buffer119@163.com; biezy@nus.edu.sg

1. Experimental section

2.1. Materials and characterization

Oleic acid, octadecene, tris(hydroxymethyl)aminomethane were obtained from Sigma-Aldrich. 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), *p*-nitrophenyl phosphate (*p*-NPP), alkaline phosphatase from calf intestine (ALP), and 5-sulfosalicylic acid (SA) were obtained from Aladdin. NaOH, NH₄F, FeCl₃, NaCl, MgCl₂, NaNO₃, NaNO₂, Na₂SO₄, NaHSO₄, Na₂SO₃, Na₂CO₃, NaHCO₃, Na₂HPO₄, NaH₂PO₄, ethanol, acetic acid, acetone, cyclohexane, and other commonly used solvents were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All of these reagents were used as received without further purification. Y₂O₃, Yb₂O₃, Er₂O₃ were purchased from Aladdin, and further reacted with acetic acid to obtain their acetates as we previously reported protocol.

The morphology of upconversion nanoparticles was characterized by using a transmission electron microscope (TEM, JEOL-2010). UV-vis absorption spectra were recorded by a UV-9000S spectrometer (Shanghai Metash instruments Co., Ltd.). Fluorescence spectra were measured on a LS-55 fluorescence spectrophotometer equipped with a 980 nm laser

2.2. Synthesis of upconversion nanoparticles

The oleate-capped NaYF₄:20%Yb,2%Er@NaErF₄@NaYF₄ (1 mmol@0.5 mmol@0.2 mmol) were synthesized through modified seed mediated method. Typically, 212.8 mg $Y(CH_3COO)_3$, 63 mg Yb(CH₃COO)₃, 6.8 mg Er(CH₃COO)₃, and 420 mg NaF were dissolved

in 10 mL OA and 10 mL ODE in a three-necked flask and degassed to remove residual water and oxygen at 110 °C. Then the mixture was heated to 300 °C and maintained for 1 h under nitrogen atmosphere to form a homogeneous solution. While maintaining the temperature at 300 °C, 172 mg Er(CH₃COO)₃ were dissolved in 4 mL OA and 4 mL ODE in another three-necked flask to prepare the first shell precursor, which was then degassed and heated to 200 °C. After the core solution was maintained for 1 h, the shell precursor was injected dropwise into the core solution and maintained at 300 °C for 1 h to obtain core-shell nanoparticles. At the same time, 53.2 mg Y(CH₃COO)₃ were dissolved in 4 mL OA and 4 mL ODE in another flask to prepare the second shell precursor and injected into the core-shell solution. The core-shell-shell UCNPs were obtained after further reaction at 300 °C for 1 h. After the solution was cooled to room temperature, the nanoparticles were precipitated down with acetone and centrifuged. The precipitate was washed with the mixture of cyclohexane and ethanol for three times, and then dispersed in cyclohexane for further use. The core nanoparticle NaYF₄:20%Yb,2%Er (1 mmol) and the core-shell nanoparticle NaYF₄:20%Yb,2%Er@NaErF₄ (1 mmol@0.5 mmol) were synthesized as the above protocol.

For exfoliation of oleate ligand on the surface of nanoparticles, 15 mL of the nanoparticles in cyclohexane mixed with 10 mL of HCl solution (0.1 M), and stirred for 1 h. After the reaction, the water solution was collected by the separatory funnel, The oleic acid on the surface of UCNPs was removed with diethyl ether, and UCNPs were centrifuged and washed with water for three times, and then re-dispersed in deionized water.

1.3 Luminescence quenching studies.

For luminescence quenching measurements, 3 µL of the water-dispersible UCNPs (about

12 mg/mL) was added into 1.8 mL of HEPES buffer (pH 6.0) in a quartz cuvette. 2 μ L of SA-Fe complex solution (0.1 M) was dropped into above solution each time, until 40 μ L SA-Fe solution were added into the quartz cuvette. Fluorescence intensities were recorded with excitation wavelength of 980 nm after the reaction time for 10 min.

