Supporting Information

Oleanolic Acid Derivatives as Potential Inhibitors of HIV-1 Protease

Marta Medina-O'Donnell,[†] Francisco Rivas,^{*,†} Fernando J. Reyes-Zurita,^{*,‡} Mario Cano-Muñoz,[§] Antonio Martinez,[†] Jose A. Lupiañez,[‡] and Andres Parra^{*,†}

[†] Departamento de Química Orgánica, [‡] Departamento de Bioquímica y Biología Molecular I,
[§] Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, E-18071

Granada, Spain

Table of Contents

Page S3: Figure S1. Dose / response relationships of compounds 1g-4g. Page S4: Figure S2. Dose / response relationships of compounds 5g-8g. Page S5: Figure S3. Dose / response relationships of compounds 9g-12g. Page S6: Figure S4. Dose / response relationships of compounds 2h and 2i. Page S7: Figure S5. 2D schematic representation of the binding interactions of Acetyl-Pepstatin with the active site of the HIV-1 protease. Page S8: Figure S6. Crystallized position of acetyl-pepstatin and the docked position. Page S9: Figure S7. The docking position of acetyl-pepstatin and its molecular surface. Page S10: Figure S8. The 15 top-ranked OA derivatives appear to be linked within the active site of the enzyme. Page S11: Figure S9. Frontal orientation of Figure S8, with a better visualization of the active site of the enzyme. Page S12: Figure S10. The best docking position for compound 11g and its molecular surface. Page S13: Figure S11. Superimposition of the structures of acetyl-pepstatin and compound 11g denoting a similar binding domain, mainly within the active site of the HIV-1 protease. Page S14: Figure S12. ¹H, ¹³C NMR spectra and DEPT of compound 1g (CDCl₃). Page S15: Figure S13. ¹H, ¹³C NMR spectra and DEPT of compound 2g (CDCl₃). Page S16: Figure S14. ¹H, ¹³C NMR spectra and DEPT of compound 2h (CDCl₃). Page S17: Figure S15. ¹H, ¹³C NMR spectra and DEPT of compound 2i (CDCl₃). Page S18: Figure S16. ¹H, ¹³C NMR spectra and DEPT of compound 3g (CDCl₃). Page S19: Figure S17. ¹H, ¹³C NMR spectra and DEPT of compound 4g (CDCl₃). Page S20: Figure S18. ¹H, ¹³C NMR spectra and DEPT of compound 5g (CDCl₃). Page S21: Figure S19. ¹H, ¹³C NMR spectra and DEPT of compound 6g (CDCl₃). Page S22: Figure S20. ¹H, ¹³C NMR spectra and DEPT of compound 7g (CDCl₃). Page S23: Figure S21. ¹H, ¹³C NMR spectra and DEPT of compound 8g (CDCl₃). Page S24: Figure S22. ¹H, ¹³C NMR spectra and DEPT of compound 9g (CDCl₃). Page S25: Figure S23. ¹H, ¹³C NMR spectra and DEPT of compound 10g (CDCl₃). Page S26: Figure S24. ¹H, ¹³C NMR spectra and DEPT of compound 11g (CDCl₃). Page S27: Figure S25. ¹H, ¹³C NMR spectra and DEPT of compound 12g (CDCl₃).

Figure S1. Dose / response relationships of compounds 1g-4g, expressed in percentages of activity of these compounds at different concentrations (μ M). Values represent means of an experiment performed in triplicate.

Figure S2. Dose / response relationships of compounds 5g-8g, expressed in percentages of activity of these compounds at different concentrations (μ M). Values represent means of an experiment performed in triplicate.

Figure S3. Dose / response relationships of compounds 9g-12g, expressed in percentages of activity of these compounds at different concentrations (μ M). Values represent means of an experiment performed in triplicate.

Figure S4. Dose / response relationships of compounds 2h and 2i, expressed in percentages of activity of these compounds at different concentrations (μ M). Values represent means of an experiment performed in triplicate.

Figure S5. 2D schematic representation of the binding interactions of Acetyl-Pepstatin with the active site of the HIV-1 protease, created with PoseView.

The H-bonds are shown as black dashed lines, and residue labels and spline segments along the contacting hydrophobic ligand parts represent the hydrophobic contacts.

Figure S6. Crystallized position of acetyl-pepstatin (red sticks) and the docked position (green sticks) showing a good correlation between the two, as a positive control to validate the docking protocol.

Figure S7. The docking position of acetyl-pepstatin (green sticks) and its molecular surface (translucent green), indicating the location of the active site.

Figure S8. The 15 top-ranked OA derivatives (rainbow sticks) appear to be linked within the active site of the enzyme.

Figure S9. Frontal orientation of Figure S8, with a better visualization of the active site of the enzyme.

Figure S10. The best docking position for compound 11g (blue sticks) and its molecular surface (translucent blue).

Figure S11. Superimposition of the structures of acetyl-pepstatin and compound **11g** denoting a similar binding domain, mainly within the active site of the HIV-1 protease.

Figure S12. ¹H, ¹³C NMR spectra and DEPT of compound 1g (CDCl₃).

Figure S14. ¹H, ¹³C NMR spectra and DEPT of compound **2h** (CDCl₃).

Figure S15. ¹H, ¹³C NMR spectra and DEPT of compound 2i (CDCl₃).

Figure S16. ¹H, ¹³C NMR spectra and DEPT of compound **3g** (CDCl₃).

Figure S17. ¹H, ¹³C NMR spectra and DEPT of compound 4g (CDCl₃).

Figure S18. ¹H, ¹³C NMR spectra and DEPT of compound 5g (CDCl₃).

Figure S19. ¹H, ¹³C NMR spectra and DEPT of compound 6g (CDCl₃).

Figure S20. ¹H, ¹³C NMR spectra and DEPT of compound 7g (CDCl₃).

Figure S21. ¹H, ¹³C NMR spectra and DEPT of compound 8g (CDCl₃).

Figure S22. ¹H, ¹³C NMR spectra and DEPT of compound **9g** (CDCl₃).

Figure S23. ¹H, ¹³C NMR spectra and DEPT of compound 10g (CDCl₃).

Figure S24. ¹H, ¹³C NMR spectra and DEPT of compound 11g (CDCl₃).

Figure S25. ¹H, ¹³C NMR spectra and DEPT of compound **12g** (CDCl₃).