SUPPORTING INFORMATION

Chiral N-Heterocyclic-Carbene-Catalyzed Cascade Asymmetric Desymmetrization of Cyclopentenediones with Enals: Access to Optically Active 1,3-Indandione

 Derivatives

 Derivatives}
Jia-Ming Hu ${ }^{\text {a }}$, Jun-Qi Zhang ${ }^{\text {a }}$, Bing-Bing Sun ${ }^{\text {a }}$, Jun-Bo Chen ${ }^{\text {a }}$, Jie-Qiang Yu ${ }^{\text {a }}$, Xiao-
Peng Yang ${ }^{\text {a }}$, Hao-Peng Lv ${ }^{\text {a }}$, Zheng Wang ${ }^{\text {b* }}$ and Xing-Wang Wang*a
${ }^{a}$ Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,Chemical Engineering and Materials Science, Soochow University, Suzhou 215123,China
${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Center for Excellence inMolecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy ofSciences, Shanghai 200032, China
E-mail: wangxw@suda.edu.cn; wzsioc@mail.sioc.ac.cn
Contents
I: General methods 1
II: General and Typical experimental procedures 2
III: Experimental screening details 5
IV: Crystal data and ORTEP diagram for compound 3ad 8
V: Characterization of products 9
VI: NMR spectra of new compounds. 25
VII: HPLC profile spectrum of compounds 64

I: General methods

Unless otherwise noted, all reactions were carried out under an atmosphere of nitrogen in oven-dried Schlenk tube with magnetic stirring, all reagents obtained from commercial suppliers were used without further purification. Reactions were monitored by thin-layer chromatography (TLC) on silica gel precoated glass plates $(0.2 \pm 0.03 \mathrm{~mm}$ thickness, GF-254, particle size $0.01-0.04 \mathrm{~mm}$) from Yantai Chemical Industry Research Institute. TLC were visualized by UV fluorescence (254 nm). Flash column chromatography was performed with silica gel (particle size $0.04-0.05 \mathrm{~mm}$). ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectroscopic data were recorded using Bruker AMX-400 instrument and calibrated by using the residual solvent peaks as an internal reference $\left(\mathrm{CDCl}_{3}\left[{ }^{1} H: 7.26,{ }^{13} \mathrm{C}: 77.23\right]\right.$. Coupling constants (J) are given in Hz. High-resolution mass spectra (HRMS) for all the compounds were determined on a Micromass GCTTOF mass spectrometer with ESI or CI resource. High performance liquid chromatography (HPLC) was performed on Agilent 1200 Series chromatographs using a Daicel Chiralpak AD-H, IG-H, IA-H, AS-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). X-ray data were recorded on a Rigaku Mercury CCD/AFC diffractomrter. Optical rotations are reported as follows: $[\alpha]_{\mathrm{D}}^{20}$ (c in g per 100 mL , solvent).

II: General and Typical experimental procedures

General procedure for the catalytic synthesis of products 3:

To a 25 mL pre-dried round-bottom Schlenk tube with a magnetic stir bar, were added $4 \AA$ MS (160 mg), oxidant 4 ($164 \mathrm{mg}, 2.0$ equiv), 2,2-disubstituted cyclopentenediones 2 ($0.2 \mathrm{mmol}, 1.0$ equiv), triazolium salt $\mathbf{C 8}(8.4 \mathrm{mg}, 0.02 \mathrm{mmol}$, 0.1 equiv), DMAP ($5.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv) and β, β-disubstituted enals 1 (0.3 mmol, 1.5 equiv), followed by an addition of anhydrous toluene (2 mL). Then the Schlenk tube was closed with septum and the reaction mixture was stirred at room temperature for two days. After completion of the reaction monitored by TLC, the reaction mixture went through fast flash column chromatography to yield the crude products. Next, to the solution of crude products (calculated as 1.0 equiv) in anhydrous acetone (2 mL), was included $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv) and $\mathrm{CH}_{3} \mathrm{I}$ (2.0 equiv), and the reaction mixture was stirred at room temperature about 2 hours. After the completion of the reaction monitored by TLC, solvent was removed under vacuum. The crude products were purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=6 / 1)$ to provide 3 .

Note: The racemic samples described in this work were synthesized according above procedure, which were catalyzed by mixed C8 and ent-C8 as ligands in a 1:1 ratio.

Typical procedure for the scale up synthesis of products 3aa:

To a 100 mL pre-dried round-bottom Schlenk tube with a magnetic stir bar, were added $4 \AA$ MS (2.0 g), oxidant $4(4.0 \mathrm{~g}, 2.0$ equiv), 2,2-disubstituted
cyclopentenediones 2a($1.0 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), triazolium salt $\mathbf{C 8}(0.21 \mathrm{~g}, 0.5$ mmol, 0.1 equiv), DMAP ($0.13 \mathrm{~g}, 1.0 \mathrm{mmol}, 0.2$ equiv) and β, β-disubstituted enals 1 a $(1.10 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.5$ equiv), followed by an addition of 50 mL anhydrous toluene. Then the Schlenk tube was closed with septum and the reaction mixture was stirred at room temperature for two days. After completion of the reaction monitored by TLC, the reaction mixture went through fast flash column chromatography to yield the crude products. Next, to the solution of crude products (1.06 g) in anhydrous acetone (30 mL), was added $\mathrm{K}_{2} \mathrm{CO}_{3}\left(0.84 \mathrm{~g}, 2.0\right.$ equiv) and $\mathrm{CH}_{3} \mathrm{I}(0.86 \mathrm{~g}, 0.38 \mathrm{~mL}, 2.0$ equiv) and the reaction mixture was stirred at room temperature. When the reaction was complete monitored by TLC, the solvent was removed under vacuum. The mixtures were purified by flash column chromatography ($\mathrm{PE} / \mathrm{EA}=6 / 1$) to furnished the desired products $\mathbf{3 a}$ in overall 58% yield (1.03 g) with 87% ee.

Transformation of 3aa to 4

To a dry 25 mL Schlenk tube, equipped with a magnetic stir bar, was added 3aa (36 $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), followed by an addition of 1 mL absolute methanol under Argon and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then NaBH_{4} was added ($8 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) at once and the reaction mixture stirred at $0{ }^{\circ} \mathrm{C}$. After 30 min , the reaction mixture solution was quenched with 2 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic phase was separated from aqueous phase, the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and purified by flash column chromatography $(\mathrm{PE} / \mathrm{EA}=5 / 1)$ to give a white solid product 4.

Transformation of 3at to 5

In a 25 mL of Schlenk tube equipped with a magnetic stirring bar, 9 -BBN dimer ($72.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved in anhydrous THF (2 mL), and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. After the mixture was stirred for 5 min , a solution of 3at $(61.3 \mathrm{mg}$, $0.20 \mathrm{mmol})$ in THF (1 mL) was added to the reaction flask at $0^{\circ} \mathrm{C}$ and stirred for about 12 h until the substrate was consumed. Then $\mathrm{NaBO}_{3}(400 \mathrm{mg})$ in water (6 mL) was added to the reaction flask, and the resulting mixture was stirred at room temperature for 6 h . The organic layer was separated, and the aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with the saturated aqueous NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and finally evaporated under reduced pressure. Purification of the crude product was performed with flash chromatography $(\mathrm{PE} / \mathrm{EA}=2 / 1)$ to give the pure product 5 as a white solid.

