Thermophysical Properties of the Lennard-Jones Fluid: Database and
 Data Assessment

Simon Stephan ${ }^{1 *}$, Monika Thol ${ }^{2}$, Jadran Vrabec ${ }^{3}$ and Hans Hasse ${ }^{1}$
${ }^{1}$ Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Kaiserslautern 67663, Germany
${ }^{2}$ Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, Bochum 44801, Germany
${ }^{3}$ Thermodynamics and Process Engineering, TU Berlin, Berlin 10587, Germany

*Simon.Stephan@mv.uni-kl.de

This supplementary material of the publication Thermophysical Properties of the LennardJones Fluid: Database and Data Assessment contains the following:

1. The full database of thermophysical property data of the Lennard-Jones fluid discussed in this work is appended as an .xls-spreadsheet, including an indication for each bulk data point whether it was identified as an outlier by the EOS test.
2. Applied conversions for each property in a given publication included in the database to indicate how the values in the database were obtained from those printed in the publication. Also, remarks on individual publications are given regarding possible misprints, conversion pitfalls, outliers etc.
3. Additional information on the EOS test for the assessment of the homogeneous state points.
4. Details on the computation of thermophysical properties with the Lustig formalism.
5. Additional information on the compressibility factor test, the Clausius-Clapeyron test, and the deviation test of the VLE bulk data, cf. Fig. S2, S3, and S4, respectively. All available VLE data (both confirmed and discarded) are shown and discussed in detail.
6. Additional information on the surface tension data, cf. Fig. S5.
7. List of clear outliers (eight data point) from the seven best VLE data sets (Refs. ${ }^{23,71,121,122,125-127,135,136}$ and this work), cf. Table S4.
8. Numerical values of the VLE data set from this work, cf. Table S3.

Database: .xls-spreadsheet

The entire database of thermophysical properties considered in this work is provided as an .xls spreadsheet in the electronic supplementary material.

List of applied conversions and remarks

For all considered studies in the database, the applied conversions from the numerical values printed in a publication to obtain the numerical values given in the database are given in Table S1. Data are consistently reported as residual properties (with respect to the ideal gas) and in the standard 'Lennard-Jones' units.

In Table S1, the hat ^ indicates the obtained value after the conversion as given in the database. Non-hat symbols were adopted as it stands in the corresponding publication. The asterisk indicates 'Lennard-Jones' units. Non-asterisk values indicate other units systems as applied in a given publication. The tilde \tilde{a} indicates the Helmholtz energy per particle a divided by the temperature, i.e. $\tilde{a}=\frac{a}{T}$. The [Acronym] indicates the string used in the electronic database to uniquely identify a certain publication. The state point is the given temperature and density and their respective conversions in case of homogeneous data; and only the temperature in case of VLE data. The column property lists the given thermophysical properties and their respective conversions of a given publication.

In cases where multiple results where reported for a given property and state point in a given publication (e.g. simulations performed with varying cut-off, particle number, sampling length etc.), only the numeric value with the largest particle number etc. were included in the database.

For the conversions given in Table S1, the constants $N_{\mathrm{AV}}=6.02214076 \cdot 10^{23} \mathrm{~mol}^{-1}$ and $k_{\mathrm{B}}=$ $1.380649 \cdot 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$ were applied.

For the studies that report data based on the Lustig formalism, the Helmholtz energy and the respective derivatives are listed in Table S1. According the thermodynamic relations (see below), other properties were computed from that data and also included in the database.

Table S1: List of conversions from the publications from the literature to the consistent units system (Lennard-Jones units \& residual properties with respect to the ideal gas).