1.4 Detections of phosphate ions and ALP.

For the preparation of nanoprobes, the SA-Fe complex was first mixed and incubated with the UCNP solutions for about 10 minutes. The formed nanoprobes were centrifuged and washed for two times, and re-dispersed in water with the concentration of 20 mg/mL. The attached SA-Fe complex on the surface of UCNPs was estimated to be 2 mM according to the UV-vis absorption spectra. For detection of phosphate ions, 3 μ L of the water-dispersible nanoprobe was added into 1.8 μ L of HEPES buffer (pH 6.0), and then different concentration of phosphate ions (10⁻⁶-10⁻¹ M) were added into the above mixture, and incubated for 5 min. The fluorescence spectrum was recorded with excitation wavelength of 980 nm. All measurements were conducted in triplicate at least.

The ALP activity assay was performed with the following procedures. 1 mL of 0.1 mM p-NPP dispersed in 10 mM Tris-HCl buffer (pH 9.8, including 0.5 mM MgCl₂) was added into ampoule bottle, and 1 mL of freshly prepared ALP standard aqueous solution (2 mU/mL) were added into above solution. The mixture was incubated at 37 °C for 30 min. ALP catalyzed p-NPP to generate phosphate ions. Different amounts of products solution were then added into the nanoprobe solution for recording the luminescence variations. All measurements were conducted in triplicate at least.

1.5 Detections of ALP in human serum samples.

Three human serum samples (labelled as sample A, B, C) were collected from three women volunteers in the First Affiliated Hospital of University of Science and Technology of China. Before the ALP detection, these serum samples were diluted 20 folds with Tris-HCl buffer (10 mM, pH 9.8). The concentration of ALP in these samples was first measured by commercial ELISA kit.

The detection of ALP activity in these serum samples by our proposed method was performed as following procedures. 50 μ L of p-NPP in Tris-HCl buffer (10 mM, pH 9.8, including 0.5 mM MgCl₂) with the concentration of 1 mM was mixed with 10 μ L of the diluted human serum samples and 40 μ L of buffer. The mixture was then incubated at 37 °C for 1 h. At last, 20 μ L of the reactant was added into 2 mL of nanoprobe solution to measure the luminescence variations. The concentration of ALP in serum was then calculated through the linear relationship which was described in the main text.

2. Supplementary data

Fig. S1 TEM images and the corresponding particle size distributions of the NaYF₄:Yb/Er (A and B), NaYF₄:Yb/Er@NaErF₄ (C and D), NaYF₄:Yb/Er@NaErF₄@NaYF₄ (E and F). All of the scale bars are 100 nm.

Fig. S2 Luminescence quenching kinetic of the UCNPs after addition of 4 mM of SA-Fe complex in a period of 30 min.

Fig. S3 The absorption spectra of the complex SA-Fe in the present of different concentrations of phosphate ions. From top to bottom, the concentrations are 0, 1×10^{-8} , 1×10^{-7} , 1×10^{-6} , 1×10^{-5} , 1×10^{-4} , 1×10^{-3} M.

Fig. S4 The absorption spectral variations of the SA-Fe complex modified nanoprobes in the present of different concentrations of phosphate ions. From top to bottom, the concentrations are 0, 1×10^{-8} , 1×10^{-7} , 1×10^{-6} , 1×10^{-5} , 1×10^{-4} , 1×10^{-3} M.

Fig. S5 Photos of the nanoprobe before (A and C) and after (B and D) additions of phosphate ions under natural light (A and B) and under excitation at 980 nm (C and D).

Fig. S6 FTIR spectra of (a) oleate capped UCNPs, (b) ligand-free UCNPs, (c) SA-Fe complex modified UCNPs, and (d) SA-Fe complex modified UCNPs after reacting with phosphate ions.

We have investigated the FTIR spectra of the UCNPs after exfoliation of OA molecules, further conjugation with SA-Fe complex, and displacement of Fe^{3+} . The results in Figure S6a and S6b showed that the sketching vibration band of methylene and carboxyl groups disappeared after exfoliation. After conjugation with SA-Fe complex, the emergence of new band at 1060 cm⁻¹ is attributed to the symmetric stretches of sulfonic acid group, and the band at 1636 cm⁻¹ is attributed to the stretching vibration of carbonyl group in SA. These two bands are retained after displacement of Fe^{3+} , which verifies SA molecules are still conjugated on the surface of UCNPs.

Fig. S7 The luminescence recovery kinetic of the nanoprobe after addition of 1 mM of phosphate ions in a period of 30 min. I_0 and I are the intensity of the nanoprobe before and after additions of phosphate ions.

