Supporting Information

Protein Tyrosine Phosphatase 1B Inhibitory Iridoids from *Psydrax* subcordata

Junfei Zhou,^{*,†} Zhenlong Wu,^{†,‡} Bamisaye O. Oyawaluja,^{†,§} Herbert A. B. Coker,[§] Olukemi A. Odukoya,[⊥] Guangmin Yao,[†] and Chun-Tao Che[†]

[†]Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago,

Illinois 60612, United States

[‡]Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China

[§]Department of Pharmaceutical Chemistry, and [⊥]Department of Pharmacognosy, College of Pharmacy, University of Lagos, Lagos, Nigeria

¹Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China

*Corresponding author: Junfei Zhou

E-mail address: junfei19901203@gmail.com (Junfei Zhou)

List of Contents

Figure S1. Flow charts of the extraction and isolation of the leaves and bark of <i>P. subcordata</i>	7
Figure S2. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 2.	8
Figure S3. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 3 .	8
Figure S4. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 3a .	8
Figure S5. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 4.	8
Figure S6. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 4a.	8
Figure S7. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 5 .	9
Figure S8. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 6 .	9
Figure S9. ¹ H ⁻¹ H COSY, key HMBC, and NOESY correlations of 6a .	9
Figure S10. Lineweaver-Burk plots for the inhibition of PTP1B by 3a	10
Figure S11. Lineweaver-Burk plots for the inhibition of PTP1B by 3a (amplify)	10
Figure S12. Dixon plots for the inhibition of PTP1B by 3a.	11
Figure S13. Dixon plots for the inhibition of PTP1B by 3a (amplify)	11
Figure S14. Lineweaver-Burk plots for the inhibition of PTP1B by 4a .	12
Figure S15. Lineweaver-Burk plots for the inhibition of PTP1B by 4a (amplify)	12
Figure S16. Dixon plots for the inhibition of PTP1B by 4a.	13
Figure S17. Dixon plots for the inhibition of PTP1B by 4a (amplify)	13
Table S1. Effect of different concentrations of 3a on V_{max} , K_{m} and the K_{ik} to K_{iv} ratio using <i>p</i> NPF	$\mathbf{x}_{as a}$
substrate.	14
Table S2. Effect of different concentrations of 4a on V_{max} K_{m} and the K_{ik} to K_{iv} ratio using <i>p</i> NPF	$\mathbf{a}_{\mathbf{a}\mathbf{s}}$
substrate	14
Table S3. The calculated energies (kcal/mol) of compounds $1-8$ 3a 4a 6a and oleanolic acid to PTP1	1B hv
Autidock 4 2 6	12 05
Figure S18 Molecular docking models for PTP1B inhibition of subcordatanol I (1).	16
Figure S19 Molecular docking models for PTP1B inhibition of subcordatanol II (2)	17
Figure S20 Molecular docking models for PTP1B inhibition of subcordatanol III (3).	18
Figure S21 Molecular docking models for PTP1B inhibition of subcordatalactone A (3a)	19
Figure S22 Molecular docking models for PTP1B inhibition of subcordatanol IV (4)	20
Figure S23 Molecular docking models for PTP1B inhibition of subcordatalactone B (4a)	20
Figure S24 Molecular docking models for PTP1B inhibition of 1- <i>O</i> -methylcrescentin L(5)	21
Figure S25 Molecular docking models for PTP1B inhibition of subcordatanol V (6)	22
Figure S26. Molecular docking models for PTP1B inhibition of subcordatalactone C (6a)	25 24
Figure S27. Molecular docking models for PTP1B inhibition of 10-deoxyeucommiol (7)	2 25
Figure S28 Molecular docking models for PTP1B inhibition of 68-hydroxy-2-oxabicyclo[4 3 0] Λ^{8-9} -n.	onen_
$1_{\text{one}} (8)$	26
Figure S29 Molecular docking models for PTP1B inhibition of cleanolic acid	20
Table S4 Cartesian coordinate of 1	·····27 28
Table S5. Cartesian coordinate of 2	20 20
Table S6. Cartesian coordinate of 3	30
Table S7. Cartesian coordinate of 3a	
Table S7. Cartesian coordinate of Ja Table S8. Cartesian coordinate of Ja	·····31 27
Table S0. Cartesian coordinate of 4a	22
Table S10 Cartesian coordinate of 5	34
Table S10. Cartesian coordinate of 6	
Table S11. Cartesian coordinate of 6a	36
Figure S30 (+)-HR-ESI-MS spectrum of 1	50 27