Authors \& [Acronym]	state point T, ρ	thermophysical properties
Wood and Parker ${ }^{15}$	$\widehat{T}^{*}=T^{*}$	$\widehat{c}_{v}^{*}=\frac{3}{2}+C_{v}^{\prime} / R$
[WOODPAR]	$\widehat{\rho}^{*}=\left(\frac{v}{v^{*}}\right)^{-1}$	$\begin{aligned} & \widehat{u}_{\mathrm{res}}^{*}=\widehat{T}^{*} \cdot \frac{E^{\prime}}{R T} \\ & \widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot \frac{p v}{R T} \end{aligned}$
Hansen ${ }^{50}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot\left(\frac{\beta p}{\rho}\right)^{\text {ex }}$
[HANSEN]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=\widehat{T}^{*} \cdot(\beta U)^{\text {ex }}$
Levesque and Verlet ${ }^{48}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\mathrm{res}, 00}^{*}=\frac{F_{1}}{N \cdot k_{\mathrm{B}} \cdot T}$
[LEVEVER]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot Z$
		$\widehat{u}_{\text {res }}^{*}=u_{i}$
Thol et al. ${ }^{90}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\widetilde{a}}_{\text {res, }, 00}^{*}=A_{\mathrm{r}, 00}$
[THOL]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\tilde{a}}_{\text {res, } 01}^{*}=A_{\mathrm{r}, 01}$
		$\hat{\tilde{a}}_{\mathrm{res}, 10}^{*}=A_{\mathrm{r}, 10}$
		$\hat{\tilde{a}}_{\mathrm{res}, 11}^{*}=A_{\mathrm{r}, 11}$
		$\widehat{\tilde{a}}_{\text {res }, 02}^{*}=A_{\mathrm{r}, 02}$
		$\widehat{\tilde{a}}_{\text {res }, 20}^{*}=A_{\mathrm{r}, 20}$

The numeric values provided in the supplementary material in Ref. ${ }^{90}$ contains some typos. Those are corrected here.

Verlet 18	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot\left(\frac{\beta p}{\rho}\right)$
[VERLET]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=U^{i}$
Hansen and Verlet ${ }^{20}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot \frac{\beta p}{\rho}$
[HANSVER]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\tilde{a}}_{\text {res }, 00}^{*}=\frac{F_{l}}{\widehat{T}^{*}}-\ln \left(\widehat{\rho}^{*}\right)+1$
		$\widehat{p}_{v}^{*}=p_{v}^{*}$
	$\Delta \widehat{h}_{v}^{*}=\mathcal{L}$	
McDonald and Singer ${ }^{54}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
[MCDSING]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\text {res }}^{*}=u_{r}^{*}$
Weeks et al. ${ }^{160}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\text {res }, 00}^{*}=-\frac{\beta \Delta A}{N}$
[WEEKCHA1]	$\widehat{\rho}^{*}=\rho^{*}$	
Adams ${ }^{57}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\alpha}^{*}=\alpha^{*}$
[ADAMS]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\beta}^{*}=\beta^{*}$
		$\widehat{\gamma}^{*}=\gamma^{*}$
		$\widehat{p}^{*}=p *$
		$\widehat{\mu}_{\text {res }}^{*}=\mu_{r}^{*}$
		$\widehat{u}_{\text {res }}^{*}=-u_{r}^{*}$
		$\widehat{c}_{v}^{*}=\frac{3}{2}+c_{v, r}^{*}$
$R e e^{62}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot \frac{P}{\rho k T}$
[REE]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\text {res }}^{*}=\frac{U^{e}}{k T} \cdot \widehat{T}^{*}$
Panagiotopoulos ${ }^{100}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=P^{*}$
[PANAGIO]	$\widehat{\rho}^{*}=\rho^{*}$	$\Delta \widehat{h}_{v}^{*}=\left(E_{\mathrm{v}}^{*}+\frac{\widehat{p}_{v}^{*}}{\widehat{\rho}_{v}^{*}}-\left(E_{1}^{*}+\frac{\widehat{p}_{1}^{*}}{\widehat{\rho}_{1}^{*}}\right)\right.$)
Shaw ${ }^{66}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[SHAW]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\text {res }}^{*}=u_{r}^{*}$
Panagiotopoulos et al. ${ }^{101}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=P$
[PANQUIR]	$\widehat{\rho}^{*}=\rho^{*}$	$\Delta \widehat{h}_{v}^{*}=\left(E^{\mathrm{G}}+\frac{p^{\mathrm{G}}}{\rho^{\mathrm{G}}}-\left(E^{\mathrm{L}}+\frac{p^{\mathrm{L}}}{\rho^{\mathrm{L}}}\right)\right)$
Smit and Frenkel ${ }^{103}$	$\widehat{T}^{*}=T^{*}$	$\Delta \widehat{h}_{v}^{*}=\left(E_{\mathrm{v}}^{*}+\frac{\widehat{P}_{v}^{*}}{\widehat{\rho}_{\mathrm{v}}^{*}}-\left(E_{\mathrm{l}}^{*}+\frac{\widehat{p}_{1}^{*}}{\widehat{\rho}_{1}^{*}}\right)\right)$
[SMITFRE]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
Meier ${ }^{80,155}$	$\widehat{T}^{*}=T^{*}$	$\widehat{c}_{v}^{*}=c_{v}^{*}$
[MEIER]	$\widehat{\rho}^{*}=\rho^{*}$	$\hat{p}^{*}=p^{*}$
		$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{w}^{*}=w_{o}^{\prime *}$
		$\widehat{\gamma}^{*}=\gamma^{*}$

