### **Supporting Information**

## **Designing Two-Dimensional Properties in Three-Dimensional Halide Perovskites**

# via Orbital Engineering

Gang Tang,<sup>†</sup> Zewen Xiao,<sup>‡</sup> and Jiawang Hong  $^{*,\dagger}$ 

<sup>†</sup>School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081,

China

<sup>‡</sup>Wuhan National Laboratory for Optoelectronics, Huazhong University of Science

and Technology, Wuhan 430074, China

\*E-mail: hongjw@bit.edu.cn

#### **Computational details**

Density-functional theory (DFT) calculations were performed using the projectoraugmented wave (PAW) method as implemented in the Vienna Ab initio Simulation Package (VASP) 5.4 code.<sup>1-2</sup> The generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof (PBE) functional<sup>3</sup> was chosen for structural relaxations and total energy calculations. The plane-wave cut-off energy was set to 500 eV. The Γ-centered k-point meshes with k-spacing of ~0.2 Å<sup>-1</sup> were employed for sampling the Brillouin zone.<sup>4</sup> The lattice parameters and atomic positions were fully relaxed until the force on each atom is smaller than 0.01 eV/Å. The staring structure of Cs<sub>2</sub>Au(I)Au(III)I<sub>6</sub> is from Ref. 5. The optimized structural parameters were summarized in Table S4. In order to obtain an accurate description of the electronic structure for Cs<sub>2</sub>Au(I)Au(III)I<sub>6</sub>, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional<sup>6</sup> was therefore used during band structure and density of states calculations. Based on the equation  $m^* = \hbar^2 / (\partial^2 \varepsilon(k) / \partial k^2)$ , where  $\varepsilon(k)$  are the band edge eigenvalues and k is the wavevector, the electron and hole effective masses were calculated using the finite difference method.<sup>7</sup> The optical absorption spectra are described by the complex dielectric function, *i.e.*,  $\varepsilon(\omega) =$  $\varepsilon_1(\omega) + \varepsilon_2(\omega)$ . Based on the obtained dielectric function of Cs<sub>2</sub>Au(I)Au(III)I<sub>6</sub>, the absorption coefficient  $\alpha(\omega)$  can be given by the following equation<sup>8</sup>:

$$\alpha(\omega) = \frac{\sqrt{2}\omega\sqrt{\sqrt{\varepsilon_1(\omega)^2 + \varepsilon_2(\omega)^2} - \varepsilon_1(\omega)}}{c}$$
(S1)

where  $\varepsilon_1$  and  $\varepsilon_2$  are the real and imaginary part of the dielectric function, respectively.

### **Carrier mobilities**

The intrinsic carrier mobility of Cs<sub>2</sub>Au(I)Au(III)I<sub>6</sub> is calculated using the deformation potential (DP) theory<sup>9</sup> according to the following equation<sup>10</sup>:

$$\mu = \frac{(8\pi)^{1/2} \hbar^4 e \mathcal{C}_{ii}}{3(m^*)^{5/2} (k_B T)^{3/2} E_1^2}$$
(S2)

where  $\hbar$  is the reduced Planck constant, e is the element charge,  $C_{ii}$  is the elastic matrix constant,  $m^*$  is the carrier effective mass,  $k_B$  is the Boltzmann constant, T is the temperature.  $E_1$  represents the deformation potential constant of the valence band minimum (VBM) for hole or conduction band maximum (CBM) for electron along the transport direction, defined by  $E_1 = \Delta E / (\Delta l / l_0)$ . Here  $\Delta E$  is the energy shift of the CBM or VBM under proper lattice compression or dilatation,  $l_0$  is the lattice constant

in the transport direction and  $\Delta l$  is the deformation of  $l_0$ . The temperature used for the mobility calculations was 300 K. Note that, the carrier mobilities along the different transport directions are calculated based on the unit cell of Cs<sub>2</sub>Au(I)Au(III)I<sub>6</sub>.



Figure S1. Crystal structures and d electron configurations of (a) Cs<sub>2</sub>TiI<sub>6</sub> and (b) Cs<sub>2</sub>AgInCl<sub>6</sub>.



Figure S2. Projected density of states of (a) Cs<sub>2</sub>TiI<sub>6</sub> and (b) Cs<sub>2</sub>AgInCl<sub>6</sub>.