Figure S31. (+)-HR-ESI-MS spectrum of 1 (amplified)	
Figure S32. UV spectrum of compound 1	
Figure S33. IR spectrum of compound 1	
Figure S34. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 1	
Figure S35. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 1 (amplified)	
Figure S36. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 1	40
Figure S37. DEPT135 (100 MHz, chloroform- <i>d</i>) spectrum of compound 1	40
Figure S38. HSQC spectrum (chloroform-d) of compound 1 (¹ H: 400 MHz, ¹³ C: 100 MHz)	41
Figure S39. HMBC spectrum (chloroform- <i>d</i>) of compound 1 (¹ H: 400 MHz, ¹³ C: 100 MHz)	41
Figure S40. ¹ H ⁻¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 1	
Figure S41. NOESY spectrum (400 MHz, chloroform- <i>d</i>) of compound 1	
Figure S42. (+)-HR-ESI-MS spectrum of 2	
Figure S43. (+)-HR-ESI-MS spectrum of 2 (amplified)	
Figure S44. UV spectrum of compound 2	
Figure S45. IR spectrum of compound 2	
Figure S46. ¹ H NMR (400 MHz, methanol- <i>d</i> ₄) spectrum of compound 2	
Figure S47. ¹ H NMR (400 MHz, methanol- <i>d</i> ₄) spectrum of compound 2 (amplified)	
Figure S48. ¹³ C NMR (100 MHz, methanol- d_4) spectrum of compound 2	
Figure S49. DEPT135 (100 MHz, methanol- <i>d</i> ₄) spectrum of compound 2	
Figure S50. HSQC spectrum (methanol- d_4) of compound 2 (¹ H: 400 MHz, ¹³ C: 100 MHz)	47
Figure S51. HMBC spectrum (methanol- d_4) of compound 2 (¹ H: 400 MHz, ¹³ C: 100 MHz)	
Figure S52. $^{1}H^{-1}H$ COSY spectrum (400 MHz, methanol- d_{4}) of compound 2	
Figure S53. NOESY spectrum (400 MHz, methanol- <i>d</i> ₄) of compound 2	
Figure S54. (+)-HR-ESI-MS spectrum of 3	
Figure S55. (+)-HR-ESI-MS spectrum of 3 (amplified)	
Figure S56. UV spectrum of compound 3	
Figure S57. IR spectrum of compound 3	
Figure S58. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 3	51
Figure S59. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 3 (amplified)	51
Figure S60. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 3	
Figure S61. DEPT135 (100 MHz, chloroform- <i>d</i>) spectrum of compound 3	
Figure S62. HSQC spectrum (chloroform- <i>d</i>) of compound 3 (¹ H: 400 MHz, ¹³ C: 100 MHz)	53
Figure S63. HMBC spectrum (chloroform- <i>d</i>) of compound 3 (¹ H: 400 MHz, ¹³ C: 100 MHz)	53
Figure S64. ¹ H– ¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 3	
Figure S65. NOESY spectrum (400 MHz, chloroform- <i>d</i>) of compound 3	
Figure S66. (+)-HR-ESI-MS spectrum of 3a	
Figure S67. (+)-HR-ESI-MS spectrum of 3a (amplified)	
Figure S68. UV spectrum of compound 3a	
Figure S69. IR spectrum of compound 3a	
Figure S70. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 3a	
Figure S71. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 3a (amplified)	
Figure S72. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 3a	
Figure S73. DEPT135 (100 MHz, chloroform- <i>d</i>) spectrum of compound 3a	
Figure S74. HSQC spectrum (chloroform-d) of compound $3a$ (¹ H: 400 MHz, ¹³ C: 100 MHz)	
Figure S75. HMBC spectrum (chloroform-d) of compound $3a$ (¹ H: 400 MHz, ¹³ C: 100 MHz)	
Figure S76. $^{+}H^{-+}H$ COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 3a	60
Figure S/7. NOESY spectrum (400 MHz, chlorotorm- <i>d</i>) of compound 3a	60
Figure S/8. (+)-HR-ESI-MS spectrum of 4	61
Figure S79. (+)-HR-ESI-MS spectrum of 4 (amplified)	61

Figure S80. UV spectrum of compound 4	62
Figure S81. IR spectrum of compound 4	62
Figure S82. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 4	63
Figure S83. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 4 (amplified)	63
Figure S84. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 4	64
Figure S85. DEPT135 (100 MHz, chloroform-d) spectrum of compound 4	64
Figure S86. HSQC spectrum (chloroform-d) of compound 4 (¹ H: 400 MHz, ¹³ C: 100 MHz)	65
Figure S87. HMBC spectrum (chloroform- <i>d</i>) of compound 4 (¹ H: 400 MHz, ¹³ C: 100 MHz)	65
Figure S88. ¹ H– ¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 4	66
Figure S89. NOESY spectrum (400 MHz, chloroform- <i>d</i>) of compound 4	66
Figure S90. (+)-HR-ESI-MS spectrum of 4a	67
Figure S91. (+)-HR-ESI-MS spectrum of 4a (amplified)	67
Figure S92. UV spectrum of compound 4a	68
Figure S93. IR spectrum of compound 4a	68
Figure S94. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 4a	69
Figure S95. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 4a (amplified)	69
Figure S96. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 4a (amplified)	70
Figure S97. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 4a	70
Figure S98. DEPT135 (100 MHz, chloroform-d) spectrum of compound 4a	71
Figure S99. HSQC spectrum (chloroform-d) of compound 4a (¹ H: 400 MHz, ¹³ C: 100 MHz)	71
Figure S100. HMBC spectrum (chloroform-d) of compound 4a (¹ H: 400 MHz, ¹³ C: 100 MHz)	72
Figure S101. ¹ H ⁻¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 4a	72
Figure S102. NOESY spectrum (400 MHz, chloroform- <i>d</i>) of compound 4a	73
Figure S103. (+)-HR-ESI-MS spectrum of 5	73
Figure S104. (+)-HR-ESI-MS spectrum of 5 (amplified)	74
Figure S105. UV spectrum of compound 5	74
Figure S106. IR spectrum of compound 5	75
Figure S107. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 5	75
Figure S108. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 5 (amplified)	76
Figure S109. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 5 (amplified)	76
Figure S110. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 5	77
Figure S111. DEPT135 (100 MHz, chloroform-d) spectrum of compound 5	77
Figure S112. HSQC spectrum (chloroform-d) of compound 5 (¹ H: 400 MHz, ¹³ C: 100 MHz)	78
Figure S113. HMBC spectrum (chloroform- <i>d</i>) of compound 5 (¹ H: 400 MHz, ¹³ C: 100 MHz)	78
Figure S114. ¹ H ⁻¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 5	79
Figure S115. NOESY spectrum (400 MHz, chloroform- <i>d</i>) of compound 5	79
Figure S116. (+)-HR-ESI-MS spectrum of 6	80
Figure S117. (+)-HR-ESI-MS spectrum of 6 (amplified)	80
Figure S118. UV spectrum of compound 6	81
Figure S119. IR spectrum of compound 6	81
Figure S120. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 6	82
Figure S121. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 6 (amplified)	82
Figure S122. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 6 (amplified)	83
Figure S123. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 6	83
Figure S124. DEPT135 (100 MHz, chloroform- <i>d</i>) spectrum of compound 6	84
Figure S125. HSQC spectrum (chloroform-d) of compound 6 (¹ H: 400 MHz, ¹³ C: 100 MHz)	84
Figure S126. HMBC spectrum (chloroform- <i>d</i>) of compound 6 (¹ H: 400 MHz, ¹³ C: 100 MHz)	85
Figure S127. ¹ H ⁻¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 6	85
Figure S128. NOESY spectrum (400 MHz, chloroform-d) of compound 6	86