Transformation of 3ad to 6

In a 25 mL of Schlenk tube, equipped with a magnetic stirring bar, was added 3ad ($79 \mathrm{mg}, 0.18 \mathrm{mmol}$), phenylboronic acid ($32.9 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($20.8 \mathrm{mg}, 0.018 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(117.3 \mathrm{mg}, 0.36 \mathrm{mmol}, 2.0$ equiv) in toluene $/ \mathrm{CH}_{3} \mathrm{OH}(3 / 1,4 \mathrm{~mL})$ solution. Then, the mixture was degassed under N_{2} for 30 \min at $-78^{\circ} \mathrm{C}$. Subsequently, the resulting mixture was stirred and heated to reflux for overnight. After complete consumption of starting material, the mixture was cooled to room temperature, passed through a pad of celite and extracted with ethyl acetate. Combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product. Finally, it was purified by column
chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}(4 / 1)$ to give the pure product $\mathbf{6}$ as a white solid.

Transformation of 3da to 7

In a 25 mL of Schlenk tube, equipped with a magnetic stirring bar, was added 3da ($79 \mathrm{mg}, 0.18 \mathrm{mmol}$), pyridine-4-boronic acid ($33.2 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.5$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(20.8 \mathrm{mg}, 0.018 \mathrm{mmol}, 0.1\right.$ equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(117.3 \mathrm{mg}, 0.36 \mathrm{mmol}, 2.0$ equiv) in toluene $/ \mathrm{CH}_{3} \mathrm{OH}(3 / 1,4 \mathrm{~mL})$ solution. Then, the mixture was degassed under N_{2} for 30 min at $-78^{\circ} \mathrm{C}$. Subsequently, the resulting mixture was stirred and heated to reflux for overnight. After complete consumption of starting material, the mixture was cooled to room temperature, passed through a pad of celite and extracted with ethyl acetate. Combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude product. Finally, it was purified by column chromatography on silica gel with PE/EA (1/1) to give the pure product 7 as a white solid.

III: Experimental screening details

Table S1. Screening of NHC precatalysts.

entry a	cat.	yield b $(\%)$	ee^{c} $(\%)$
1	$\mathbf{C 1}$	nr	--
2	$\mathbf{C 2}$	nr	--
3	$\mathbf{C 3}$	nr	--
4	$\mathbf{C 4}$	nr	--
5	$\mathbf{C 5}$	nr	--
6	$\mathbf{C 6}$	52	74
7	C7	48	74
8	C8	54	80

${ }^{a}$ Reaction conditions: $\mathbf{1 a}$ ($0.075 \mathrm{mmol}, 1.5$ equiv), $\mathbf{2 a}\left(0.05 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{NHC}(10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%)$, 4 ($0.1 \mathrm{mmol}, 2.0$ equiv), toluene (1 mL), rt, 24 hours. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC.

Table S2. Screening of bases.

[^0]Table S3. Screening of solvents, reaction temperature and additives.

entry a	solvent	additive	X $(\mathrm{mol} \%)$	T $\left({ }^{\circ} \mathrm{C}\right)$	yield b $(\%)$	ee^{c} $(\%)$
1	p-xylene	--	--	rt	49	85
2	m-xylene	--	--	rt	51	85
3	mesitylene	--	--	rt	54	83
4	ethylbenzene	--	--	rt	46	86
5	fluorobenzene	--	--	rt	23	81
6	pentafluorobenzene	--	--	rt	22	76
7	DCM	--	--	rt	46	40
8	DCE	--	--	rt	45	45
9	1,4 -dioxane	--	--	rt	52	82
10	Et2O	--	--	rt	45	87
11	MTBE	--	--	rt	38	89
12	toluene	--	--	0	$<5 \%$	-
13	toluene	--	--	40	56	84
14	toluene	$\mathrm{Sc}(\mathrm{OTf})_{3}$	20	rt	nr	--
15	toluene	$\mathrm{Mg}(\mathrm{OTf})_{2}$	20	rt	nr	--
16	toluene	LiCl	20	rt	trace	$\mathrm{n} . \mathrm{d}$.
17	toluene	I	20	rt	33	82
18	toluene	II	20	rt	31	84
19	toluene	$\mathrm{Na} \mathrm{SO}_{4}$	20 mg	rt	46	88
20	toluene	MgSO	20 mg	rt	43	86
21	toluene	$3 \AA \mathrm{MS}$	20 mg	rt	55	85
22	toluene	$4 \AA \mathrm{MS}$	20 mg	rt	54	90
23	toluene	$5 \AA \mathrm{MS}$	20 mg	rt	35	88
24	toluene	$4 \AA \mathrm{MS}$	40 mg	rt	55	90
25	toluene	$4 \AA \mathrm{MS}$	60 mg	rt	50	90
26^{d}	toluene	$4 \AA \mathrm{MS}$	40 mg	rt	60	90

[^1]
IV: Crystal data and ORTEP diagram for compound 3ad

X-ray data of 3ad

Identification code	mo_20190418f_0ma_a
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrO}_{3}$
Formula weight	435.30
Temperature	149.99 K
Wavelength	0.71073 £
Crystal system	orthorhombic
Space group	P 212121
Unit cell dimensions	$a=6.9776(2) \AA \quad \alpha=90^{\circ}$
	$b=14.8155(5) \AA \beta=90^{\circ}$
	$c=19.0346(7) \AA \gamma=90^{\circ}$
Volume	1967.73 (11) \AA^{3}
Z	4
Density (calculated)	$1.469 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.111 \mathrm{~mm}^{-1}$
F(000)	888.0
Crystal size	$0.35 \times 0.3 \times 0.2 \mathrm{~mm}^{3}$
Theta range for data collection	2.544° to $27.502{ }^{\circ}$
Index ranges	$-9 \leqslant h \leqslant 9,-19 \leqslant k \leqslant 19,-24 \leqslant 1 \leqslant 24$
Reflections collected	50231
Independent reflections	$4510\left[\mathrm{R}_{\text {int }}=0.0562\right]$
Completeness to theta $=25.00^{\circ}$	99.5\%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	4510 / 0 / 256
Goodness-of-fit on F^{2}	1.035
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0237, w R_{2}=0.0551$

R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$R_{1}=0.0277, w R_{2}=0.0567$
0.015(8)
0.265 and -0.413 e. \AA^{-3}

Figure S1. ORTEP drawing of 3ad
The crystal was prepared from the solution of $\mathbf{3 a d}$ in petroleum n hexane/dichloromethane. CCDC 1911223 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

V: Characterization of products

(S)-2-Benzyl-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione (3aa).