Figure S3. First Brillouin zone for the tetragonal lattice of Cs<sub>2</sub>Au(I)Au(III)I6.<sup>11</sup>



Figure S4. The band-edge positions of VBM and CBM as a function of the lattice dilation along the (100) and (001) directions for  $Cs_2Au(I)Au(III)I_6$ .



**Figure S5.** Imaginary part of the macroscopic dielectric function (a) and reflectivity spectra (b) for light polarized parallel and perpendicular to the *c* axis in  $Cs_2Au(I)Au(III)_6$ . The dashed lines represent the results of the literatures (Ref. 12 in (a) and Ref. 13 in (b)).

**Table S1.** The ionic ( $\varepsilon_{ion}$ ) and electronic ( $\varepsilon_{\infty}$ ) contributions to the static dielectric constant ( $\varepsilon_{std}$ ) for Cs<sub>2</sub>Au(I)Au(III)I<sub>6</sub>.

| $\varepsilon_{\rm ion}^{xx}$ | $\varepsilon_{\rm ion}^{yy}$ | $\boldsymbol{\varepsilon}_{\mathrm{ion}}^{zz}$ | $\boldsymbol{\varepsilon}_{\infty}^{\boldsymbol{x}\boldsymbol{x}}$ | $arepsilon_{\infty}^{yy}$ | $\mathcal{E}_{\infty}^{ZZ}$ | $\varepsilon_{\rm std}^{xx}$ | $\varepsilon_{\rm std}^{yy}$ | $\varepsilon_{\rm std}^{zz}$ |
|------------------------------|------------------------------|------------------------------------------------|--------------------------------------------------------------------|---------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|
| 12.40                        | 12.40                        | 8.71                                           | 11.86                                                              | 11.86                     | 4.23                        | 24.26                        | 24.26                        | 12.94                        |

**Table S2.** Summary of the calculated and experimental values of elastic constants  $C_{ij}$  (GPa) of thirteen halide perovskites.

|       |                                                         | <i>C</i> <sub>11</sub> | <i>C</i> <sub>33</sub> | <i>C</i> <sub>44</sub> | C <sub>66</sub> | <i>C</i> <sub>12</sub> | <i>C</i> <sub>13</sub> | <i>C</i> <sub>14</sub> | Ref.      |
|-------|---------------------------------------------------------|------------------------|------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|-----------|
| Calc. | Cs <sub>2</sub> Au <sub>2</sub> I <sub>6</sub> (PBE)    | 15.53                  | 17.43                  | 0.89                   | 5.84            | 9.97                   | 1.70                   | -                      | This work |
|       | $Cs_2Au_2I_6$ (LDA)                                     | 27.67                  | 27.28                  | 2.33                   | 8.12            | 18.13                  | 3.58                   | -                      | This work |
|       | Cs <sub>2</sub> Au <sub>2</sub> I <sub>6</sub> (PBEsol) | 29.31                  | 29.07                  | 2.96                   | 9.69            | 19.37                  | 3.58                   | -                      | This work |
|       | Cs <sub>2</sub> AgBiI <sub>6</sub>                      | 43.68                  | -                      | 7.48                   | -               | 9.04                   | -                      | -                      | 14        |
|       | Cs2AgBiBr6                                              | 59.02                  | -                      | 8.15                   | -               | 13.37                  | -                      | -                      | 14        |
|       | Cs2TIBiBr6                                              | 32.71                  | -                      | 3.16                   | -               | 4.41                   | -                      | -                      | 15        |
|       | Cs <sub>2</sub> AgBiCl <sub>6</sub>                     | 66.70                  | -                      | 8.85                   | -               | 15.61                  | -                      | -                      | 14        |
|       | (MA)2KGdCl6                                             | 29.33                  | 38.23                  | 13.17                  | 10.76           | 7.80                   | 18.43                  | -3.05                  | 16        |
|       | (MA)2KYCl6                                              | 30.58                  | 35.32                  | 13.82                  | 10.63           | 9.32                   | 16.29                  | -2.61                  | 16        |
|       | (MA) <sub>2</sub> KBiCl <sub>6</sub>                    | 31.75                  | 24.79                  | 12.11                  | 10.00           | 11.75                  | 14.38                  | -3.58                  | 16        |
| Expt. | MAPbI <sub>3</sub>                                      | $21.8 \pm 1.3$         | -                      | $7.3 \pm 0.3$          | -               | $11.3 \pm 3.1$         | -                      | -                      | 17        |
|       | FAPbI <sub>3</sub>                                      | $11.1 \pm 2.0$         | -                      | $2.7 \pm 0.3$          | -               | -5.5±2.2               | -                      | -                      | 17        |
|       | MAPbBr <sub>3</sub>                                     | $34.5 \pm 1.2$         | -                      | $4.1 \pm 0.2$          | -               | $18.5 \pm 2.0$         | -                      | -                      | 17        |
|       | FAPbBr <sub>3</sub>                                     | $27.7 \pm 1.6$         | -                      | $3.1 \pm 0.1$          | -               | $11.5 \pm 2.4$         | -                      | -                      | 17        |
|       | MAPbCl <sub>3</sub>                                     | -                      | -                      | 3.0(2)                 | -               | -                      | -                      | -                      | 18        |