Figure S129. (+)-HR-ESI-MS spectrum of 6a	86
Figure S130. (+)-HR-ESI-MS spectrum of 6a (amplified)	87
Figure S131. UV spectrum of compound 6a	87
Figure S132. IR spectrum of compound 6a	88
Figure S133. ¹ H NMR (400 MHz, methanol- <i>d</i> ₄) spectrum of compound 6a	88
Figure S134. ¹ H NMR (400 MHz, methanol- <i>d</i> ₄) spectrum of compound 6a (amplified)	89
Figure S135. ¹³ C NMR (100 MHz, methanol- d_4) spectrum of compound 6a	89
Figure S136. DEPT135 (100 MHz, methanol- <i>d</i> ₄) spectrum of compound 6a	90
Figure S137. HSQC spectrum (methanol- <i>d</i> ₄) of compound 6a (¹ H: 400 MHz, ¹³ C: 100 MHz)	90
Figure S138. HMBC spectrum (methanol- <i>d</i> ₄) of compound 6a (¹ H: 400 MHz, ¹³ C: 100 MHz)	91
Figure S139. ¹ H ⁻¹ H COSY spectrum (400 MHz, methanol- <i>d</i> ₄) of compound 6a	91
Figure S140. NOESY spectrum (400 MHz, methanol-d ₄) of compound 6a	92
Figure S141. (+)-HR-ESI-MS spectrum of 7	92
Figure S142. (+)-HR-ESI-MS spectrum of 7 (amplified)	93
Figure S143. UV spectrum of compound 7	93
Figure S144. Experimental ECD spectrum of 7 and the calculated ECD spectra for 7 and its enantiomer	94
Figure S145. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 7	94
Figure S146. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 7 (amplified)	95
Figure S147. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 7 (amplified)	95
Figure S148. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 7	96
Figure S149. DEPT135 (100 MHz, chloroform- <i>d</i>) spectrum of compound 7	96
Figure S150. HSQC spectrum (chloroform-d) of compound 7 (¹ H: 400 MHz, ¹³ C: 100 MHz)	97
Figure S151. HMBC spectrum (chloroform-d) of compound 7 (¹ H: 400 MHz, ¹³ C: 100 MHz)	97
Figure S152. ¹ H ⁻¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 7	98
Figure S153. NOESY spectrum (400 MHz, chloroform-d) of compound 7	98
Figure S154. UV spectrum of compound 8	99
Figure S155. Experimental ECD spectrum of compound 8	99
Figure S156. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 8	.100
Figure S157. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 8 (amplified)	.100
Figure S158. ¹ H NMR (400 MHz, chloroform- <i>d</i>) spectrum of compound 8 (amplified)	.101
Figure S159. ¹³ C NMR (100 MHz, chloroform- <i>d</i>) spectrum of compound 8	.101
Figure S160. DEPT135 (100 MHz, chloroform- <i>d</i>) spectrum of compound 8	.102
Figure S161. HSQC spectrum (chloroform- <i>d</i>) of compound 8 (¹ H: 400 MHz, ¹³ C: 100 MHz)	.102
Figure S162. HMBC spectrum (chloroform-d) of compound 8 (¹ H: 400 MHz, ¹³ C: 100 MHz)	.103
Figure S163. ¹ H ⁻¹ H COSY spectrum (400 MHz, chloroform- <i>d</i>) of compound 8	.103
Figure S164. NOESY spectrum (400 MHz, chloroform- <i>d</i>) of compound 8	.104

Figure S1. Flow charts of the extraction and isolation of the leaves and bark of *P. subcordata*.

Figure S2. ¹H⁻¹H COSY, key HMBC, and NOESY correlations of 2.

¹H-¹H COSY -NOESY 🗡 HMBC / Figure S6. ¹H⁻¹H COSY, key HMBC, and NOESY correlations of 4a.

Figure S7. ¹H⁻¹H COSY, key HMBC, and NOESY correlations of **5**.

Figure S8. ¹H⁻¹H COSY, key HMBC, and NOESY correlations of **6**.

Figure S9. ¹H⁻¹H COSY, key HMBC, and NOESY correlations of 6a.

Figure S10. Lineweaver-Burk plots for the inhibition of PTP1B by 3a.

Figure S11. Lineweaver-Burk plots for the inhibition of PTP1B by 3a (amplify).

Figure S12. Dixon plots for the inhibition of PTP1B by 3a.

Figure S13. Dixon plots for the inhibition of PTP1B by 3a (amplify)

Figure S14. Lineweaver-Burk plots for the inhibition of PTP1B by 4a.

Figure S15. Lineweaver-Burk plots for the inhibition of PTP1B by 4a (amplify).

Figure S16. Dixon plots for the inhibition of PTP1B by 4a.

Figure S17. Dixon plots for the inhibition of PTP1B by 4a (amplify).

Table S1. Effect of different concentrations of **3a** on V_{max} , K_{m} , and the K_{ik} to K_{iv} ratio using *p*NPP as a

substrate.

 V_{max} and K_{m} values were calculated according to Lineweaver-Burk from the data shown in Figures S10 and S11. $K_{\text{ik}}/K_{\text{iv}}$ ratio was calculated according to Yang et al.^{S1}

Inhibitor (3a)	ibitor (3a) Substrate (<i>p</i> NPP)				
[I] (µM)	$V_{ m max}$	$K_{ m m}$	$K_{ m iv}$	$K_{ m ik}$	$K_{ m ik}/K_{ m iv}$
0	0.2374	8.258			
1	0.2329	9.439	52.44	6.993	7.499
2	0.2290	10.78	27.50	3.280	8.382
4	0.2224	12.23	14.84	2.077	7.145
8	0.2171	17.63	10.74	0.8815	12.18
16	0.2078	25.55	7.042	0.4777	14.74
32	0.2008	64.79	5.489	0.1461	37.58

Table S2. Effect of different concentrations of **4a** on V_{max} , K_{m} , and the K_{ik} to K_{iv} ratio using *p*NPP as a substrate.

