Supporting Information

Of

Mechanistic Insight into the Chemiluminescent Decomposition of *Cypridina* Dioxetanone and the Chemiluminescent, Fluorescent Properties of the Light Emitter of *Cypridina* Bioluminescence

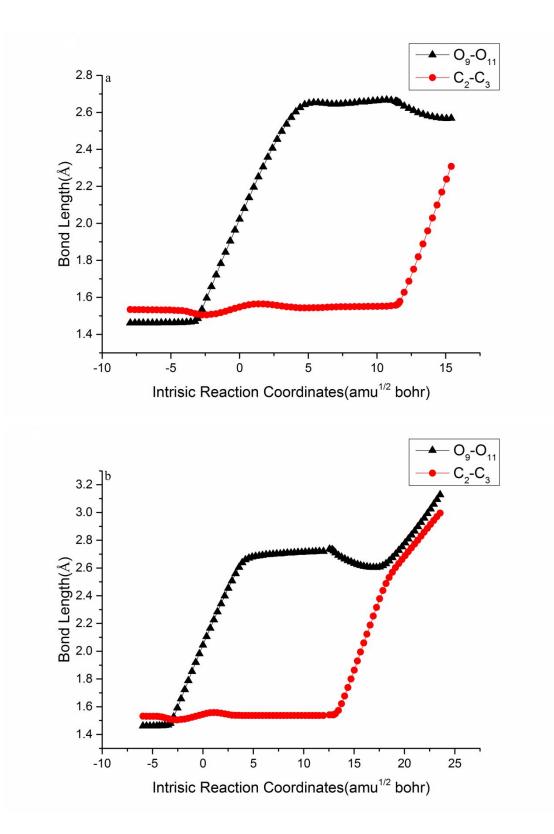
Chun-Gang Min, ^{*,†, ‡, §} Qing-Bo Liu, ^{†, ‡, §} Yan Leng, [†] Carla M. Magalhães[⊥] Shao-Jun Huang, ^{‡, §} Chun-Xia Liu, ^{‡, §} Xi-Kun Yang, ^{‡, §} Luís Pinto da Silva^{*, ⊥}, [#]

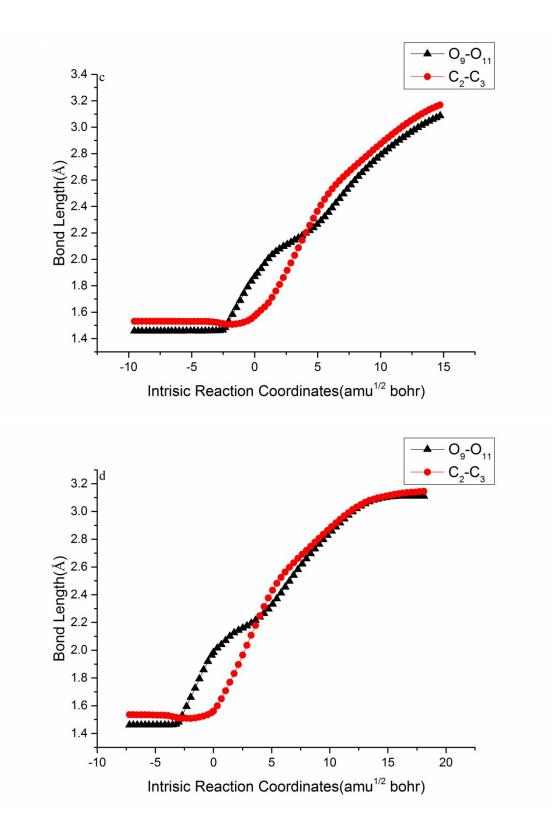
[†]School of Materials Science and Engineering, Kunming University of Science and Technology,

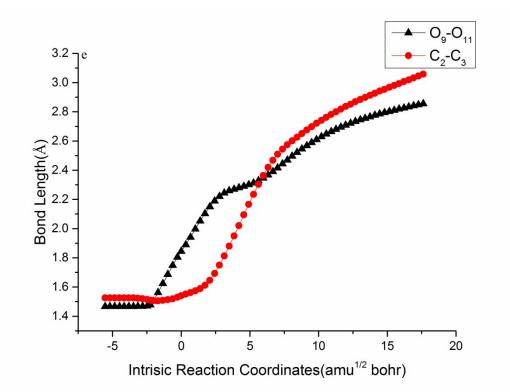
Kunming 650093 P. R. China

* Research Center for Analysis and Measurement, Kunming University of Science and Technology,