Continued on next page

Authors \&	state point	thermophysical
[Acronym]	T, ρ	properties

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
		$\widehat{p}^{*}=p^{*}$
		$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{\beta}^{*}=\widetilde{\beta}$
		$\Delta \widehat{h}_{v}^{*}=\Delta \widetilde{h}$
Sowers and Sandler ${ }^{70}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=Z \cdot \widehat{\rho}^{*} \cdot \widehat{T}^{*}$
[SOWSAND]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\text {res }}^{*}=u_{\mathrm{r}}^{*}$
Shi and Johnson ${ }^{120}$	$\widehat{T}^{*}=T^{*}$	
[SHIJOHN]	$\widehat{\rho}^{*}=\rho^{*}$	
Morsali et al. ${ }^{82}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\beta}^{*}=\kappa_{\text {MD }}^{*}$
[MORSALI]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\gamma}^{*}=\gamma_{\mathrm{MD}}^{*}$
		$\widehat{p}^{*}=p^{*}$
Kolafa and Nezbeda ${ }^{76}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[KOLNEZB]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
Lotfi et al. ${ }^{71}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\beta}^{*}=\beta *$
[LOTVRAB]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}^{*}=p^{*}$
		$\begin{aligned} & \widehat{u}_{\mathrm{res}}^{*}=u_{r}^{*} \\ & \widehat{\Delta h}_{v}^{*}=h^{\prime \prime *}-h^{\prime *} \end{aligned}$
		$\widehat{\mu}_{\text {res }}^{*}=\left(\widetilde{\mu}-\ln \left(\widehat{\rho}^{*}\right)\right) \cdot \widehat{T}^{*}$
Miyano ${ }^{75}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=Z \cdot \widehat{\rho}^{*} \cdot \widehat{T}^{*}$
[MIYANO]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*} \cdot \widehat{T}^{*}$
Nicolas et al. ${ }^{61}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[NICOLAS]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\text {res }}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{B}=B \cdot \frac{2 \pi}{3}$
Saager and Fischer ${ }^{69}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[SAAGFI]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\text {res }}^{*}=u_{\mathrm{r}}^{*}$