39.8 mg , overall 60% yield, white solid, m. p. $90-91^{\circ} \mathrm{C} ; 90 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=10.82, \mathrm{t}$
$($ minor $)=14.64 ;[\alpha]_{\mathrm{D}}^{20}=-10.0\left(\right.$ c 1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.51$ $(\mathrm{m}, 3 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-6.90(\mathrm{~m}, 5 \mathrm{H}), 4.01(\mathrm{~s}$, $3 \mathrm{H}), 3.30-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.4, 201.2, $157.5,150.9,143.9,139.1,136.2,129.9,129.2,129.1,128.1,127.4,127.3,126.6,116.3$, 113.2, 56.5, 56.4, 41.2, 20.8. IR (neat, cm^{-1}): 1733, 1699, 1600, 1494, 1173, 1103, 1054, 996, 872, 801, 760, 701, 635. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 379.1305; found: 379.1305 .
(S)-2-(4-Fluorobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione
(3ab). 38.2 mg , overall 51% yield, white solid, m. p. $73-74^{\circ} \mathrm{C} ; 90 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}$ (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=11.93, \mathrm{t}$ $($ minor $)=13.71 ;[\alpha]_{\mathrm{D}}^{20}=-12.9\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{td}, J$ $=4.0,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.89(\mathrm{~m}, 2 \mathrm{H})$, $6.74(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.25-2.97(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.3,201.1,162.9,160.4,157.5,151.1,143.8,139.0,131.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $8.0 \mathrm{~Hz}) 129.2,129.1,127.5,127.3,116.4,114.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 113.3,56.5,56.4$, 40.1, 20.9. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.2$ ($\mathrm{Ar}-\mathrm{F}$). IR (neat, cm^{-1}): 1737, 1700, 1601, 1570, 1509, 1333, 1220, 997, 872, 820, 764, 751, 696. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$397.1210; found: 397.1208.
(S)-2-(4-Chlorobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione
(3ac). 43.0 mg , overall 55% yield, white solid, m. p. $145-146{ }^{\circ} \mathrm{C} ; 89 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=13.23$, $\mathrm{t}($ minor $)=15.42 ;[\alpha]_{\mathrm{D}}^{20}=-28.7\left(c \mathrm{1}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-$ $7.53(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-6.93(\mathrm{~m}, 4 \mathrm{H}), 4.06$ $(\mathrm{s}, 3 \mathrm{H}), 3.23-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.1,201.0$, $157.6,151.2,143.7,139.0,134.7,132.5,131.3,129.2,129.2,128.3,127.5,127.2,116.5$, 113.3, 56.4, 56.3, 40.1, 21.1. IR (neat, cm^{-1}): 1735, 1700, 1604, 1568, 1449, 1407, 1368,

1337, 1255, 1236, 1171, 1100, 995, 871, 816, 772, 762, 698. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$391.1095; found: 391.1095.

(S)-2-(4-Bromobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione

(3ad). 51.2 mg , overall 59% yield, white solid, m. p. $156-157{ }^{\circ} \mathrm{C}$; 87% ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer $\mathrm{t}($ major $)=13.93$, t (minor) $=15.98 ;[\alpha]_{\mathrm{D}}^{20}=-38.6\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-$ $7.53(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.00$ $-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.18-2.99(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.1,200.9,157.6,151.2,143.6,139.0,135.3,131.7,131.2,129.2,129.1$, $127.5,127.1,120.7,116.5,113.4,56.4,56.3,40.1,21.2$. IR (neat, cm^{-1}): 1734, 1698 , 1602, 1407, 1233, 1180, 1154, 1099, 1072, 1040, 922, 871, 803, 768, 712, 632. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 435.0590$; found: 435.0590 .
(S)-4-Methoxy-2-methyl-2-(4-methylbenzyl)-6-phenyl-1H-indene-1,3(2H)-dione (3ae). 41.5 mg , overall 56% yield, white solid, m. p. $101-102{ }^{\circ} \mathrm{C} ; 91 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=10.63$, t (minor) $=16.29 ;[\alpha]_{\mathrm{D}}^{20}=-6.0\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{dd}, J$ $=8.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.4, 201.4, 157.5, 150.8, 143.9, 139.1, 136.0, 133.1, 129.8, 129.2, 129.1, 128.8, 127.4, 127.3, 116.3, 113.3, 56.5, 56.4, 40.7, 21.0, 20.9. IR (neat, cm^{-1}): 1736, 1702, 1600, 1568, 1368, 1337, 1254, 1233, 1171, 1101, 1056, 996, 943, 869, 765, 699. HRMS (ESI): calcd. For $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 371.1642$; found: 371.1628.
(S)-4-Methoxy-2-methyl-6-phenyl-2-(4-(trifluoromethyl)benzyl)-1H-indene-1,3(2H)-dione (3af). 48.4 mg , overall 57% yield, white solid, m. p. $140-141^{\circ} \mathrm{C} ; 86 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i$\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t
$($ major $)=10.41, \mathrm{t}($ minor $)=12.95 ;[\alpha]_{\mathrm{D}}^{20}=-7.9\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.63-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.12(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,200.6,157.6,151.3,143.5,140.4,139.0,130.3,129.3,129.2,128.7,127.5$, $127.0,125.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 116.5,113.4,56.4,56.3,40.3,21.3$. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.5(\mathrm{Ar}-\mathrm{F})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1738,1703,1602,1570,1325,1254,1235$, 1159, 1121, 1099, 1066, 997, 703, 633. HRMS (ESI): calcd. For $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+$ $\mathrm{Na}]^{+}$447.1179; found: 447.1183.
(S)-4-Methoxy-2-methyl-2-(4-nitrobenzyl)-6-phenyl-1H-indene-1,3(2H)-dione (3ag). 69.8 mg , overall 87% yield, white solid, m. p. $175-176{ }^{\circ} \mathrm{C}$; 89% ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=28.11$, t (minor) $=31.53 ;[\alpha]_{\mathrm{D}}^{20}=-30.9\left(\right.$ c $\left.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.14(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.5,200.3,157.7,151.5,146.8,144.0,143.3,138.8,130.9,129.4,129.2$, $127.5,126.8,123.4,116.7,113.4,56.4,56.3,40.0,21.4$. IR (neat, cm^{-1}): 1735, 1699 , 1600, 1568, 1517, 1452, 1099, 998, 830, 775, 766, 720, 698. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 424.1155$; found: 424.1154.
(S)-2-(3-Chlorobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione
(3ah). 31.2 mg , overall 40% yield, white solid, m. p. $46-47^{\circ} \mathrm{C} ; 87 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}$ (90:10) as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=10.89, \mathrm{t}$ $($ minor $)=13.79 ;[\alpha]_{\mathrm{D}}^{20}=+4.3\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.54$ $(\mathrm{m}, 3 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.98(\mathrm{~m}$, $2 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 203.9,200.7,157.6,151.1,143.7,139.0,138.2,133.8,129.9$, 129.4, 129.2, 129.2, 128.2, 127.5, 127.2, 126.9, 116.5, 113.4, 56.4, 56.3, 40.5, 20.9. IR (neat, cm^{-1}): 1737, 1699, 1600, 1449, 1371, 1332, 1207, 1079, 997, 924, 869, 787, 758,

697, 564, 469. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]+$ 391.1095; found: 391.1096.