Kunming 650093 P. R. China

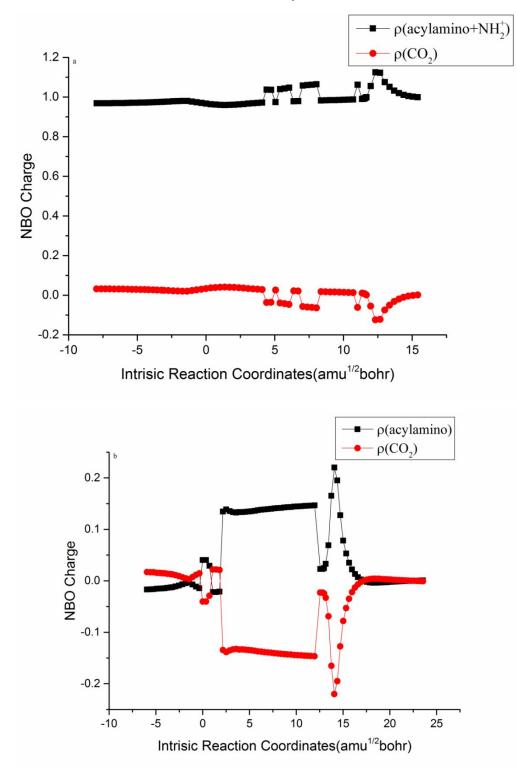

§ Analysis and Test Center of Yunnan Province, Kunming 650093 P. R. China

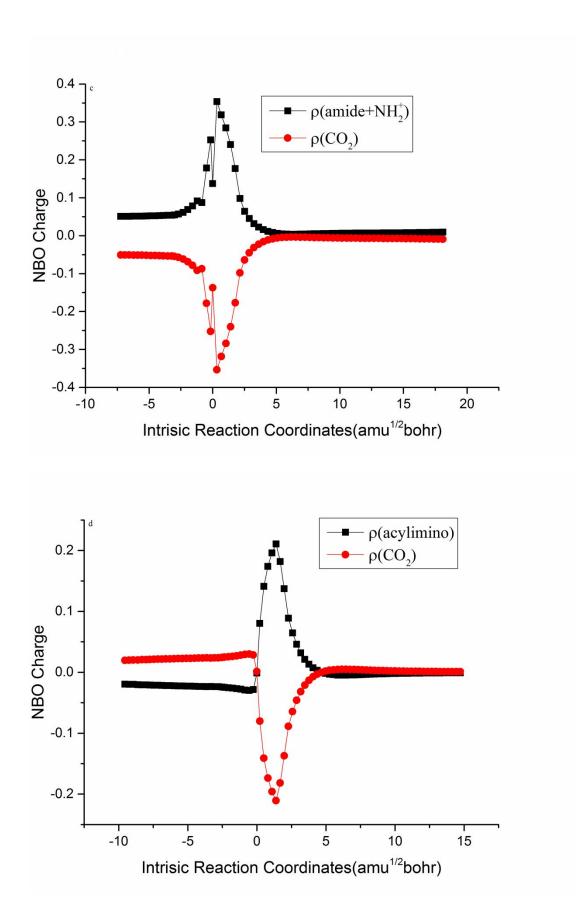

¹ Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093,

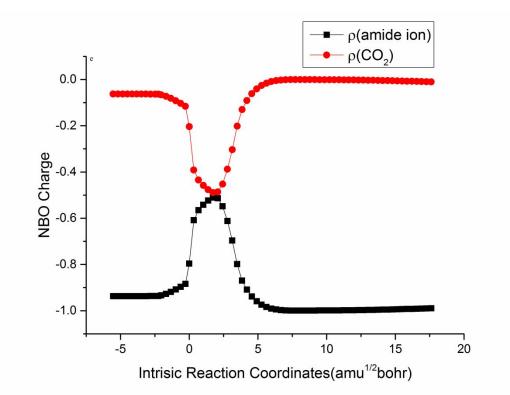

PR China

¹ Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal.

LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning,Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal.




Figure S1. Variation of O₉-O₁₁ and C₂-C₃ bond length (in Å) during the thermolysis reaction of C-DO acylamino+NH₂⁺ (a), C-DO acylamino (b), C-DO amide+NH₂⁺ (c), C-DO acylimino (d) and C-DO amide ion (e), as a function of intrinsic reaction coordinates. The calculations were made at the ω B97XD/6-31+G(d) level of theory.