 V_{max} and K_{m} values were calculated according to Lineweaver-Burk from the data shown in Figures S14 and

S15. K_{ik}/K_{iv} ratio was calculated according to Yang et al.^{S1}

Inhibitor (4a)		Substrate (<i>p</i> NPP)					
[I] (µM)	$V_{ m max}$	$K_{ m m}$	$K_{ m iv}$	$K_{ m ik}$	$K_{ m ik}/K_{ m iv}$		
0	0.2374	8.258					
1	0.2358	8.828	149.6	14.50	10.32		
2	0.2326	9.668	48.93	5.858	8.354		
4	0.2275	10.75	22.99	3.316	6.934		
8	0.2184	13.19	11.50	1.675	6.864		
16	0.2146	22.06	9.426	0.5984	15.75		
32	0.2043	46.57	6.188	0.2155	28.71		

Table S3. The calculated energies (kcal/mol) of compounds 1–8, 3a, 4a, 6a, and oleanolic acid to PTP1B by

Autidock 4.2.6.^{S2}

Inhibitors	Binding Energy	Intermolecular	Internal Energy	Torsional Energy	Unbound Extended Energy
1	-6.26	-7.75	-0.94	1.49	-0.94
2	-5.35	-6.84	-0.84	1.49	-0.84
3	-6.85	-9.23	-1.38	2.39	-1.38
3 a	-7.16	-8.05	-0.41	0.89	-0.41
4	-6.45	-8.84	-1.61	2.39	-1.61
4 a	-6.84	-7.74	-0.3	0.89	-0.3
5	-6.42	-8.21	-1.62	1.79	-1.62
6	-6.9	-9.28	-1.84	2.39	-1.84
6a	-7.62	-8.52	-0.56	0.89	-0.56
7	-5.69	-7.48	-1.22	1.79	-1.22
8	-6.03	-6.33	0.03	0.3	0.03
oleanolic acid	-9.19	-10.08	0.13	0.89	0.13

Figure S18. Molecular docking models for PTP1B inhibition of subcordatanol I (1).

A: 3D docking surfaces of the PTP1B protein active site and subcordatanol I (1). B and C: Ligand interaction models of subcordatanol I (1).

Figure S19. Molecular docking models for PTP1B inhibition of subcordatanol II (2).

A: 3D docking surfaces of the PTP1B protein active site and subcordatanol II (2). B and C: Ligand interaction models of subcordatanol II (2).

Figure S20. Molecular docking models for PTP1B inhibition of subcordatanol III (3).

A: 3D docking surfaces of the PTP1B protein active site and subcordatanol III (3). B and C: Ligand interaction models of subcordatanol III (3).

Figure S21. Molecular docking models for PTP1B inhibition of subcordatalactone A (3a).

A: 3D docking surfaces of the PTP1B protein active site and subcordatalactone A (3a). B and C: Ligand interaction models of subcordatalactone A (3a).

Figure S22. Molecular docking models for PTP1B inhibition of subcordatanol IV (4).

A: 3D docking surfaces of the PTP1B protein active site and subcordatanol IV (4). B and C: Ligand interaction models of subcordatanol IV (4).

Figure S23. Molecular docking models for PTP1B inhibition of subcordatalactone B (4a).

A: 3D docking surfaces of the PTP1B protein active site and subcordatalactone B (4a). B and C: Ligand interaction models of subcordatalactone B (4a).

Figure S24. Molecular docking models for PTP1B inhibition of 1-O-methylcrescentin I (5).

A: 3D docking surfaces of the PTP1B protein active site and 1-*O*-methylcrescentin I (**5**). **B** and **C**: Ligand interaction models of 1-*O*-methylcrescentin I (**5**).

Figure S25. Molecular docking models for PTP1B inhibition of subcordatanol V (6).

A: 3D docking surfaces of the PTP1B protein active site and subcordatanol V (6). B and C: Ligand interaction models of subcordatanol V (6).

Figure S26. Molecular docking models for PTP1B inhibition of subcordatalactone C (6a).

A: 3D docking surfaces of the PTP1B protein active site and subcordatalactone C (6a). B and C: Ligand interaction models of subcordatalactone C (6a).

Figure S27. Molecular docking models for PTP1B inhibition of 10-deoxyeucommiol (7).

A: 3D docking surfaces of the PTP1B protein active site and 10-deoxyeucommiol (7). **B** and **C**: Ligand interaction models of 10-deoxyeucommiol (7).

Figure S28. Molecular docking models for PTP1B inhibition of 6β -hydroxy-2-oxabicyclo[4.3.0] Δ^{8-9} -nonen-1-one (8).

A: 3D docking surfaces of the PTP1B protein active site and 6β -hydroxy-2-oxabicyclo[4.3.0] Δ^{8-9} -nonen-1-one (8). B and C: Ligand interaction models of 6β -hydroxy-2-oxabicyclo[4.3.0] Δ^{8-9} -nonen- 1-one (8).

Figure S29. Molecular docking models for PTP1B inhibition of oleanolic acid.