**Table S3.** Summary of the calculated and experimental values of bulk modulus B (GPa), shear modulus G (GPa), Young's modulus E (GPa), Pugh's ratio B/G of twelve halide perovskites.

|       |                                                         | Phase      | Orientation | BVRH (GPa) | G <sub>VRH</sub> (GPa) | E (GPa)   | B/G  | Ref.      |
|-------|---------------------------------------------------------|------------|-------------|------------|------------------------|-----------|------|-----------|
| Calc. | Cs <sub>2</sub> Au <sub>2</sub> I <sub>6</sub> (PBE)    | Tetragonal | -           | 8.27       | 2.80                   | 7.54      | 2.95 | This work |
|       | Cs <sub>2</sub> Au <sub>2</sub> I <sub>6</sub> (LDA)    | Tetragonal | -           | 14.51      | 5.16                   | 13.85     | 2.81 | This work |
|       | Cs <sub>2</sub> Au <sub>2</sub> I <sub>6</sub> (PBEsol) | Tetragonal | -           | 15.33      | 5.99                   | 15.89     | 2.56 | This work |
|       | Cs <sub>2</sub> AgBiI <sub>6</sub>                      | Cubic      | -           | 16.595     | 7.5222                 | 19.604    | 2.20 | 19        |
|       | Cs2AgBiBr6                                              | Cubic      | -           | 20.269     | 8.5383                 | 22.461    | 2.41 | 19        |
|       | Cs <sub>2</sub> AgBiCl <sub>6</sub>                     | Cubic      | -           | 22.562     | 9.7791                 | 25.634    | 2.30 | 19        |
|       | Cs <sub>2</sub> TIBiBr <sub>6</sub>                     | Cubic      | -           | 13.84      | 6.07                   | 15.89     | 2.28 | 15        |
|       | (MA)2KGdCl6                                             | Trigonal   | -           | 19.63      | 10.18                  | 26.03     | 1.93 | 16        |
|       | (MA) <sub>2</sub> KYCl <sub>6</sub>                     | Trigonal   | -           | 19.7       | 10.79                  | 27.38     | 1.83 | 16        |
| Expt. | Cs <sub>2</sub> AgBiBr <sub>6</sub>                     | Cubic      | (111)       |            | -                      | 22.6(6)   | -    | 14        |
|       | (MA) <sub>2</sub> AgBiBr <sub>6</sub>                   | Cubic      | (111)       | -          | -                      | 7.9       | -    | 20        |
|       |                                                         |            | (110)       | -          | -                      | 8.4       | -    |           |
|       | (MA)2TIBiBr6                                            | Cubic      | (111)       | -          | -                      | 12.8±1.9  | -    | 21        |
|       | (MA) <sub>2</sub> KBiCl <sub>6</sub>                    | Trigonal   | (001)       | -          | -                      | 10.5±1.18 | -    | 16        |
|       | MAPbI <sub>3</sub>                                      | Tetragonal | (100)       | -          | -                      | 10.4(8)   | -    | 22        |
|       |                                                         |            | (112)       | -          | -                      | 10.7(5)   | -    |           |
|       | FAPbI <sub>3</sub>                                      | Cubic      | (100)       | -          | -                      | 11.8(1.9) | -    | 23        |
|       |                                                         |            | (110)       | -          | -                      | 11.3±0.7  | -    |           |
|       |                                                         |            | (012)       | -          | -                      | 10.2±0.5  | -    |           |