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
Kofke ${ }^{104}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=P$
[KOFKE]	$\widehat{\rho}^{*}=\rho^{*}$	$\Delta \widehat{h}_{v}^{*}=\left(u_{1}-\frac{\widehat{p}_{1}^{*}}{\widehat{\rho}_{1}^{*}}+\left(-\widehat{u}_{\mathrm{v}}+\frac{\widehat{p}_{v}^{*}}{\widehat{\rho}_{v}^{*}}\right)\right.$)
Adams ${ }^{58}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[ADAMS3]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{\mu}_{\text {res }}^{*}=\mu_{\mathrm{r}}^{*}$
		$\Delta \widehat{h}_{v}^{*}=\Delta h_{v}^{*}$
		$\widehat{p}_{v}^{*}=p_{v}^{*}$
Mecke et al. ${ }^{78}$	$\widehat{T}^{*}=T^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
[MECK]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}^{*}=p^{*}$
Potoff and Panagiotopoulos ${ }^{116}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
[POTPAN2]	$\widehat{\rho}^{*}=\rho^{*}$	
Kolafa et al. ${ }^{74}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[KOLVOR]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{\mu}_{\mathrm{res}}^{*}=\widehat{T}^{*} \cdot \mu_{\mathrm{r}}^{*}$
Emampour et al. ${ }^{157}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\Gamma}^{*}=\Gamma^{*}$
[EMAM]	$\widehat{\rho}^{*}=\rho^{*}$	
Agrawal and Kofke ${ }^{106}$	$\widehat{T}^{*}=\frac{1}{T^{*}}$	$\widehat{p}_{v}^{*}=10^{-3} \cdot p^{*}$
[AGRKOF]	$\widehat{\rho}_{1}^{*}=\rho_{1}^{*}$	$\Delta \widehat{h}_{v}^{*}=\left(-u_{\mathrm{g}}^{*}+\frac{\widehat{p}^{*}}{\widehat{\rho}_{v}^{*}}+u_{1}^{*}-\frac{\widehat{p}^{*}}{\widehat{\rho}_{1}^{*}}\right)$
	$\widehat{\rho}_{\mathrm{v}}^{*}=\rho_{\mathrm{g}}^{*} \cdot 10^{-3}$	
Lustig ${ }^{77}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[LUSTIG]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{\beta}^{*}=\beta^{*}$
		$\widehat{\mu}_{\mathrm{res}}^{*}=\mu_{\mathrm{r}}^{*}$
		$\widehat{\gamma}^{*}=\gamma^{*}$
Boda et al. ${ }^{154}$	$\widehat{T}^{*}=T^{*}$	$\widehat{c}_{v}^{*}=\frac{3}{2}+c_{v, \mathrm{r}}^{*}$

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
[BODA]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{c}_{p}^{*}=c_{p, \mathrm{r}}^{*}+1.5$
Weeks et al. ${ }^{53}$	$\widehat{T}^{*}=T^{*}$	$\widehat{u}_{\text {res }}^{*}=-u_{\mathrm{r}}$
[WEECKCHA2]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\tilde{a}}_{\mathrm{res}, 00}^{*}=-A_{\mathrm{r}, 00}$
		$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot \frac{\beta p}{\rho}$
Verlet and Levesque ${ }^{46}$	$\widehat{T}^{*}=T^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
[VERLEV]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot \frac{\beta p}{\rho}$
Mecke et al. ${ }^{109}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
[MECKWIN]	$\widehat{\rho}^{*}=\rho^{*}$	
Toxvaerd and Praestgaard ${ }^{52}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot Z$
[TOXPRA]	$\widehat{\rho}^{*}=\rho^{*}$	
Street et al. ${ }^{56}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[STRRAV]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
Carley ${ }^{59}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot Z$
[CARL]	$\widehat{\rho}^{*}=\rho^{*}$	
Schofield ${ }^{55}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\rho^{*} \cdot \widehat{T}^{*} \frac{p_{f}}{n \cdot k_{\mathrm{B}} \cdot T^{*}}$
[SCHOF]	$\widehat{\rho}^{*}=\rho^{*}$	
McDonald and Woodcock ${ }^{51}$	$\widehat{T}^{*}=\frac{T \cdot k_{\mathrm{B}}}{\varepsilon}$	$\widehat{p}^{*}=\widehat{\rho}^{*} \cdot \widehat{T}^{*} \cdot Z$
[MCDWOO]	$\widehat{\rho}^{*}=\frac{\rho \cdot N_{\mathrm{AV}} \cdot \sigma^{3} \cdot 10}{M}$	$u_{\mathrm{res}}^{*}=u^{*} \cdot \widehat{T}^{*}$
		$\frac{\varepsilon}{k_{\mathrm{B}}}=117.2 \mathrm{~K}, \sigma=3.405 \AA$
		$M=39.948 \frac{\mathrm{~g}}{\mathrm{~mol}}$
Roccatano et al. ${ }^{79}$	$\widehat{T}^{*}=T^{*}$	$\widehat{c}_{v}^{*}=\frac{3}{2}+c_{v, \mathrm{r}}^{*}$
[ROCAMA]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{p}^{*}=p^{*}$
Lustig ${ }^{84}$	$\widehat{T}^{*}=T^{*}$	$\widehat{c}_{p}^{*}=c_{p}^{*}$
[LUSTIG2]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\mu}_{\mathrm{JT}}^{*}=\mu_{\mathrm{JT}}^{*}$