(S)-2-(3-Bromobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione

(3ai). 36.6 mg , overall 42% yield, white solid, m. p. $49-50^{\circ} \mathrm{C}$; 86\% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=11.17, \mathrm{t}$ $($ minor $)=14.06 ;[\alpha]_{D}^{20}=+12.0\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.54$ (m, 3H), $7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J$ $=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.02(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9,200.7,157.6,151.1,143.7,139.1,138.5,132.8$, 129.9, 129.7, 129.3, 129.2, 128.7, 127.5, 127.2, 122.1, 116.5, 113.4, 56.4, 56.3, 40.5, 20.9. IR (neat, cm^{-1}): 1737, 1670, 1602, 1567, 1127, 1333, 1234, 1208, 1073, 997, 869, 758, 695, 668. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 457.0410$; found: 457.0413.
(S)-4-Methoxy-2-(3-methoxybenzyl)-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione (3aj). 33.2 mg , overall 43% yield, colorless oily liquid; 87% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=12.65, \mathrm{t}$ $($ minor $)=17.05 ;[\alpha]_{D}^{20}=+12.0\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.53$ (m, 3H), $7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (dt, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{ddd}, J=3.6,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.4,201.2,159.1,157.5,150.8,143.9,139.1,137.7,129.2,129.2,129.1$, $127.4,122.4,116.3,114.9,113.2,112.8,56.4,56.3,55.1,41.4,20.8$. IR (neat, cm^{-1}): 2921, 1737, 1699, 1600, 1449, 1332, 1231, 1048, 995, 868, 760, 695, 476. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 409.1410$; found: 409.1400.
(S)-4-Methoxy-2-methyl-2-(3-methylbenzyl)-6-phenyl-1H-indene-1,3(2H)-dione (3ak). 25.9 mg , overall 35% yield, colorless oily liquid; 88% ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the
eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=8.90, \mathrm{t}$ $($ minor $)=12.12 ;[\alpha]_{\mathrm{D}}^{20}=+6.4\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.52$ (m, 3H), $7.51-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-$ $6.73(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4,201.3,157.5,150.8,143.9,139.1,137.6,136.1,130.7$, $129.2,129.1,128.0,127.4,127.3,127.0,116.3,113.2,56.5,56.4,41.2,21.3,20.8$. IR (neat, cm^{-1}): 2919, 1737, 1700, 1601, 1448, 1332, 1230, 995, 866, 790, 759, 696, 564, 468. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$371.1642; found: 371.1642.
(S)-2-(2-Fluorobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione
(3al). 35.2 mg , overall 47% yield, white solid, m. p. $101-102{ }^{\circ} \mathrm{C} ; 66 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=13.53, \mathrm{t}$ $($ minor $)=18.84 ;[\alpha]_{\mathrm{D}}^{20}=+26.0\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ $-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.5,200.6,162.1,159.7,157.7,151.0,143.5,139.1$, 132.3, 132.2, 129.2, 129.1, $128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 127.5,127.0,123.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.0\right.$ $\mathrm{Hz}), 116.4,115.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 113.4,56.4,55.2,33.9,33.9,19.6 .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.8(\mathrm{Ar}-\mathrm{F})$. IR (neat, cm^{-1}): 1740, 1703, 1601, 1585, 1493, 1450, 1334, 1210, 1182, 1077, 1028, 997, 869, 756, 699. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$397.1210; found: 397.1208.

(S)-2-(2-Chlorobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione

(3am). 39.0 mg , overall 50% yield, white solid, m. p. $91-92{ }^{\circ} \mathrm{C}$; 52% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=13.66, \mathrm{t}$ $($ minor $)=16.34 ;[\alpha]_{D}^{20}=+38.2 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.52-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H})$, $7.09-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.3,200.5,157.7,151.0,143.6,139.1,134.8,133.9,132.0,129.7,129.2$,
$129.1,128.2,127.5,127.0,126.4,116.4,113.5,56.4,55.2,37.9,19.3$. IR (neat, cm^{-1}): $1740,1704,1603,1572,1450,1332,1209,1079,1052,1036,996,864,767,751,719$, 701, 690. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]{ }^{+} 413.0915$; found: 413.0930.
(S)-2-(2-Bromobenzyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione (3an). 45.1 mg , overall 52% yield, white solid, m. p. $130-131{ }^{\circ} \mathrm{C} ; 46 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=15.04$, t (minor) $=17.46 ;[\alpha]_{\mathrm{D}}^{20}=+44.4\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.2,200.5$, $157.8,151.1,143.6,139.1,135.8,133.1,131.7,129.3,129.2,128.4,127.5,127.0,126.9$, 125.6, 116.4, 113.5, 56.4, 55.2, 40.3, 19.3. IR (neat, cm^{-1}): 1738, 1701, 1603, 1567, 1469, 1451, 1335, 1232, 1024, 995, 874, 765, 755, 703, 658. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 457.0410$; found: 457.0416 .
(S)-4-Methoxy-2-methyl-2-(2-methylbenzyl)-6-phenyl-1H-indene-1,3(2H)-dione
(3ao). 31.1 mg , overall 42% yield, white solid, m. p. $79-80^{\circ} \mathrm{C}$; 85% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=9.12, \mathrm{t}$ $($ minor $)=11.83 ;[\alpha]_{D}^{20}=+52.0\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.54$ $(\mathrm{m}, 3 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{td}, J$ $=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,201.4,157.5,150.8$, $143.9,139.1,136.8,134.7,130.6,130.2,129.2,129.1,127.5,126.7,125.5,116.3,113.2$, $56.4,56.3,37.7,20.7,19.9$. IR (neat, cm^{-1}): 1739, 1704, 1601, 1449, 1323, 1206, 1074, 1050, 993, 865, 766, 746, 689, 565, 456. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+$ $\mathrm{Na}]^{+} 393.1461$; found: 393.1457.
(S)-4-Methoxy-2-methyl-2-(naphthalen-2-ylmethyl)-6-phenyl-1H-indene-1,3(2H)dione (3ap). 56.0 mg , overall 69% yield, white solid, m. p. $120-121^{\circ} \mathrm{C} ; 91 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=15.44$, t (minor) $=18.27 ;[\alpha]_{\mathrm{D}}^{20}=-54.8\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-$ $7.67(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.38(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.16(\mathrm{~m}$, 2 H), $1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4,201.2,157.5,150.9,143.8$, 139.1, 134.0, 133.2, 132.2, 129.1, 129.1, 128.8, 128.4, 127.9, 127.7, 127.5, 127.4, 127.3, $125.7,125.5,116.4,113.3,56.7,56.3,41.1,21.3$. IR (neat, cm^{-1}): 1736, 1699, 1602, 1568, 1449, 1335, 1233, 1173, 997, 854, 815, 762, 744, 703. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 429.1461$; found: 429.1461.
(S)-4-Methoxy-2-methyl-2-(naphthalen-1-ylmethyl)-6-phenyl-1H-indene-1,3(2H)dione (3aq). 43.9 mg , overall 54% yield, white solid, m. p. $56-57^{\circ} \mathrm{C} ; 85 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=12.14$, t (minor) $=14.95 ;[\alpha]_{\mathrm{D}}^{20}=+95.5\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.29(\mathrm{~m}, 9 \mathrm{H}), 7.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23-7.11$ (m, 2H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 1.48$ ($\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.4,201.2,157.3,150.6,143.7,139.1,133.7,132.6,132.0,129.1,128.7$, $128.3,127.5,127.4,125.8,125.4,125.0,124.9,116.2,113.1,56.6,56.3,37.7,20.4$. IR (neat, cm^{-1}): 1737, 1700, 1601, 1570, 1450, 1333, 1231, 1213, 994, 868, 781, 759, 696. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 429.1461$; found: 429.1459 .
(S)-2-Benzyl-2-ethyl-4-methoxy-6-phenyl-1H-indene-1,3(2H)-dione (3ar). 34.8 mg , overall 47% yield, white solid, m. p. $107-108{ }^{\circ} \mathrm{C} ; 46 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=9.97, \mathrm{t}$ $($ minor $)=12.46 ;[\alpha]_{D}^{20}=+14.4\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.53$ $(\mathrm{m}, 3 \mathrm{H}), 7.52-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-6.88(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~s}$,
$3 \mathrm{H}), 3.22-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.88(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.8,201.5,157.1,150.7,145.1,139.1,136.0,130.0,129.2,129.1$, $128.7,128.1,127.5,126.5,116.2,112.8,61.4,56.4,40.8,29.1,9.3 . \operatorname{IR}\left(n e a t, \mathrm{~cm}^{-1}\right)$: 1738, 1701, 1602, 1584, 1452, 1330, 1230, 1206, 870, 763, 741, 699. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 393.1461$; found: 393.1458.
(S)-2-(4-Bromobenzyl)-2-ethyl-4-methoxy-6-phenyl-1H-indene-1,3(2H)-dione
(3as). 45.7 mg , overall 51% yield, white solid, m. p. $129-130{ }^{\circ} \mathrm{C} ; 44 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak IA-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer $\mathrm{t}($ major $)=10.28$, $\mathrm{t}($ minor $)=8.81 ;[\alpha]_{\mathrm{D}}^{20}=+5.2\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.55$ $(\mathrm{m}, 3 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.16-2.99(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{qd}, J=7.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 204.5$, 201.1, 157.2, 151.0, 144.9, 139.0, 135.1, $131.8,131.2,129.2,129.1,128.5,127.5,120.7,116.4,112.9,61.2,56.4,39.6,29.4,9.3$. IR (neat, cm^{-1}): 1734, 1698, 1602, 1583, 1407, 1333, 1233, 872, 803, 768, 696, 632. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]+471.0566$; found: 471.0565.
(S)-2-Allyl-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione (3at). 33.1 mg , overall 54% yield, white solid, m. p. $159-160{ }^{\circ} \mathrm{C} ; 60 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=10.49, \mathrm{t}$ $($ minor $)=12.06 ;[\alpha]_{D}^{20}=-15.0\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, \mathrm{~J}=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.39(\mathrm{~m}, 4 \mathrm{H}), 5.57(\mathrm{~m}, 1 \mathrm{H}), 5.13-4.86(\mathrm{~m}$, $2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3$, $201.3,157.8,151.2,143.7,139.2,132.0,129.2,129.1,127.5,127.1,119.3,116.5,113.5$, 56.4, 54.5, 39.6, 19.5. IR (neat, cm^{-1}): 2358, 2151, 1948, 1740, 1702, 1601, 1333, 1233, 1004, 775, 702, 588. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]{ }^{+} 307.1329$; found: 307.1328 .