Fig. S8 Linear calibration curve of luminescence enhancement after additions of phosphate ions in the range of $1 \sim 10 \times 10^{-8}$ M. I₀ and I are the intensity of the nanoprobe before and after additions of phosphate ions.

Fig. S9 Selectivity and anti-interference studies of the nanoprobe towards different species with the concentrations up to 1 mM. I_0 and I are the intensities of the nanoprobe before and after additions of phosphate ions.

Fig. S10 Luminescence enhancement of the nanoprobe after additions of different substrates of the enzymatic catalysis reaction (black), and upon co-additions of the substrates and the products of ALP catalysis reaction (red).

Fig. S11 Luminescence enhancement efficiency (I/I_0-1) of the nanoprobe after additions of different serum sample (black), and upon additions of the enzymatic reaction products of different serum sample with p-NPP (red).

Sample No.	hur	ım samples	(U/L)	human serum samples spiked with 10 U/L ALP				
	ELISA	This	RSD	Recovery	ELISA	This	RSD	Recovery
	method	work	(%, n=3)	(%, n= 3)	method	work	(%, n= 3)	(%, n= 3)
А	84.75	90.82	3.980	107.1	94.75	99.94	6.771	105.5
В	97.66	93.21	5.644	95.44	107.7	101.5	3.021	94.24
С	130.6	127.2	2.296	97.36	140.6	138.1	6.317	98.22

Table S1. Practical detection of ALP activity in human serum samples.

Table S2. An overview on recently studies on the detection of ALP activities, includingfluorometry, UV-vis, electrochemisty, and SERS-based methods. The concentration of 1 nM

Material	Method	Detection conditions	Linearity	LOD	Ref.
			(U/L)	(U/L)	
CdS QDs	Fluorogenic	Tris-HCl (50 mM, pH 9.8,	0-50	0.5	[1]
	Immunoassay	0.5 mM MgCl ₂), 37 °C, 90min			
Copper	Fluorescent	Tris-HCl (10 mM, pH 7.4,	0.3-7.5	0.3	[2]
nanoparticles	label-free turn-on	100 mM NaCl), 37 °C, 60min			
(CuNPs)	strategy				
Calcein-Ce ³⁺	Fluorescence ELISA	Tris-HCl (50 mM, pH 9.0),	0.1-1.2	0.023	[3]
complex.		37 °C, 30min			
Organic dye	Fluorescence	Tris-HCl (10 mM, pH 7.4),	/	0.01 - 1	[4]
(NIR-probes)		RT, 2min			
N-doped carbon	Fluorescence	Tris-HCl (0.1 µM MgSO ₄ ,	0.01-25	0.001	[5]
dots		pH 9.0), 37 °C, 30min			
Horseradish					
peroxidase(HRP)	UV-vis detection	PBS (pH 7.4),	0-120	5.4	[6]
and Cu(II) ions		37 °C, 60min			
Gold Nanoflower	Localized Surface	Tris (pH 8.5, 0.01µM AgNO ₃ ,	0.01×10 ⁻⁷	3×10 ⁻⁸	[7]
Probe	Plasmon Resonance	0.02µM AAP).	- 6×10-7		Γ.]
	Technique	37 °C, 30min			
Au/Graphene oxide	Electrochemical	37 °C 60min	1-500	0.5	[8]
electrode	detection	<i>57</i> °C, 00mm	1 000	0.0	[0]
AuNIDa/indiaa dua	SEDS based	Tria UCI (nU 7 4)	1	2~10-6	[0]
dorivativo	SERS-Dased	111S-ПСІ (рн 7.4), 120min	/	3×10 °	[9]
denvative	technique	12011111			
Chemiluminescent	Chemiluminescence	Tris (25mM nH8 0, 0, 5%	1×10 ⁻⁸	1×10 ⁻⁸	[10]
substrate (CSPD)	Cheminumineseenee	Triton X-100) RT 30min	- 1×10-5	1~10	[IU]
		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1.2010.6	4.5.10.8	F1 1 7
Fluorogenic	Capillary	Diethanolamine (2.4 M,	1.38×10-0	4.5×10-°	
substrate AttoPhos	electrophoresis with	pH 10.0, 57 μM MgCl ₂ ,),	- 0.138		
	laser-induced	24 °C, 60min			
CdC /Z. C Orrentered	Fluorescence	Dhaanhata baffan (10 mM mU	0.01.0.1	0.01	[10]
Case/Zns Quantum	Electron transfer	Phosphate buller (10 mM, pH	0.01 - 0.1	0.01 units	[12]
Dots	(E1)	7.5), 9011111	units		
Composite	Electrochemical	Tris-HCl (pH 8.5),	6×10-4	2.01×10 ⁻⁴	[13]
tyrosinase biosensor	determination	RT, 5min	- 7.5×10 ⁻²		
Upconversional	Upconversion	Tris-HCl (10 mM, pH 9.8, 0.5	0.001-0.01	5×10-4	This
nanoprobe	luminescence	mM MgCl ₂), 37 °C, 30min			work