A: 3D docking surfaces of the PTP1B protein active site and oleanolic acid. B and C: Ligand interaction

models of oleanolic acid.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Z	
1	6	0	-0.47023	1.948143	-0.04145	
2	6	0	-0.07385	0.65359	0.713852	
3	6	0	-1.45721	1.439143	-1.12528	
4	6	0	-1.73093	-0.050862	-0.8063	
5	8	0	-0.7624	-0.880315	-1.55804	
6	6	0	0.955492	-0.096619	-0.10898	
7	6	0	0.526795	-0.804307	-1.17969	
8	6	0	-1.39866	-0.144279	0.702226	
9	6	0	-3.09238	-0.54218	-1.27021	
10	8	0	-1.18417	2.875668	0.783266	
11	6	0	-1.35012	-1.533105	1.348441	
12	8	0	-2.64289	-2.023645	1.721281	
13	6	0	2.375538	0.007414	0.248383	
14	8	0	2.798351	0.684169	1.174369	
15	8	0	3.193657	-0.723984	-0.55461	
16	6	0	4.596714	-0.653292	-0.24973	
17	1	0	-2.15322	0.439259	1.243521	
18	1	0	0.40831	2.44058	-0.47683	
19	1	0	0.312302	0.859036	1.715868	
20	1	0	-1.07024	1.55085	-2.14298	
21	1	0	-2.38388	2.018138	-1.05412	
22	1	0	1.177658	-1.386154	-1.82324	
23	1	0	-3.18404	-1.628666	-1.16018	
24	1	0	-3.88558	-0.057675	-0.69192	
25	1	0	-3.24247	-0.309587	-2.33056	
26	1	0	-0.57005	3.246817	1.437006	
27	1	0	-0.79353	-1.467852	2.288632	
28	1	0	-0.83377	-2.261793	0.710942	
29	1	0	-3.11726	-2.304499	0.92506	
30	1	0	4.956787	0.37567	-0.33565	
31	1	0	4.787948	-1.017758	0.763288	
32	1	0	5.083622	-1.29339	-0.98657	

Table S4. Cartesian coordinate of $\mathbf{1}$ [E(RB3LYP) = -804.928766230 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	6	0	0.082829	-0.783286	-0.24805	
2	1	0	0.165467	-1.278002	-1.22292	
3	6	0	-0.68518	0.562607	-0.33678	
4	6	0	-1.49458	0.603195	0.952506	
5	6	0	-1.51884	-0.613883	1.517465	
6	1	0	-2.06917	-0.872126	2.419109	
7	6	0	-0.7477	-1.653187	0.726655	
8	1	0	-0.11445	-2.282528	1.360747	
9	8	0	-1.6083	-2.5713	0.051841	
10	1	0	-2.0959	-2.063361	-0.6255	
11	6	0	-2.16089	1.860322	1.428163	
12	1	0	-2.69579	1.693428	2.36819	
13	1	0	-1.42227	2.656072	1.5856	
14	1	0	-2.88103	2.246439	0.693005	
15	8	0	0.319042	1.617424	-0.38154	
16	6	0	1.549808	1.129137	-0.07519	
17	6	0	1.470546	-0.355403	0.257104	
18	1	0	1.528417	-0.434742	1.352367	
19	6	0	2.665782	-1.126511	-0.33132	
20	1	0	2.549646	-2.194388	-0.12126	
21	1	0	2.681539	-1.000389	-1.42636	
22	8	0	3.895893	-0.733899	0.247909	
23	1	0	3.976107	0.231602	0.138754	
24	8	0	2.539872	1.826045	-0.09288	
25	6	0	-1.5412	0.735192	-1.60321	
26	1	0	-1.99479	1.733379	-1.6283	
27	1	0	-0.90607	0.629439	-2.48692	
28	8	0	-2.53929	-0.285872	-1.69725	
29	1	0	-3.30299	-0.033104	-1.15522	

Table S5. Cartesian coordinate of 2 [E(RB3LYP) = -765.618118831 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.24026	-0.65744	0.521675
2	1	0	0.419161	-1.33486	1.371541
3	6	0	1.492782	0.190402	0.310466
4	6	0	1.812347	1.354237	1.203728
5	1	0	2.770215	1.81333	0.928022
6	1	0	1.045848	2.130811	1.13142
7	8	0	1.818085	0.987437	2.597129
8	1	0	2.483225	0.29221	2.72537
9	6	0	2.27226	-0.33086	-0.66013
10	6	0	1.645549	-1.57162	-1.25866
11	1	0	2.13784	-2.47943	-0.87693
12	1	0	1.718768	-1.61038	-2.3533
13	6	0	0.190974	-1.53294	-0.76406
14	1	0	-0.42036	-1.01589	-1.5216
15	8	0	-0.29972	-2.84654	-0.56856
16	1	0	-1.21742	-2.7587	-0.23616
17	6	0	3.621446	0.12482	-1.13442
18	1	0	4.354969	-0.6893	-1.04878
19	1	0	3.585387	0.397589	-2.19855
20	1	0	4.006683	0.986892	-0.582
21	6	0	-1.06784	0.107585	0.902692
22	1	0	-0.80494	0.797187	1.715276
23	6	0	-2.16497	-0.82525	1.454976
24	1	0	-1.7543	-1.41307	2.280783
25	1	0	-2.99679	-0.22442	1.848293
26	8	0	-2.66291	-1.7687	0.503788
27	1	0	-3.04044	-1.24076	-0.22567
28	6	0	-1.63415	0.939481	-0.23714
29	8	0	-2.59575	0.617542	-0.9217
30	8	0	-0.96616	2.08893	-0.43019
31	6	0	-1.42108	2.922273	-1.5179
32	1	0	-0.75635	3.786023	-1.5133
33	1	0	-1.34854	2.380964	-2.46432
34	1	0	-2.45676	3.228292	-1.35127

