Bioactivation of GPR40 Agonist MK-8666: Formation of Protein Adducts in Vitro from Reactive Acyl Glucuronide and Acyl CoA Thioester

Jackie Shang,*,† Richard Tschirret-Guth,†,‡ Mark Cancilla,§ Koppara Samuel,† Qing Chen,†

Harry R. Chobanian,† Ann Thomas,† Wei Tong,†,∥ Hubert Josien,⁴ Alexei V. Buevich,‡ Kaushik

Mitra*,¶

†Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ¹Department of Medicinal Chemistry, [#]Department of Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States

§Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ¶Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., West Point, Pennsylvania 19586, United States

*Corresponding Author

Corresponding email: shangick@gmail.com or kaushik mitra@merck.com

Table of Contents

Table S1. MS Characterization of MK-8666 and its major metabolites.	S2
Figure S1 . Representative extracted ion chromatograms of MK-8666-1-O-β-acyl glucuronide	
and its rearranged isomers.	S3
Figure S2 . Stability of MK-8666-1-O-β-acyl glucuronide in 0.1 M phosphate buffer (pH 7.4)	S4

Table S1. MS Characterization of MK-8666 and its major metabolites.

	observed		calculated		
Metabolite	mass (m/z)	formula	mass (m/z)	Δppm	MSMS
MK-8666	522.1970	C ₂₉ H ₃₂ NO ₆ S ⁺	522.1945	4.8	522, 331, 121
M1	538.1903	$C_9H_{32}NO_7S^+$	538.1899	0.7	538, 502, 347, 329, 192, 121
M2	538.1921	$C_9H_{32}NO_7S^+$	538.1899	4.1	538, 520, 331, 121
M3	538.1913	$C_9H_{32}NO_7S^+$	538.1899	2.6	538, 520, 331, 121
M4	698.2275	$C_{35}H_{40}NO_{12}S^{+}\\$	698.2271	0.6	698, 522, 331, 121
M5	629.1981	$C_{35}H_{40}NO_{12}S^{\scriptscriptstyle +}$	629.1991	-1.6	629, 504, 331, 121

Figure S1. Representative extracted ion chromatograms of MK-8666-1-O- β -acyl glucuronide and its rearranged isomers following incubation of MK-8666-1-O- β -acyl glucuronide (10 μ M) in 0.1 M phosphate buffer (pH 7.4) at 0 & 300 min. The detection of mutiple peaks at m/z 696.2120 confirmed that MK-8666-1-O- β -acyl glucuronide formed rearranged isomers.

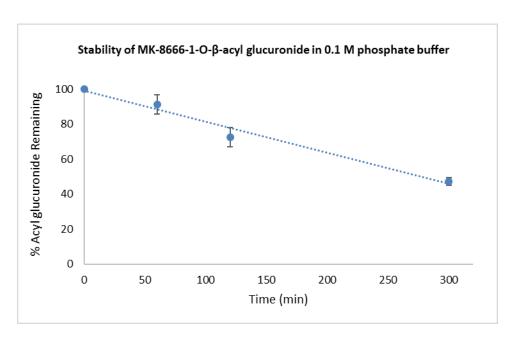


Figure S2. Percentage of MK-8666-1-O-β-acyl glucuronide remaining with the time course following incubation with 0.1 M phosphate buffer (pH 7.4) at 37°C. The degradation half-life of MK-8666-1-O-β-acyl glucuronide was determined from the percentage of AG remaining versus time curve by linear regression of the semilogarithmic plot. The half-life was calculated by the equation ln2/k, where k is the degradation rate constant.