Continued on next page

Continued on next page

Authors \&	state point	thermophysical
[Acronym]	T, ρ	properties
[LAFITTE]	$\widehat{\rho^{*}}=\rho^{*}$	$\widehat{a}_{2}^{*}=A_{2}^{*}$
		$\widehat{a}_{3}^{*}=A_{3}^{*}$

Data was digitalized from the corresponding plots from Ref. ${ }^{11}$

Lucas 65	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=Z \cdot \widehat{\rho}^{*} \cdot \widehat{T}^{*}$
[LUCAS]	$\widehat{\rho^{*}}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=\frac{E}{R \cdot T} \cdot \widehat{T}^{*}$
Betancourt-Cárdenas et al. ${ }^{130}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[BETANCOU]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{a}_{2}=A_{2}, \quad \widehat{a}_{1}=A_{1}$
		$\Delta \widehat{h}_{v}^{*}=u_{\mathrm{v}}^{*}+\frac{\widehat{p}_{v}^{*}}{\hat{\rho}_{v}^{*}}-u_{1}^{*}-\frac{\widehat{p}_{1}^{*}}{\hat{\rho}_{1}^{*}}$
Janeček et al. ${ }^{135}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
[JANECEK]	$\widehat{\rho}^{*}=\rho^{*}$	$\Delta \widehat{h}_{v}^{*}=\Delta h_{v}^{*}$
		$\widehat{\gamma}^{*}=\gamma^{*}$

The VLE data from the inhomogeneous simulations were digitalized from the corresponding plots from Ref. ${ }^{135}$ In this work the inhomogeneous simulations-data from Janeček et al. ${ }^{135}$ is referred to as data from Ref. ${ }^{135}$ and [JANECEK]. For the GEMC results from the same publication see [PRIVJANEC].

Guo et al. ${ }^{111}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
$[\mathrm{GUO}]$	$\widehat{\rho}^{*}=\rho^{*}$	

Surface tension data was digitalized from the corresponding plots from Ref. ${ }^{111}$

Lee et al. ${ }^{98}$	$\widehat{T}^{*}=\frac{T \cdot k_{\mathrm{B}}}{\varepsilon}$	$\widehat{\gamma}^{*}=0.001 \cdot \gamma \sigma^{2} \varepsilon^{-1}$
[LEE $]$	$\widehat{\rho}^{*}=\rho^{*}$	
Werth et al. ${ }^{137}$		with $\frac{\varepsilon}{k_{\mathrm{B}}}=119.4 \mathrm{~K}, \sigma=3.4 \AA$
$[$ WERTH $]$	$\widehat{T}^{*}=T^{*}$	$\Delta \widehat{h}_{v}^{*}=\Delta h_{v}{ }^{*}$
	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
Stephan and Hasse ${ }^{138}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
[STEPHAN2]	$\widehat{\rho}^{*}=\rho^{*}$	
Nijmeijer et al. ${ }^{102}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
[NIJMEIJ]	$\widehat{\rho}^{*}=\rho^{*}$	
Errington ${ }^{125}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
[ERRING]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
Baidakov et al. ${ }^{129}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
[BAIDAKOV1]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
Janeček ${ }^{131}$	$\widehat{T}^{*}=T^{*}$	$\Delta \widehat{h}_{v}^{*}=\Delta h_{v} *$
[JANECE]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
		$\widehat{\gamma}^{*}=\gamma^{*}$
Martinez-Ruiz et al. ${ }^{134}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
[MARTINEZ]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
Chen et al. ${ }^{24}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
[CHEN]	$\widehat{\rho}^{*}=\rho^{*}$	
Galliero et al. ${ }^{132}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
[GALLIER]	$\widehat{\rho}^{*}=\rho^{*}$	
Trokhymchuk and Alejandre ${ }^{114}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
[TROK]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
Anisimov et al. ${ }^{115}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*} \cdot 10^{-3}$
[ANISIMOV]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
Guo and Lu ${ }^{112}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
[GUOLU]	$\widehat{\rho}^{*}=\rho^{*}$	
Mausbach et al. ${ }^{159}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\Gamma}^{*}=\Gamma^{*}$
[MAUSVRAB]	$\widehat{\rho}^{*}=\rho^{*}$	
Köster et al. ${ }^{91}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\text {res }, 01}^{*}=A_{\mathrm{r}, 01}^{*}$