**Table S4.** Experimental and calculated structural parameters for tetragonal phase Cs<sub>2</sub>Au(I)Au(III)I<sub>6</sub> (space group *I*4/*mmm*). For comparison, the results of the literatures are also given.

|                           | This work<br>(PBE) | This work<br>(LDA) | This work<br>(PBEsol) | Expt.<br>(Ref. 5) | Calc.<br>(Ref. 24) | Calc.<br>(Ref. 12) |
|---------------------------|--------------------|--------------------|-----------------------|-------------------|--------------------|--------------------|
| <i>a</i> (Å)              | 8.469              | 8.145              | 8.141                 | 8.284             | 8.39               | 8.47               |
| <i>b</i> (Å)              | 8.469              | 8.145              | 8.141                 | 8.284             | 8.39               | 8.47               |
| <i>c</i> (Å)              | 12.521             | 11.937             | 11.928                | 12.092            | 12.34              | -                  |
| $\alpha$ (deg)            | 90                 | 90                 | 90                    | 90                | 90                 | 90                 |
| $\beta$ (deg)             | 90                 | 90                 | 90                    | 90                | 90                 | 90                 |
| γ (deg)                   | 90                 | 90                 | 90                    | 90                | 90                 | 90                 |
| $V(\text{\AA}^3)$         | 898.09             | 791.98             | 790.57                | 829.8             | 869.04             | -                  |
| Au(I)-I bond length (Å)   | 2.618              | 2.608              | 2.612                 | 2.586             | 2.625              | 2.62               |
| Au(III)-I bond length (Å) | 2.700              | 2.676              | 2.680                 | 2.646             | 2.703              | 2.71               |

#### **References:**

- Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* 1996, 6, 15-50.
- (2) Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* 1999, *59*, 1758.
- (3) Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865.
- (4) Blöchl, P. E.; Jepsen, O.; Andersen, O. K., Improved Tetrahedron Method for Brillouin-Zone Integrations. *Phys. Rev. B* 1994, 49, 16223.
- (5) Matsushita, N.; Kitagawa, H.; Kojima, N., A Three-Dimensional Iodo-Bridged Mixed-Valence Gold (I, III) Compound, Cs<sub>2</sub>Au<sup>I</sup>Au<sup>III</sup>I<sub>6</sub>. *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1997**, *53*, 663-666.
- (6) Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207-8215.
- (7) Whalley, L. D.; Frost, J. M.; Morgan, B. J.; Walsh, A. Impact of Nonparabolic Electronic Band Structure on the Optical and Transport Properties of Photovoltaic Materials. *Phys. Rev. B* 2019, *99*, 085207.
- (8) Jong, U.-G.; Yu, C.-J.; Ri, J.-S.; Kim, N.-H.; Ri, G.-C., Influence of Halide Composition on the Structural, Electronic, and Optical Properties of Mixed CH<sub>3</sub>NH<sub>3</sub>Pb(I<sub>1-x</sub>Br<sub>x</sub>)<sub>3</sub> Perovskites Calculated Using the Virtual Crystal Approximation Method. *Phys. Rev. B* 2016, *94*, 125139.
- (9) Bardeen, J.; Shockley, W., Deformation Potentials and Mobilities in Non-Polar Crystals. *Phys. Rev.* 1950, *80*, 72.
- (10) Wang, L.-Z.; Zhao, Y.-Q.; Liu, B.; Wu, L.-J.; Cai, M.-Q., First-Principles Study of Photovoltaics and Carrier Mobility for Non-Toxic Halide Perovskite CH<sub>3</sub>NH<sub>3</sub>SnCl<sub>3</sub>: Theoretical Prediction. *Phys. Chem. Chem. Phys.* **2016**, *18*, 22188-22195.
- (11) Setyawan, W.; Curtarolo, S., High-Throughput Electronic Band Structure Calculations: Challenges and Tools. *Comput. Mater. Sci.* 2010, 49, 299-312.