Methyl (S)-2-(4-methoxy-2-methyl-1,3-dioxo-6-phenyl-2,3-dihydro-1H-inden-2-yl) acetate (3au). 40.6 mg , overall 60% yield, white solid, m. p. $151-152{ }^{\circ} \mathrm{C} ; 57 \%$ ee.

The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\mathrm{PrOH}$ ($90: 10$) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \min ^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=19.26, \mathrm{t}($ minor $)=23.32 ;[\alpha]_{\mathrm{D}}^{20}=-18.0\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.75 (d, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.39(\mathrm{~m}, 4 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.52$ (s, 3H), $3.18-2.92(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.0, 200.2, $171.3,157.9,151.0,143.4,139.4,129.2,129.1,127.5,126.7,116.4,113.8,56.3,52.0$, 51.8, 38.4, 21.1. IR (neat, cm^{-1}): 2920, 2357, 2217, 2194, 2162, 2015, 1947, 1731, 1702, 1603, 1334, 1208, 796, 623. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$339.1227; found: 339.1222.
(S)-4-Methoxy-2-methyl-6-phenyl-2-(thiophen-2-ylmethyl)-1H-indene-1,3(2H)dione (3av). 41.3 mg , overall 57% yield, colorless oily liquid; 84% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=14.03, \mathrm{t}$ $($ minor $)=18.26 ;[\alpha]_{D}^{20}=-6.5\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.55$ $(\mathrm{m}, 3 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.30(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.1,200.8,157.7,151.0,144.0,139.1,137.6,129.2,129.1,127.5,127.4$, 126.6, 124.3, 116.4, 113.4, 56.4, 56.3, 34.8, 20.7. IR (neat, cm^{-1}): 2924, 1737, 1699, $1600,1449,1332,1209,1078,996,758,693,552$. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 363.1049$ found: 363.1043.
(S)-2-Benzyl-6-(4-fluorophenyl)-4-methoxy-2-methyl-1H-indene-1,3(2H)-dione (3ba). 33.7 mg , overall 45% yield, white solid, m. p. $108-109{ }^{\circ} \mathrm{C} ; 90 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=13.96$, t (minor) $=18.04 ;[\alpha]_{\mathrm{D}}^{20}=+14.4\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-$ 7.43 (m, 3H), 7.23 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.92(\mathrm{~m}, 5 \mathrm{H}), 4.01$ (s, 3H), 3.22-3.06(m, 2H), $1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 204.3,201.2$, $163.5\left(\mathrm{~d}, J_{\mathrm{CF}}=248.0 \mathrm{~Hz}\right), 157.5,149.7,143.9,136.1,135.3,135.2,129.9,129.2\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=8.0 \mathrm{~Hz}), 128.1,127.4,126.6,116.3,116.1,113.0,56.5,56.4,41.2,20.8 .{ }^{19}$ F NMR
($564 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.2$ ($\mathrm{Ar}-\mathrm{F}$). IR (neat, cm^{-1}): 1732, 1700, 1599, 1573, 1516, 1332, 1242, 1210, 1161, 998, 832, 771, 748, 703. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$397.1210; found: 397.1211.

(S)-2-Benzyl-6-(4-chlorophenyl)-4-methoxy-2-methyl-1H-indene-1,3(2H)-dione

 (3ca). 46.8 mg , overall 60% yield, white solid, m. p. $91-92^{\circ} \mathrm{C} ; 89 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=15.77, \mathrm{t}$ $($ minor $)=19.26 ;[\alpha]_{\mathrm{D}}^{20}=-11.4\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $-6.96(\mathrm{~m}, 5 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.2,201.1,157.6,149.5,143.9,137.5,136.1,135.5,129.9,129.4,128.7$, 128.1, 127.6, 126.6, 116.0, 113.0, 56.5, 56.4, 41.2, 20.8. IR (neat, cm^{-1}): 1734, 1702, $1600,1497,1452,1395,1333,1237,1093,998,924,825,769,749,702,556,512,489$. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 413.0915$; found: 413.0915.(S)-2-Benzyl-6-(4-bromophenyl)-4-methoxy-2-methyl-1H-indene-1,3(2H)-dione (3da). 42.5 mg , overall 49% yield, white solid, m. p. $57-58{ }^{\circ} \mathrm{C} ; 89 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\mathrm{PrOH}$ (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=16.80, \mathrm{t}$ $($ minor $)=19.97 ;[\alpha]_{D}^{20}=-16.2\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.54$ $(\mathrm{m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-$ $6.93(\mathrm{~m}, 5 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.07(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.2,201.1,157.6,149.5,144.0,138.0,136.1,132.3,129.9,129.0,128.1$, 127.6, 126.6, 123.7, 116.0, 113.0, 56.5, 56.4, 41.2, 20.8. IR (neat, cm^{-1}): 1737, 1699, 1494, 1451, 1391, 1331, 1234, 1073, 998, 922, 821, 745, 699, 556, 510. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 457.0410$; found: 457.0417.