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
[KOESTER]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\tilde{a}}_{\text {res }, 11}^{*}=A_{\mathrm{r}, 11}^{*}$
		$\hat{\tilde{a}}_{\mathrm{res}, 10}^{*}=A_{\mathrm{r}, 10}^{*}$
		$\widehat{\widetilde{a}}_{\text {res }, 20}^{*}=A_{\mathrm{r}, 20}^{*}$
		$\widehat{\widetilde{a}}_{\text {res, } 02}^{*}=A_{\mathrm{r}, 02}^{*}$
Köster et al. ${ }^{91,92}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\text {res }, 00}^{*}=A_{\mathrm{r}, 00}^{*}$
[KOESTERPRIVCOM]	$\widehat{\rho}^{*}=\rho^{*}$	$\hat{\tilde{a}}_{\text {res }, 01}^{*}=A_{\mathrm{r}, 01}^{*}$
		$\widehat{\tilde{a}}_{\text {res, } 10}^{*}=A_{\mathrm{r}, 10}^{*}$
		$\widehat{\tilde{a}}_{\text {res, } 11}^{*}=A_{\mathrm{r}, 11}^{*}$
		$\widehat{\tilde{a}}_{\text {res }, 02}^{*}=A_{\mathrm{r}, 02}^{*}$
		$\widehat{\tilde{a}}_{\text {res }, 20}^{*}=A_{\mathrm{r}, 20}^{*}$

Some of the numerical values from Ref. ${ }^{91}$ were not included in the corresponding supplementary material. This data was made available by the authors and is included in the database as [KOESTERPRIVCOM] and referred to as data from Ref. ${ }^{91,92}$

Yao et al. ${ }^{63}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
$[\mathrm{YAO}]$	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=-U^{*} / N$
		$\widehat{\mu}_{\mathrm{res}}^{*}=-\mu^{*}-\ln \left(\widehat{\rho}^{*}\right) \cdot T^{*}$
Baidakov et al. ${ }^{123}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\rho}^{*}=\rho^{*}$
[BAIDAKOV2]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$

Data was digitalized from the corresponding plots from Ref. ${ }^{123}$

Hong and Jhon ${ }^{163}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\mathrm{res}, 00}^{*}=-A_{\mathrm{res}, 00}^{*}$
[SEUNGMU]	$\widehat{\rho}^{*}=\rho^{*}$	
Torrie and Valleau ${ }^{96}$	$\widehat{T}^{*}=T^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
[TORVAL]	$\widehat{\rho}^{*}=N / V^{*}$	$\widehat{\tilde{a}}_{\mathrm{res}, 00}^{*}=\left(\frac{A_{c}}{N \cdot \varepsilon}\right) \cdot \frac{1}{\widehat{T}^{*}}-\ln \left(\widehat{\rho}^{*}\right)+1$
Schultz and Kofke ${ }^{95}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
[SCHULTZKOFKE]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
van Westen and Gross ${ }^{10}$	$\widehat{T}^{*}=T^{*}$	$\widehat{a}_{1}^{*}=A_{1}^{*}$
[WESTGROSS]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{a}_{2}^{*}=A_{2}^{*}$
		$\widehat{a}_{3}^{*}=A_{3}^{*}$
this work	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\text {res, } 00}^{*}=\tilde{a}_{\text {res }, 00}^{*}$
[STEPHANTHIS]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\tilde{a}}_{\text {res, } 01}^{*}=\tilde{a}_{\text {res }, 01}^{*}$
		$\widehat{\tilde{a}}_{\text {res, } 10}^{*}=\tilde{a}_{\text {res, } 10}^{*}$
		$\widehat{\tilde{a}}_{\text {res, } 11}^{*}=\tilde{a}_{\text {res, } 11}^{*}$
		$\widehat{\tilde{a}}_{\text {res }, 02}^{*}=\tilde{a}_{\text {res }, 02}^{*}$
		$\widehat{\tilde{a}}_{\text {res }, 20}^{*}=\tilde{a}_{\text {res }, 20}^{*}$
		$p_{v}^{*}=p_{v}^{*}$
		$\Delta h_{v}^{*}=\Delta h_{v}^{*}$
Errington ${ }^{126,127}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
[ERRING2]	$\widehat{\rho}^{*}=\rho^{*}$	