Table S6. Cartesian coordinate of **3** [E(RB3LYP) = -806.135135427 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Ζ	
1	6	0	-0.05701	-0.44558	0.611143	
2	1	0	-0.14019	-0.92671	1.598175	
3	6	0	1.222804	0.356226	0.524555	
4	6	0	1.126593	1.793563	0.896246	
5	1	0	2.048967	2.35551	0.744695	
6	1	0	0.793993	1.941345	1.933285	
7	8	0	0.153817	2.441472	0.017013	
8	6	0	-0.98054	1.780805	-0.32341	
9	6	0	-1.29944	0.484072	0.431271	
10	1	0	-1.58267	0.824316	1.4419	
11	6	0	-2.53126	-0.18488	-0.20072	
12	1	0	-3.39279	0.488916	-0.16567	
13	1	0	-2.34546	-0.41849	-1.25089	
14	8	0	-2.84955	-1.44308	0.415843	
15	1	0	-3.18798	-1.29629	1.312806	
16	8	0	-1.71535	2.260093	-1.15977	
17	6	0	2.225961	-0.34176	-0.03695	
18	6	0	1.737965	-1.73018	-0.40495	
19	1	0	2.137817	-2.0826	-1.36376	
20	1	0	2.021327	-2.47525	0.354035	
21	6	0	0.202156	-1.57838	-0.41966	
22	1	0	-0.10172	-1.2272	-1.42054	
23	8	0	-0.41902	-2.81468	-0.1224	
24	1	0	-1.36647	-2.63966	0.039675	
25	6	0	3.636825	0.089327	-0.29675	
26	1	0	3.885596	-0.02136	-1.36084	
27	1	0	3.820998	1.129749	-0.01076	
28	1	0	4.345093	-0.54202	0.257786	

Table S7. Cartesian coordinate of **3a** [E(RB3LYP) = -690.388071075 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-0.51517	0.412487	0.124827
2	1	0	-0.30698	0.439428	1.204402
3	6	0	-1.35378	-0.83259	-0.19075
4	6	0	-0.76132	-2.21549	-0.28197
5	1	0	-1.48217	-2.90899	-0.72078
6	1	0	0.120918	-2.21947	-0.94258
7	8	0	-0.42315	-2.76711	0.991717
8	1	0	0.326082	-2.25069	1.34288
9	6	0	-2.66748	-0.53337	-0.24613
10	6	0	-2.90281	0.939713	0.014267
11	1	0	-3.23777	1.10042	1.051229
12	1	0	-3.66388	1.38153	-0.64425
13	6	0	-1.50757	1.552447	-0.18704
14	1	0	-1.39847	1.855308	-1.23957
15	8	0	-1.22247	2.680968	0.657861
16	1	0	-1.81302	3.415864	0.430304
17	6	0	-3.83814	-1.45012	-0.44293
18	1	0	-4.43983	-1.13763	-1.30816
19	1	0	-3.54519	-2.49278	-0.59046
20	1	0	-4.50359	-1.41366	0.431354
21	6	0	0.843989	0.531282	-0.61048
22	1	0	0.727809	0.21965	-1.65912
23	6	0	1.409461	1.980144	-0.66151
24	1	0	2.380915	1.962467	-1.16148
25	1	0	0.735481	2.601835	-1.26697
26	8	0	1.616429	2.551808	0.615492
27	1	0	0.736787	2.789389	0.96475
28	6	0	1.896157	-0.37888	0.011884
29	8	0	1.794217	-0.97025	1.073295
30	8	0	3.001113	-0.4505	-0.7533
31	6	0	4.0895	-1.24167	-0.2328
32	1	0	4.879673	-1.16741	-0.98007
33	1	0	4.422419	-0.83813	0.726499
34	1	0	3.774639	-2.28021	-0.10275

Table S8. Cartesian coordinate of 4 [E(RB3LYP) = -806.131628606 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Ζ
1	6	0	-0.047118	0.36334	0.374092
2	1	0	0.139504	0.550352	1.445974
3	6	0	-1.114586	-0.68809	0.208576
4	6	0	-0.741499	-2.09857	0.504936
5	1	0	-1.403345	-2.82745	0.031716
6	1	0	-0.744573	-2.29054	1.587532
7	8	0	0.594079	-2.45722	0.051085
8	6	0	1.595445	-1.56933	-0.14569
9	6	0	1.275571	-0.0731	-0.286
10	1	0	1.168272	0.064589	-1.37548
11	6	0	2.488823	0.753652	0.17792
12	1	0	2.593959	0.687071	1.26531
13	1	0	3.407533	0.373419	-0.27451
14	8	0	2.326073	2.155106	-0.10628
15	1	0	2.611783	2.331748	-1.01561
16	8	0	2.721872	-1.99537	-0.29289
17	6	0	-2.313651	-0.16651	-0.1062
18	6	0	-2.228758	1.346357	-0.16582
19	1	0	-2.778298	1.775294	-1.01336
20	1	0	-2.646478	1.799939	0.745846
21	6	0	-0.716738	1.629453	-0.23802
22	1	0	-0.423426	1.685255	-1.3002
23	8	0	-0.39963	2.844582	0.41288
24	1	0	0.570652	2.943725	0.354011
25	6	0	-3.616673	-0.88045	-0.30588
26	1	0	-4.075902	-0.59081	-1.26059
27	1	0	-3.508702	-1.96995	-0.29764
28	1	0	-4.335026	-0.61	0.481087

Table S9. Cartesian coordinate of **4a** [E(RB3LYP) = -690.390689796 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Ζ
1	6	0	0.801854	-0.12164	0.301795
2	1	0	0.982016	-0.24231	1.382523
3	6	0	-0.66333	0.268102	0.089996
4	6	0	-1.72668	-0.74938	0.226817
5	8	0	-2.90283	-0.41186	-0.36144
6	6	0	-3.96909	-1.36774	-0.21753
7	1	0	-4.20089	-1.52859	0.838859
8	1	0	-4.82119	-0.92805	-0.73743
9	1	0	-3.69055	-2.32188	-0.67302
10	8	0	-1.576	-1.81313	0.808767
11	6	0	-0.81294	1.609104	-0.04622
12	6	0	0.530534	2.296074	0.038071
13	1	0	0.667815	2.737867	1.037646
14	1	0	0.641918	3.11343	-0.68568
15	6	0	1.542548	1.164381	-0.16709
16	1	0	1.736627	1.063721	-1.24935
17	8	0	2.749875	1.451073	0.513691
18	1	0	3.362072	0.712414	0.32161
19	6	0	-2.05005	2.4436	-0.1766
20	1	0	-2.03566	3.249538	0.570066
21	1	0	-2.06629	2.934843	-1.16027
22	1	0	-2.96896	1.868262	-0.06867
23	6	0	1.254256	-1.41608	-0.40048
24	1	0	0.548373	-2.21837	-0.15689
25	1	0	1.214671	-1.2808	-1.49354
26	6	0	2.641513	-1.91508	0.005136
27	1	0	2.713114	-2.00313	1.093682
28	1	0	2.825628	-2.90975	-0.42278
29	8	0	3.725588	-1.03512	-0.36039
30	1	0	3.826492	-1.04301	-1.32517