(S)-2-Benzyl-6-(4-iodophenyl)-4-methoxy-2-methyl-1H-indene-1,3(2H)-dione

(3ea). 48.2 mg , overall 50% yield, white solid, m. p. $170-171^{\circ} \mathrm{C} ; 90 \%$ ee. The ee value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \min ^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=16.93$,
$\mathrm{t}($ minor $)=19.87 ;[\alpha]_{\mathrm{D}}^{20}=-22.5\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-$ $7.72(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11-6.93(\mathrm{~m}, 5 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2,201.1,157.6,149.6,144.0,138.5,138.3,136.1,129.9,129.1$, 128.1, 127.7, 126.7, 116.0, 113.0, 95.5, 56.5, 56.4, 41.2, 20.8. IR (neat, cm^{-1}): 1699, 1601, 1333, 1244, 1003, 818, 701, 508, 422. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{IO}_{3}{ }^{+}[\mathrm{M}+$ H] ${ }^{+}$483.0452; found: 483.0440 .
(S)-2-Benzyl-4-methoxy-2-methyl-6-(p-tolyl)-1H-indene-1,3(2H)-dione (3fa). 36.3 mg , overall 49% yield, white solid, m. p. $121-122{ }^{\circ} \mathrm{C} ; 89 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=10.55, \mathrm{t}$ $($ minor $)=14.51 ;[\alpha]_{D}^{20}=-2.7\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-$ $6.84(\mathrm{~m}, 5 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.32-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 204.5,201.2,157.5,150.8,143.8,139.4,136.2,136.1,129.9$, $129.9,128.1,127.3,127.1,126.6,116.0,113.0,56.5,56.3,41.1,21.2,20.9$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2365,1733,1699,1598,1451,1332,1241,1205,999,817,746,700,553,491$. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$393.1461; found: 393.1456.
(S)-2-Benzyl-4-methoxy-2-methyl-6-(3-nitrophenyl)-1H-indene-1,3(2H)-dione
(3ga). 40.9 mg , overall 51% yield, white solid, m. p. $58-59^{\circ} \mathrm{C}$; 92% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak IG-H with hexane $/ i-\mathrm{PrOH}$ (90:10) as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=40.59, \mathrm{t}$ (minor) $=64.39 ;[\alpha]_{\mathrm{D}}^{20}=+35.0\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-6.87(\mathrm{~m}, 5 \mathrm{H})$, $4.07(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.08(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0$, $201.1,157.8,148.8,147.9,144.1,140.8,136.0,133.3,130.3,129.9,128.3,128.2,126.7$, 123.7, 122.3, 116.3, 113.3, 56.6, 56.6, 41.3, 20.7. IR (neat, cm^{-1}): 2359, 1738, 1702,

1602, 1527, 1450, 1331, 1235, 998, 808, 737, 698, 555, 507. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 424.1155$; found: 424.1155.
(S)-2-Benzyl-6-(2-fluorophenyl)-4-methoxy-2-methyl-1H-indene-1,3(2H)-dione
(3ha). 33.7 mg , overall 45% yield, colorless oily liquid; 89% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=10.18, \mathrm{t}$ $($ minor $)=13.43 ;[\alpha]_{D}^{20}=+10.0\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~s}$, $1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.13-6.91(\mathrm{~m}, 5 \mathrm{H}), 4.00$ (s, 3H), 3.26-3.01 (m, 2H), 1.39 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.1,201.2$, $157.1,145.3,143.5,136.1,130.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 130.6,130.5,130.0,128.1,127.6$, $126.6,124.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 118.4,118.3,116.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 115.2,56.4$, 56.3, 41.2, 20.8. ${ }^{19}$ F NMR ($564 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.9(\mathrm{Ar}-\mathrm{F})$. IR (neat, cm^{-1}): 2921, 1738, 1701, 1602, 1496, 1450, 1334, 1232, 1078, 998, 874, 801, 757, 699, 556, 505. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$397.1210; found: 397.1202.0
(S)-2-Benzyl-4-methoxy-2-methyl-6-(o-tolyl)-1H-indene-1,3(2H)-dione (3ia). 27.4 mg , overall 37% yield, colorless oily liquid; 89% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: 1.0 $\left.\mathrm{mL} \cdot \mathrm{min}^{-1}, \lambda=254 \mathrm{~nm}\right]:$ major diastereoisomer $\mathrm{t}($ major $)=7.78, \mathrm{t}($ minor $)=10.01 ;[\alpha]$ ${ }_{\mathrm{D}}^{20}=+60.0\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{dd}$, $J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.95(\mathrm{~m}, 6 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, $3.28-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4$, $201.3,156.9,151.9,143.3,139.9,136.1,135.0,130.7,129.9,129.2,128.6,128.1,127.3$, $126.6,126.1,118.6,115.4,56.4,56.3,41.6,20.4,20.3$. IR (neat, cm^{-1}): 2925, 1738 , 1701, 1600, 1452, 1331, 1229, 1081, 998, 872, 759, 699, 557, 504. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$393.1461; found: 393.1459.
(S)-2-Benzyl-4-methoxy-2-methyl-6-(naphthalen-2-yl)-1H-indene-1,3(2H)-dione (3ja). 49.6 mg , overall 61% yield, white solid, m. p. $132-133{ }^{\circ} \mathrm{C}$; 89% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=15.02, \mathrm{t}$
$($ minor $)=19.65 ;[\alpha]_{D}^{20}=+28.7\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.48$ (m, 2H), 7.41 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-6.96(\mathrm{~m}, 5 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H})$, $3.27-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,201.3,157.6$, $150.8,143.9,136.3,136.2,133.4,130.0,129.0,128.5,128.2,127.8,127.4,127.1,127.0$, $126.9,126.7,124.9,116.4,113.5,56.6,56.4,41.2,20.9$. IR (neat, cm^{-1}): 1735, 1698 , $1602,1571,1448,1332,1315,1247,1176,1003,879,857,820,745,698,563,553$, $505,476,447$, 408. HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 429.1461$; found: 429.1441 .
(S)-2-Benzyl-6-(furan-2-yl)-4-methoxy-2-methyl-1H-indene-1,3(2H)-dione (3ka). 34.6 mg , overall 50% yield, white solid, m. p. $82-83{ }^{\circ} \mathrm{C} ; 84 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow: $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: major diastereoisomer t (major) $=12.20, \mathrm{t}$ $($ minor $)=13.54 ;[\alpha]_{\mathrm{D}}^{20}=+20.0\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.94(\mathrm{~m}, 5 \mathrm{H})$, $6.86(\mathrm{dd}, J=3.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.05$ $(\mathrm{m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4,200.9,157.8,151.8,144.1$, $143.9,139.2,136.1,129.8,128.1,127.0,126.6,112.5,111.9,109.6,109.5,56.4,56.3$, 41.3, 20.7. IR (neat, cm^{-1}): 1735, 1697, 1603, 1450, 1328, 1240, 1179, 1056, 1023, 1004, 864, 810, 747, 704, 593, 561, 511. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+$ $\mathrm{Na}]^{+}$369.1097; found: 369.1097.
(S)-2-Benzyl-4-methoxy-2-methyl-6-(thiophen-2-yl)-1H-indene-1,3(2H)-dione
(31a). 37.7 mg , overall 52% yield, white solid, m. p. $113-114{ }^{\circ} \mathrm{C}$; 86% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]$: major diastereoisomer t (major) $=12.16, \mathrm{t}$ (minor) $=14.59 ;[\alpha]_{D}^{20}=-14.0\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-6.95(\mathrm{~m}, 6 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,200.8,157.7,144.0,143.4,141.9,136.1,129.9,128.6$,
128.1, 127.8, 127.3, 126.7, 126.0, 114.3, 111.5, 56.5, 56.4, 41.2, 20.8. IR (neat, cm^{-1}): 1734, 1697, 1601, 1570, 1451, 1412, 1374, 1311, 1240, 1179, 1076, 1031, 993, 856, 834, 749, 701, 558, 507. HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 385.0869$; found: 385.0868.
(2S)-2-Benzyl-4-methoxy-2-methyl-6-phenyl-2,3-dihydro-1H-indene-1,3-diol (4). $24.0 \mathrm{mg}, 67 \%$ yield, white solid, m. p. $87-88^{\circ} \mathrm{C} ;>20: 1 \mathrm{dr}, 91 \%$ ee. The $d r$ and $e e$ value were determined by HPLC [Daicel Chiralpak IA-H with hexane/i-PrOH (75:25) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=19.27, \mathrm{t}($ minor $)=+8.21 ;[\alpha]$ ${ }_{\mathrm{D}}^{20}=51.4\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 0.70$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,147.9,144.7,141.2,139.2,131.5,130.7$, 128.8, 128.1, 127.6, 127.3, 125.9, 117.1, 110.0, 82.3, 78.2, 55.4, 50.7, 36.6, 22.7. IR (neat, cm^{-1}): 3551, 1592, 1574, 1461, 1399, 1329, 1195, 1164, 1036, 1023, 853, 806, $762,749,705,693$. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 383.1618$; found: 383.1598.
(S)-2-(3-hydroxypropyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-1,3(2H)-dione (5). $53.8 \mathrm{mg}, 83 \%$ yield, colorless oily liquid; 60% ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AS-H with hexane $/ i-\operatorname{PrOH}$ (85:15) as the eluent, flow: 1.0 $\left.\mathrm{mL} \cdot \mathrm{min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=20.02, \mathrm{t}($ minor $)=16.95 ;[\alpha]_{\mathrm{D}}^{20}=-6.0\left(c 1, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 3 \mathrm{H})$, $7.43(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,202.0,157.8,151.4,143.6,139.1$, $129.3,129.2,127.5,127.0,116.6,113.5,62.6,56.4,54.2,31.6,28.2,20.1$. IR (neat, cm^{-} ${ }^{1}$): 2923, 1737, 1695, 1602, 1449, 1332, 1214, 1057, 989, 868, 757, 693, 561. HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$325.1434; found: 325.1430.
(S)-2-([1,1'-biphenyl]-4-ylmethyl)-4-methoxy-2-methyl-6-phenyl-1H-indene-
$\mathbf{1 , 3 (2 H})$-dione (6). $71.6 \mathrm{mg}, 92 \%$ yield, colorless oily liquid; 87% ee. The $e e$ value were determined by HPLC [Daicel Chiralpak IA-H with hexane $/ i-\operatorname{PrOH}(90: 10)$ as the
eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=12.41, \mathrm{t}($ minor $)=13.75 ;[\alpha]_{\mathrm{D}}^{20}=$ $-60.0\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54$ (m, 2H), $7.50-7.39$ (m, 5H), $7.38-7.28$ (m, 5H), 7.26 (m, 1H), 7.14 (d, J = 8.0 Hz , $2 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.09(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.4, 201.3, 157.6, 151.0, 143.8, 140.6, 139.2, 139.1, 135.4, 130.4, 129.2, 129.1, 128.7, $127.5,127.3,127.1,126.8,126.7,116.4,113.3,56.6,56.4,40.7,21.0$. IR (neat, cm^{-1}): 2359, 2182, 2149, 1702, 1601, 1332, 999, 760, 513, 466. HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 433.1798$; found: 433.1798.
(S)-2-benzyl-4-methoxy-2-methyl-6-(4-(pyridin-4-yl)phenyl)-1H-indene-1,3(2H)dione (7). $74.1 \mathrm{mg}, 95 \%$ yield, white solid, m. p. $59-60^{\circ} \mathrm{C} ; 87 \%$ ee. The $e e$ value was determined by HPLC [Daicel Chiralpak AD-H with hexane/i-PrOH (80:20) as the eluent, flow: $\left.1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=22.52, \mathrm{t}($ minor $)=34.77 ;[\alpha]_{\mathrm{D}}^{20}=$ -3.8 (c 1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75-8.60(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~m}, 4 \mathrm{H})$, $7.60(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.93(\mathrm{~m}$, $5 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.27-2.99(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.3, 201.1, 157.6, 150.4, 149.7, 147.2, 143.9, 139.7, 138.9, 136.1, 129.9, 128.2, 128.1, 127.7, 127.6, 126.6, 121.5, 116.2, 113.2, 56.5, 56.4, 41.2, 20.8. IR (neat, cm^{-1}): 2225, 2149, 2093, 1983, 1700, 1598, 1333, 1233, 1002, 812, 700. HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 434.1751$; found: 434.1766.