For C-DO acylamino+NH₂⁺, the O₉-O₁₁ bond is elongated by 0.561 Å from 1.462 to 2.023 Å in TS, while C₂-C₃ remains nearly unchanged (slightly increasing from 1.534 to 1.547 Å). The C₂-C₃ bond begins to break after TS, which indicates that the broken of the O₉-O₁₁ and C₂-C₃ bonds is asynchronous.

The decomposition of C-DO acylamino starts with dissociation of the O_9-O_{11} bond, and the following step is the dissociation of the C_2-C_3 bond. The bond length of O_9-O_{11} in TS_{O-O} (2.045 Å) is 0.585 Å longer than that in the R, but the C_2-C_3 bond lengths in the R and TS_{O-O} are 1.534 and 1.545 Å, respectively, it changes not much. The bond lengths of O_9-O_{11} are 2.735 and 2.709 Å in Int and TS_{C-C} , respectively. The bond lengths of C_2-C_3 are 1.540 and 1.549 Å in Int and TS_{C-C} , respectively. It indicates that the O_9-O_{11} bond is broken completely in Int and the C_2-C_3 bond gradually breaks after Int. So the dissociation of the O_9-O_{11} and C_2-C_3 bonds occur sequentially.

For C-DO amide- NH_2^+ , C-DO acylimino and C-DO amide ion, The O₉-O₁₁ bonds are elongated by 0.524, 0.411 and 0.378 Å, respectively, while C₂-C₃ remains nearly unchanged. The C₂-C₃ bond gets down breaking after TS, which illustrates that the broken of the O₉-O₁₁ and C₂-C₃ bonds is asynchronous.

Figure S2. NBO charge of the CO_2 and oxyluciferin moieties of C-DO acylamino+NH₂⁺ (a), C-DO acylamino (b), C-DO amide+NH₂⁺ (c), C-DO acylimino (d) and C-DO amide ion (e).

Table S1 Computed ground states dissociation constants (pK) of all forms of	
C-DO in diethyl ether and water.	

	diethyl ether	water		diethyl ether	water
pK _A	12.53	17.01	рК _В	20.33	25.87
pK _C	16.91	15.92	pK_D	2.98	-2.48
pK _E	6.40	7.47	$pK_{\rm F}$	-4.81	-11.34
рК _G	29.22	21.57	pK_H	21.42	12.71
рК _I	24.84	22.65			

	fluorescent state					chemiluminescent state						
	gas phase		diethyl ether		water		gas phase		diethyl ether		water	
	θ	R(C ₂ -O ₉)	θ	$R(C_2-O_9)$	θ	R(C ₂ -O ₉)	θ	R(C ₂ -O ₉)	θ	$R(C_2-O_9)$	θ	$R(C_2-O_9)$
acylamino-NH ₂ ⁺	179	1.238	179	1.219	179	1.236	-127	1.383	-129	1.380	-132	1.376
acylamino	179	1.212	180	1.218	180	1.234	-127	1.389	-130	1.382	-134	1.380
acylimino	180	1.246	-180	1.250	179	1.263	-134	1.380	-138	1.376	-131	1.385
amide+NH ₂ +	-174	1.230	-174	1.228	-177	1.251	-125	1.405	-127	1.397	-131	1.386
amide ion	175	1.226	175	1.233	176	1.260	-134	1.388	-131	1.385	-130	1.380

Table S2. Selected bond lengths (Å) and dihedral angles (deg) of the possible emitters in their fluorescent and chemiluminescent states^[a]

^[a] The angle θ is the torsional angle O₉-C₂-N₁-C₁₀. The atom numbering is shown in Figure 3.

	diethyl ether	water		diethyl ether	water
$pK_J^{F^*}$	11.33	16.69	pK _J ^{C*}	12.30	17.46
$pK_{K}^{F^{*}}$	9.54	17.50	pK _K ^{C*}	10.00	14.78
$pK_L^{F^*}$	12.38	18.53	pK_L^{C*}	15.30	15.73
$pK_M^{F^*}$	-0.34	0.45	pK_M^{C*}	1.61	-3.13
$pK_N{}^{F*}$	-3.18	-0.59	pK_N^{C*}	-3.69	-4.07
pK_{O}^{F*}	1.45	-0.36	pKo ^{C*}	3.91	-0.45
$pK_{P}{}^{F*}$	24.74	18.34	pK_P^{C*}	20.04	12.34
pK_{K}^{F*}	26.52	17.53	pK _K ^{C*}	22.34	15.02
pK_R^{F*}	23.68	16.50	pK _R ^{C*}	17.04	14.08