Table S10. Cartesian coordinate of **5** [E(RB3LYP) = -691.607660318 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.503975	0.721237	0.654811
2	1	0	0.574538	1.215635	1.63599
3	6	0	-0.961	0.719246	0.217804
4	6	0	-1.91664	-0.20742	0.858552
5	8	0	-3.06794	-0.39446	0.1684
6	6	0	-4.02841	-1.27158	0.785287
7	1	0	-4.87599	-1.29724	0.099253
8	1	0	-3.60422	-2.27106	0.912883
9	1	0	-4.33229	-0.8829	1.761006
10	8	0	-1.699	-0.76786	1.922823
11	6	0	-1.23069	1.749113	-0.62096
12	6	0	0.018649	2.559326	-0.87782
13	1	0	0.123299	2.866725	-1.92601
14	1	0	-0.00021	3.482837	-0.27831
15	6	0	1.164651	1.661715	-0.39572
16	1	0	1.510765	1.05236	-1.24641
17	8	0	2.232399	2.446233	0.097629
18	1	0	2.938557	1.821133	0.366376
19	6	0	-2.52818	2.204883	-1.21449
20	1	0	-2.48883	2.113266	-2.30955
21	1	0	-3.38651	1.638447	-0.8549
22	1	0	-2.68154	3.271594	-1.00039
23	6	0	1.184271	-0.67009	0.853134
24	1	0	0.520804	-1.24325	1.511267
25	6	0	2.548668	-0.57593	1.562301
26	1	0	2.435303	-0.00692	2.48941
27	1	0	2.894927	-1.58475	1.825524
28	8	0	3.561976	0.094246	0.806343
29	1	0	3.67089	-0.42382	-0.01404
30	6	0	1.326598	-1.45418	-0.44028
31	8	0	2.377104	-1.6186	-1.04653
32	8	0	0.159107	-1.96114	-0.86851
33	6	0	0.190864	-2.69146	-2.11265
34	1	0	0.551474	-2.04925	-2.91998
35	1	0	0.843533	-3.56332	-2.02191
36	1	0	-0.84023	-2.99596	-2.29131

Table S11. Cartesian coordinate of **6** [E(RB3LYP) = -919.493282263 a.u.]

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Ζ
1	6	0	0.217636	0.429079	-0.34564
2	6	0	1.559558	-0.25154	-0.12692
3	6	0	1.69252	-1.72238	-0.11946
4	8	0	0.525103	-2.444	-0.11775
5	6	0	-0.76434	-1.85061	-0.34389
6	6	0	-0.89223	-0.44107	0.257126
7	6	0	0.457117	1.848175	0.238907
8	6	0	1.977757	2.048875	0.107437
9	6	0	2.544889	0.646232	0.115252
10	6	0	4.001687	0.411833	0.353701
11	1	0	0.01785	0.542069	-1.42396
12	8	0	-0.22776	2.893969	-0.42048
13	6	0	-2.29305	0.124224	0.06668
14	8	0	2.735003	-2.34265	-0.06109
15	8	0	-2.5526	1.266886	-0.27121
16	8	0	-3.24349	-0.78143	0.348782
17	6	0	-4.61365	-0.33161	0.250622
18	1	0	-0.94368	-1.81676	-1.4271
19	1	0	-1.47557	-2.54533	0.10281
20	1	0	-0.74191	-0.5239	1.345355
21	1	0	0.189414	1.831403	1.310228
22	1	0	2.397697	2.679337	0.900441
23	1	0	2.197296	2.551305	-0.84728
24	1	0	4.252017	-0.64885	0.365078
25	1	0	4.590343	0.907342	-0.43209
26	1	0	4.306657	0.873581	1.303079
27	1	0	-1.17202	2.649681	-0.43899
28	1	0	-5.2173	-1.19986	0.513489
29	1	0	-4.78927	0.49096	0.947982
30	1	0	-4.82899	-0.00045	-0.76792

Table S12. Cartesian coordinate of **6a** [E(RB3LYP) = -803.751549217 a.u.]

Figure S31. (+)-HR-ESI-MS spectrum of 1 (amplified)

Figure S32. UV spectrum of compound 1

Figure S33. IR spectrum of compound 1

Figure S37. DEPT135 (100 MHz, chloroform-d) spectrum of compound 1

Figure S38. HSQC spectrum (chloroform-*d*) of compound 1 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S39. HMBC spectrum (chloroform-*d*) of compound 1 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S40. ¹H⁻¹H COSY spectrum (400 MHz, chloroform-*d*) of compound 1

Figure S41. NOESY spectrum (400 MHz, chloroform-*d*) of compound 1

Figure S43. (+)-HR-ESI-MS spectrum of 2 (amplified)

Figure S44. UV spectrum of compound 2

Figure S45. IR spectrum of compound 2

Figure S50. HSQC spectrum (methanol- d_4) of compound 2 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S51. HMBC spectrum (methanol-*d*₄) of compound 2 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S53. NOESY spectrum (400 MHz, methanol-d4) of compound 2

Figure S54. (+)-HR-ESI-MS spectrum of 3

Figure S55. (+)-HR-ESI-MS spectrum of 3 (amplified)

Figure S56. UV spectrum of compound 3

Figure S57. IR spectrum of compound 3

Figure S59. ¹H NMR (400 MHz, chloroform-*d*) spectrum of compound 3 (amplified)