VI: NMR spectra of new compounds

3aa

セ్లిల్రి		\%	$\bar{\square}$
¢		¢i	F

3aa

3ab

3ab

$3 a c$

Hos			융	\%	
	5		\bigcirc	\bigcirc	

3ag

3ai

\%్న్న్		N゙\%	$\bar{\sim}$
¢ัֹī	¢ \%	¢0	-
17	个 Tis\%	4	

3ai

3aj

3aj

3ak

3al

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNONOOOGO

\%ow			®
¢్రిర్స		\%	\%

3an

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

ずす	
1	

$3 a 0$

 $\stackrel{\text { on }}{\substack{\text { g } \\ i}}$

3aq

\circ
$\stackrel{\circ}{\circ}$

3ar

等哭	
TT	

主	\％	$\frac{\infty}{7}$
¢ \square_{0}°	¢	¢ิ่

＋${ }_{\text {¢ }}^{\text {M }}$	 	
\％゙す		
1		

స్ల్ర్ర్ర	\％
ゼす	\bigcirc

-	- ¢ibingind	$\stackrel{\sim}{0}$	®
	 	¢0\%	F

 $\stackrel{\otimes}{\%}$

3fa

3fa

3 ga

\% ${ }^{\circ}$		\%	$\stackrel{\text { \% }}{ }$
ัั่ร์		¢	$\stackrel{\text { \% }}{\square}$

3ga

3ha

3ha

3ha

3ja

3ka

3ka

\qquad	

31a

5

6

6

毋్రీ్రnin

VII: HPLC profile spectrum of compounds

$3 a \mathbf{a}$

3ab

[^2]
$3 a c$

3ad

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	14.005 BB	0.3231	787.09344	37.46355	50.5514
2	16.049 BB	0.3684	769.92291	32.26977	49.4486

$3 a e$

Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area \%
1	10.648 BB	0.2428	2077.24268	131.12067	49.8936
2	16.271 BB	0.3758	2086.10425	85.76928	50.1064

3af

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.410		0.2430	1.17190 e 4	739.07532	93.0110
2	12.951	BB	0.2995	880.58612	45.56285	6.9890

$3 a g$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	28.247	BB	0.6350	1709.41589	40.61483	50.1819
2	31.666	BB	0.7188	1697.02380	35.17855	49.8181

DAD1 A, Sig=254,4 Ref=360,100 (E:IWXWIDATAIHJM120190415ILNK004231.D)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	28.112		0.6457	7792.57324	185.65417	94.5338
2	31.530	MM R	0.7622	450.58704	9.85304	5.4662

3ah

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.891		0.2508	1.37193 e 4	847.78931	93.5002
2	13.794	MM R	0.326	953.7089	48.662	. 4998

3ai

Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	11.184 BB	0.2539	899.09448	54.65664	49.9382
2	14.071 BB	0.3200	901.32080	43.44766	50.0618

3aj

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	12.717		0.2891	603.00537	32.10683	50.0340
2	17.102		0.3863	602.18518	23.87220	49.9660

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	12.646	BB	0.2925	1.05453 e 4	553.03259	93.5448
2	17.047	MM R	0.4086	727.68872	29.68270	6.4552