ALP is estimated to be \sim 3 U/L according to reference [2].

References:

1. Malashikhina, N.; Garai-Ibabe, G.; Pavlov, V., Unconventional application of conventional enzymatic substrate: first fluorogenic immunoassay based on enzymatic formation of quantum dots. *Anal Chem* **2013**, *85* (14), 6866-70.

2. Zhang, L.; Zhao, J.; Duan, M.; Zhang, H.; Jiang, J.; Yu, R., Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. *Anal Chem* **2013**, *85* (8), 3797-801.

3. Chen, C.; Zhao, J.; Lu, Y.; Sun, J.; Yang, X., Fluorescence Immunoassay Based on the Phosphate-Triggered Fluorescence Turn-on Detection of Alkaline Phosphatase. *Anal Chem* **2018**, *90* (5), 3505-3511.

4. Park, C. S.; Ha, T. H.; Kim, M.; Raja, N.; Yun, H. S.; Sung, M. J.; Kwon, O. S.; Yoon, H.; Lee, C. S., Fast and sensitive near-infrared fluorescent probes for ALP detection and 3d printed calcium phosphate scaffold imaging in vivo. *Biosens Bioelectron* **2018**, *105*, 151-158.

5. Li, G.; Fu, H.; Chen, X.; Gong, P.; Chen, G.; Xia, L.; Wang, H.; You, J.; Wu, Y., Facile and Sensitive Fluorescence Sensing of Alkaline Phosphatase Activity with Photoluminescent Carbon Dots Based on Inner Filter Effect. *Anal Chem* **2016**, *88* (5), 2720-6.

6. Shi, D.; Sun, Y.; Lin, L.; Shi, C.; Wang, G.; Zhang, X., Naked-eye sensitive detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) based on a horseradish peroxidase catalytic colorimetric system with Cu(ii). *Analyst* **2016**, *141* (19), 5549-54.

7. Wang, K.; Jiang, L.; Zhang, F.; Wei, Y.; Wang, K.; Wang, H.; Qi, Z.; Liu, S., Strategy for In Situ Imaging of Cellular Alkaline Phosphatase Activity Using Gold Nanoflower Probe and Localized Surface Plasmon Resonance Technique. *Anal Chem* **2018**.

8. Shen, C.; Li, X.; Rasooly, A.; Guo, L.; Zhang, K.; Yang, M., A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. *Biosens Bioelectron* **2016**, *85*, 220-225.

9. Sun, D.; Cao, F.; Cong, L.; Xu, W.; Chen, Q.; Shi, W.; Xu, S., Cellular heterogeneity identified by single-cell alkaline phosphatase (ALP) via a SERRS-microfluidic droplet platform. *Lab on a chip* **2019**, *19* (2), 335-342.

10. Blum, J. S.; Li, R. H.; Mikos, A. G.; Barry, M. A., An optimized method for the chemiluminescent detection of alkaline phosphatase levels during osteodifferentiation by bone morphogenetic protein 2. *Journal of Cellular Biochemistry* **2001**, 80(4),532-537.

11. Craig, D. B.; Wong, J. C. Y.; Dovichi, N. J., Detection of attomolar concentrations of alkalinephosphatase by capillary electrophoresis usinglaser-induced fluorescence detection. *Anal Chem* **1996**, 68(4), 697-700.

12. Freeman, R.; Finder, T.; Gill, R., & Willner, I., Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS Quantum Dots. *Nano Letters* **2010**, 10(6), 2192-2196.

13. Serra, B.; M.D. Morales, Reviejo, A. J.; Hall, E. H.; J.M. Pingarrón., Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor. *Analytical Biochemistry* **2005**, 336(2), 289-294.