Table S3. Computed fluorescent (pKF*) and chemiluminescent (pKC*) states dissociation constants of all possible emitters in diethyl ether and water.

$$\chi_n^{Acylamino} = \chi_n^{Acylamino - NH2 +} \times \frac{k_A}{[H]^+}$$
(S1)

$$\chi_n^{Amide - NH2 +} = \chi_n^{Acylamino - NH2 +} \times \frac{k_A \times k_C \times k_D}{[H]^{+2}}$$
(S2)

$$\chi_n^{Acylimino} = \chi_n^{Acylamino-NH2+} \times \frac{k_A \times k_B \times k_C \times k_D \times k_E \times k_F}{[H]^{+3}}$$
(S3)

$$\chi_n^{Amide} = \chi_n^{Acylamino - NH2 +} \times \frac{k_A \times k_B \times k_C \times k_D \times k_E \times k_F \times k_G \times k_H \times k_I}{[H]^{+6}}$$
(S4)

$$\chi_{n}^{Acylamino-NH2} = \frac{1}{1 + \frac{k_{A}}{[H]^{+}} + \frac{k_{A} \times k_{C} \times k_{D}}{[H]^{+2}} + \frac{k_{A} \times k_{B} \times k_{C} \times k_{D} \times k_{E} \times k_{F}}{[H]^{+3}} + \frac{k_{A} \times k_{B} \times k_{C} \times k_{D} \times k_{E} \times k_{C} \times k_{D} \times k_{E} \times k_{C} \times k_{H} \times k_{I}}{[H]^{+6}}}$$
(S5)

$$\chi_n^{Acylamino} = \chi_n^{Acylamino - NH2 +} \times \frac{k_j}{[H]^+}$$
(S6)

$$Amida = NH2 + Acylamina = NH2 + k_J \times k_L \times k_M$$

$$\chi n = \chi n$$
 $\chi [H]^+$ (30)

$$Amide - NH2 + Acvlamino - NH2 + k_J \times k_L \times k_M$$

$$\chi_n^{Amide-NH2+} = \chi_n^{Acylamino-NH2+} \times \frac{k_J \times k_L \times k_M}{|H|^{+2}}$$
(S7)

$$Amide - NH2 + _ Acylamino - NH2 + \searrow k_J \times k_L \times k_M$$

 $\chi_{n}^{Amide} = \chi_{n}^{Acylamino-NH2+} \times \frac{k_{J} \times k_{K} \times k_{L} \times k_{M} \times k_{N} \times k_{O} \times k_{P} \times k_{Q} \times k_{R}}{[H]^{+6}}$

$$\chi_n \cdot - \chi_n \cdot \times [H]^+$$
 (30)

$$\frac{k_{I} \times k_{L} \times k_{M}}{(H)^{+}}$$

$$\chi_n^{Acytamino} = \chi_n^{Acytamino-NH2+} \times \frac{1}{[H]^+}$$
(S6)

$$\chi_n^{Acylamino-NH2+} imes rac{k_j}{[H]^+}$$

$$mino - NH2 + \times \frac{k_j}{k_j}$$

 $\chi_{n}^{Acylamino-NH2} = \frac{1}{1 + \frac{k_{j}}{[H]^{+}} + \frac{k_{j} \times k_{L} \times k_{M}}{[H]^{+2}} + \frac{k_{j} \times k_{K} \times k_{L} \times k_{M} \times k_{N} \times k_{O}}{[H]^{+3}} + \frac{k_{j} \times k_{K} \times k_{L} \times k_{M} \times k_{N} \times k_{O} \times k_{P} \times k_{Q} \times k_{R}}{[H]^{+6}}}$

$$\chi_n^{Amide - NH2 +} = \chi_n^{Acylamino - NH2 +} \times \frac{k_J \times k_L \times k_M}{[H]^{+2}}$$
$$\chi_n^{Acylimino} = \chi_n^{Acylamino - NH2 +} \times \frac{k_J \times k_K \times k_L \times k_M \times k_N \times k_O}{[H]^{+3}}$$

$$H^2 + \times \frac{K_j}{[H]^+}$$

(S8)

(S9)