- (12) Giorgi, G.; Yamashita, K.; Palummo, M., Two-Dimensional Optical Excitations in the Mixed-Valence Cs<sub>2</sub>Au<sub>2</sub>I<sub>6</sub> Fully Inorganic Double Perovskite. *J. Mater. Chem. C* 2018, *6*, 10197-10201.
- (13) Liu, X.; Matsuda, K.; Moritomo, Y.; Nakamura, A.; Kojima, N., Electronic Structure of the Gold Complexes Cs<sub>2</sub>Au<sub>2</sub>X<sub>6</sub> (X = I, Br, and Cl). *Phys. Rev. B* 1999, 59, 7925.
- (14) Dong, L.; Sun, S.; Deng, Z.; Li, W.; Wei, F.; Qi, Y.; Li, Y.; Li, X.; Lu, P.; Ramamurty, U., Elastic Properties and Thermal Expansion of Lead-Free Halide Double Perovskite Cs<sub>2</sub>AgBiBr<sub>6</sub>. *Comput. Mater. Sci.* 2018, *141*, 49-58.
- (15) Xiao, Z.; Yan, Y.; Hosono, H.; Kamiya, T., Roles of Pseudo-Closed S2 Orbitals for Different Intrinsic Hole Generation between Tl-Bi and In-Bi Bromide Double Perovskites. J. Phys. Chem. Lett. 2017, 9, 258-262.
- (16) Deng, Z.; Wei, F.; Brivio, F.; Wu, Y.; Sun, S.; Bristowe, P. D.; Cheetham, A. K., Synthesis and Characterization of the Rare-Earth Hybrid Double Perovskites:(CH<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>KGdCl<sub>6</sub> and (CH<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>KYCl<sub>6</sub>. *J. Phys. Chem. Lett.* 2017, 8, 5015-5020.
- (17) Ferreira, A.; Létoublon, A.; Paofai, S.; Raymond, S.; Ecolivet, C.; Rufflé, B.;
  Cordier, S.; Katan, C.; Saidaminov, M. I.; Zhumekenov, A., Elastic Softness of Hybrid Lead Halide Perovskites. *Phys. Rev. Lett.* 2018, *121*, 085502.
- (18) Songvilay, M.; Bari, M.; Ye, Z.-G.; Xu, G.; Gehring, P.; Ratcliff, W.; Schmalzl, K.; Bourdarot, F.; Roessli, B.; Stock, C., Lifetime-Shortened Acoustic Phonons and Static Order at the Brillouin Zone Boundary in the Organic-Inorganic Perovskite CH<sub>3</sub>NH<sub>3</sub>PbCl<sub>3</sub>. *Phys. Rev. Mater.* **2018**, *2*, 123601.
- (19) Kumar, N. R.; Radhakrishnan, R., Electronic, Optical and Mechanical Properties of Lead-Free Halide Double Perovskites Using First-Principles Density Functional Theory. *Mater. Lett.* 2018, 227, 289-291.
- (20) Wei, F.; Deng, Z.; Sun, S.; Zhang, F.; Evans, D. M.; Kieslich, G.; Tominaka, S.; Carpenter, M. A.; Zhang, J.; Bristowe, P. D., Synthesis and Properties of a Lead-Free Hybrid Double Perovskite:(CH<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>AgBiBr<sub>6</sub>. *Chem. Mater.* 2017, 29, 1089-1094.

- (21) Deng, Z.; Wei, F.; Sun, S.; Kieslich, G.; Cheetham, A. K.; Bristowe, P. D., Exploring the Properties of Lead-Free Hybrid Double Perovskites Using a Combined Computational-Experimental Approach. J. Mater. Chem. A 2016, 4, 12025-12029.
- (22) Sun, S.; Fang, Y.; Kieslich, G.; White, T. J.; Cheetham, A. K., Mechanical Properties of Organic–Inorganic Halide Perovskites, CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> (X = I, Br and Cl), by Nanoindentation. *J. Mater. Chem. A* 2015, *3*, 18450-18455.
- (23) Sun, S.; Isikgor, F. H.; Deng, Z.; Wei, F.; Kieslich, G.; Bristowe, P. D.; Ouyang, J.; Cheetham, A. K., Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. *ChemSusChem* 2017, 10, 3740-3745.
- (24) Debbichi, L.; Lee, S.; Cho, H.; Rappe, A. M.; Hong, K. H.; Jang, M. S.; Kim, H., Mixed Valence Perovskite Cs<sub>2</sub>Au<sub>2</sub>I<sub>6</sub>: A Potential Material for Thin-Film Pb-Free Photovoltaic Cells with Ultrahigh Efficiency. *Adv. Mater.* 2018, *30*, 1707001.