Figure S62. HSQC spectrum (chloroform-*d*) of compound 3 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S63. HMBC spectrum (chloroform-*d*) of compound 3 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S65. NOESY spectrum (400 MHz, chloroform-*d*) of compound 3

Figure S67. (+)-HR-ESI-MS spectrum of 3a (amplified)

Figure S68. UV spectrum of compound 3a

Figure S69. IR spectrum of compound 3a

Figure S71. ¹H NMR (400 MHz, chloroform-*d*) spectrum of compound 3a (amplified)

Figure S73. DEPT135 (100 MHz, chloroform-*d*) spectrum of compound 3a

Figure S74. HSQC spectrum (chloroform-*d*) of compound 3a (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S75. HMBC spectrum (chloroform-*d*) of compound 3a (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S76. ¹H⁻¹H COSY spectrum (400 MHz, chloroform-*d*) of compound 3a

Figure S77. NOESY spectrum (400 MHz, chloroform-d) of compound 3a

Figure S78. (+)-HR-ESI-MS spectrum of 4

Figure S79. (+)-HR-ESI-MS spectrum of 4 (amplified)

Figure S80. UV spectrum of compound 4

Figure S81. IR spectrum of compound 4

Figure S86. HSQC spectrum (chloroform-*d*) of compound 4 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S87. HMBC spectrum (chloroform-*d*) of compound 4 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S88. ¹H–¹H COSY spectrum (400 MHz, chloroform-*d*) of compound 4

Figure S89. NOESY spectrum (400 MHz, chloroform-d) of compound 4

Figure S90. (+)-HR-ESI-MS spectrum of 4a

Figure S91. (+)-HR-ESI-MS spectrum of 4a (amplified)

Figure S92. UV spectrum of compound 4a

Figure S93. IR spectrum of compound 4a

Figure S99. HSQC spectrum (chloroform-*d*) of compound 4a (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S100. HMBC spectrum (chloroform-*d*) of compound 4a (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S101. ¹H⁻¹H COSY spectrum (400 MHz, chloroform-*d*) of compound 4a

Figure S102. NOESY spectrum (400 MHz, chloroform-d) of compound 4a

Figure S103. (+)-HR-ESI-MS spectrum of 5

Figure S104. (+)-HR-ESI-MS spectrum of 5 (amplified)

Figure S105. UV spectrum of compound 5

Figure S106. IR spectrum of compound 5

Figure S109. ¹H NMR (400 MHz, chloroform-*d*) spectrum of compound 5 (amplified)

Figure S112. HSQC spectrum (chloroform-*d*) of compound 5 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S113. HMBC spectrum (chloroform-*d*) of compound 5 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S115. NOESY spectrum (400 MHz, chloroform-d) of compound 5

Figure S116. (+)-HR-ESI-MS spectrum of 6

Figure S117. (+)-HR-ESI-MS spectrum of 6 (amplified)

Figure S118. UV spectrum of compound 6

Figure S119. IR spectrum of compound 6

Figure S121. ¹H NMR (400 MHz, chloroform-*d*) spectrum of compound 6 (amplified)

Figure S123. ¹³C NMR (100 MHz, chloroform-*d*) spectrum of compound 6

Figure S125. HSQC spectrum (chloroform-*d*) of compound 6 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S126. HMBC spectrum (chloroform-*d*) of compound 6 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S127. ¹H⁻¹H COSY spectrum (400 MHz, chloroform-*d*) of compound 6

Figure S128. NOESY spectrum (400 MHz, chloroform-*d*) of compound 6

Figure S129. (+)-HR-ESI-MS spectrum of 6a

Figure S130. (+)-HR-ESI-MS spectrum of 6a (amplified)

Figure S131. UV spectrum of compound 6a

Figure S132. IR spectrum of compound 6a

Figure S133. ¹H NMR (400 MHz, methanol-*d*₄) spectrum of compound 6a

Figure S135. ¹³C NMR (100 MHz, methanol-*d*₄) spectrum of compound **6a**

Figure S137. HSQC spectrum (methanol-*d*₄) of compound 6a (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S138. HMBC spectrum (methanol- d_4) of compound 6a (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S139. $^{1}H^{-1}H$ COSY spectrum (400 MHz, methanol- d_{4}) of compound 6a

Figure S140. NOESY spectrum (400 MHz, methanol-d₄) of compound 6a

Figure S141. (+)-HR-ESI-MS spectrum of 7

Figure S142. (+)-HR-ESI-MS spectrum of 7 (amplified)

Figure S143. UV spectrum of compound 7

Figure S144. Experimental ECD spectrum of 7 and the calculated ECD spectra for 7 and its enantiomer.

Figure S147. ¹H NMR (400 MHz, chloroform-*d*) spectrum of compound 7 (amplified)

Figure S150. HSQC spectrum (chloroform-*d*) of compound 7 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S151. HMBC spectrum (chloroform-*d*) of compound 7 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S153. NOESY spectrum (400 MHz, chloroform-d) of compound 7

Figure S155. Experimental ECD spectrum of compound 8

Figure S157. ¹H NMR (400 MHz, chloroform-*d*) spectrum of compound 8 (amplified)

Figure S161. HSQC spectrum (chloroform-*d*) of compound 8 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S162. HMBC spectrum (chloroform-*d*) of compound 8 (¹H: 400 MHz, ¹³C: 100 MHz)

Figure S163. ¹H⁻¹H COSY spectrum (400 MHz, chloroform-*d*) of compound 8

Figure S164. NOESY spectrum (400 MHz, chloroform-*d*) of compound 8

REFERENCES

- (S1) Yang, X.; Du, Z.; Pu, J.; Zhao, H.; Chen, H.; Liu, Y.; Li, Z.; Cheng, Z.; Zhong, H.; Liao, F. J. Enzym. Inhib. Med. Ch. 2013, 28, 205–213.
- (S2) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785–2791.