3ak

3al

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	13.568		0.3019	1136.10645	57.66617	49.9666
2	18.913	BB	0.4239	1137.62329	40.98212	50.0334

3am

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	13.810	BB	0.3138	965.65308	47.77753	50.1804
2	16.563	BB	0.3748	958.70898	39.27549	49.8196

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	13.656	BB	0.3146	1.66103 e 4	818.96100	76.0361
2	16.337	MM R	0.3959	5235.00781	220.37730	23.9639

3an

$$
\begin{aligned}
& \text { Peak RetTime Type Width Area Height Area } \\
& \text { \# [min] [min] [mAU*s] [mAU] \% }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \quad 14.729 \mathrm{BB} \quad 0.3299 \quad 3354.78174 \quad 156.64880 \quad 49.8942 \\
& \begin{array}{lllllll}
2 & 16.990 & \mathrm{BB} & 0.3828 & 3369.01099 & 135.18442 & 50.1058
\end{array}
\end{aligned}
$$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	15.039	BB	0.3507	9177.19824	404.49304	73.1494
2	17.457	MM R	0.4313	3368.62256	130.16016	26.8506

$3 a 0$

DAD1 A, Sig=254,4 Ref=360,100 (E:IWXWIDATAIHJM120190427LLNK004344.D)

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.123	BB	0.2133	1.46528 e 4	1072.81726	92.5232
2	11.833	MM R	0.2809	1184.08887	70.26357	7.4768

3ap

Peak \#	```RetTime Type [min]```	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area 응
1	15.175 BB	0.3519	4232.92383	185.73996	50.1312
2	17.903 BB	0.4124	4210.76611	157.26924	49.8688

mAU-				$\underset{\substack{\mathrm{w}}}{\stackrel{\rightharpoonup}{2}}$		
	1	10	15	20	25	
Peak \#	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%	
1	15.443 BB	0.3718	$2.30425 e 4$	960.89014	95.55	
2	18.270 MM R	0.4437	1071.60303	40.24857	4.44	

$3 a q$

3ar

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime Type [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[m A U]} \end{aligned}$	Area \%
1	9.850 BB	0.2231	370.37769	94.54195	49.9964
2	12.256 BB	0.2786	370.57312	75.91089	50

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	9.973		0.2283	6397.44092	433.05740	73.0578
2	12.459	MM R	0.3091	2359.23926	127.21201	26.9422

3as

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { [mAU] } \end{gathered}$	Area \%
1	8.843		0.1979	1293.26160	100.65012	49.9885
2	10.346		0.2338	1293.85864	85.87302	50.0115

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	8.807		0.2018	6174.36475	474.67734	27.9379
2	10.277		0.2412	1.59260 e 4	1025.17078	72.0621

3at

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	10.492		0.2236	1.68380 e 4	1158.36096	79.9961
2	12.060		0.2568	4210.53662	252.23546	20.0039

3au

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	19.156		0.4236	2004.57068	72.71276	50.3054
2	23.159	BB	0.5143	1980.22974	59.18496	49.6946

3av

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.087	BB	0.3038	465.16116	23.61509	48.0966
2	18.319	BB	0.4149	501.97745	18.25272	51.9034

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	14.027		0.3061	1.28820 e 4	647.44153	92.0418
2	18.26		0.42	113.811	39	. 9582

3ba

mAU	DAD1 A Sig=254, Ref=360,100 (E-WWXWIDATAIHJMM20190402 LNK004155 D)		402LLNK004155.D)		
	15			${ }_{20}$	25
Peak RetTime Type \# [min]		$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { [mAU] } \end{gathered}$	Area \%
1	13.957 BB	0.3334	. 48810 e4	1163.86755	94.931
2	18.037 MM R	0.4258	1328.45215	52.00061	5.068

3ca

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & {[m i n]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	15.770	BB	0.4218	3.93744 e 4	1473.06665	94.5213
2	19.262	MM R	0.4669	2282.25146	81.46192	5.4787

3da

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	16.610		0.3788	1612.69763	66.07236	49.9195
2	19.743		0.4497	1617.89771	55.55811	50.0805

3ea

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area \%
1	16.793		0.3841	1225.02576	48.93368	50.0777
2	19.718	BB	0.4499	1221.22412	41.66651	49.9223

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	16.934		0.3966	9599.82422	375.02945	95.0424
2	19.865	MM R	0.4639	500.74640	17.99135	4.9576

3fa

Peak \#	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~m}_{\mathrm{s}}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[m A U]} \end{aligned}$	Area 응
1	10.518		0.2341	1098.27478	72.74692	50.1511
2	14.443	BB	0.3251	1091.65613	51.95306	49.8489

3ga

3ha

DAD1 A, Sig=254,4 Ref=360,100 (E:IWXWIDATAIHJM120190501L[NK004391.D)

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	10.180	BB	0.2275	9590.61035	652.34155	94.5557
2	13.429	BB	0.2925	552.20898	28.94934	5.4443

3ia

3ja

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.025		0.3627	1.98147 e 4	854.06714	94.5417
2	19.646	MM R	0.4688	1143.99573	40.67279	5.4583

3ka

31a

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~s}_{\mathrm{s}}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	12.161 VB	0.2682	8540.95508	487.87503	92.9257
		0.3147			

4

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	8.278	VV	0.2261	1462.57483	100.33953	39.5069
2	8.925	VB	0.2418	389.77615	25.01888	10.5286
3	14.114	BB	0.3802	370.96924	15.23041	10.0206
4	19.477	BB	0.5536	1478.75818	42.11973	39.9440

5

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	16.984		0.6828	1586.88794	35.14643	51.1262
2	20.181	MM R	0.9870	1516.97412	25.61695	48.8738

6

Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

$\begin{array}{lllllll}1 & 12.407 & \mathrm{BB} & 0.2965 & 5466.01904 & 284.03055 & 52.1984\end{array}$
$2 \quad 13.683 \mathrm{BB} \quad 0.34085005 .60547 \quad 229.1953147 .8016$

[^0]: ${ }^{a}$ Reaction conditions: 1a ($0.075 \mathrm{mmol}, 1.5$ equiv), 2a ($0.05 \mathrm{mmol}, 1.0$ equiv), $\mathbf{C 8}(10 \mathrm{~mol} \%)$, base ($20 \mathrm{~mol} \%$), 4 ($0.1 \mathrm{mmol}, 2.0$ equiv), toluene $(1 \mathrm{~mL}), \mathrm{rt}, 24$ hours. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC.

[^1]: ${ }^{a}$ Reaction conditions: 1a ($0.075 \mathrm{mmol}, 1.5$ equiv), 2a ($0.05 \mathrm{mmol}, 1.0$ equiv), C8 ($10 \mathrm{~mol} \%$), DMAP ($20 \mathrm{~mol} \%$), 4 ($0.1 \mathrm{mmol}, 2.0$ equiv), solvent $(1 \mathrm{~mL})$, rt., 24 hours. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC. ${ }^{d}$ reaction time 2 days.

[^2]: DAD1 A, Sig=254,4 Ref=360,100 (E:IWXWIDATAIHJM120190308LLNK004026.D)

 | $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime Type [min] | Width
 [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$ | Height
 [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: |

 $1 \quad 11.933 \mathrm{BB} \quad 0.27711 .93844 \mathrm{e} 4 \quad 1092.22046 \quad 95.0033$
 $\begin{array}{llllllll}2 & 13.707 & \text { MM R } 0.3255 & 1019.52667 & 52.19908 & 4.9967\end{array}$