The data listed as [ERRING2] was forwarded by J. Errington. ${ }^{127}$ Please note, that two websites provide numerical values for the LJ VLE. ${ }^{215,216}$ The website can be understood in a way that the numeric values might be those of Ref., ${ }^{126}$ cf. Ref. ${ }^{10}$ The numeric values from ${ }^{215,216}$ are however dissimilar than those from. ${ }^{126,127}$

Janeček et al. ${ }^{135,136}$	$\widehat{T}^{*}=T^{*}$	$\Delta \widehat{h}_{v}^{*}=\Delta h_{v}^{*}$
[PRIVJANEC]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$

The numeric values of the VLE data from the GEMC simulations from Ref. ${ }^{135}$ were made available by J. Janeček ${ }^{136}$ and are listed in the database as [PRIVJANEC].

Okumura and Yonezawa ${ }^{118,119}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
$[$ PRIVOKU $]$	$\widehat{\rho}^{*}=\rho^{*}$	
Kioupis et al. ${ }^{124}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{\text {sat }}$
$[$ KIOUPIS $]$	$\widehat{\rho}^{*}=\rho$	$\Delta \widehat{h}_{v}^{*}=H_{\text {vap }}-H_{\text {liq }}$

Continued on next page

 [Acronym]	state point T, ρ	thermophysical properties
Okumura and Yonezawa ${ }^{121,122}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p_{v}^{*}$
[PRIVOKU2]	$\widehat{\rho}^{*}=\rho^{*}$	
Mick et al. ${ }^{23}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p^{*}}{ }_{v}=p_{v}^{*}$
[MICK]	$\widehat{\rho}^{*}=\rho^{*}$	$\Delta \widehat{h}_{v}^{*}=u_{v}^{*}+\frac{p^{*}}{\widehat{\rho}_{v}^{*}}-u_{l}^{*}-\frac{p^{*}}{\widehat{\rho}_{l}^{*}}$
Ustinov ${ }^{93,94}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[PRIVUSTINOV]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
		$\widehat{\mu}_{\text {res }}^{*}=\mu^{*}$
Hong and Jang ${ }^{164}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\text {res }, 00}^{*}=-A^{\text {ex }} / N k_{\mathrm{B}} T$
[HONG]	$\widehat{\rho}^{*}=\rho^{*}$	
Giaquinta et al. ${ }^{72}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=\frac{\beta P}{\rho} \cdot \widehat{\rho}^{*} \cdot \widehat{T}^{*}$
[GIAQUI]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*}$
Cuadros et al. ${ }^{162}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\tilde{a}}_{\mathrm{res}, 00}^{*}=\frac{A_{\mathrm{r}, 00}}{\widehat{T}^{*}}$
[CUADROS]	$\widehat{\rho}^{*}=\rho^{*}$	
Adachi et al. ${ }^{67}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[ADACHI]	$\widehat{\rho}^{*}=\rho^{*}$	
Baranyai et al. ${ }^{68}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p^{*}$
[BARANY]	$\widehat{\rho}^{*}=\rho^{*}$	$\begin{aligned} & \widehat{u}_{\mathrm{res}}^{*}=u_{\mathrm{r}}^{*} \\ & \widehat{\tilde{a}}_{\mathrm{res}, 00}^{*}=\frac{A^{\mathrm{ex}} / N}{\widehat{T}^{*}} \end{aligned}$
Powles et al. ${ }^{64}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}^{*}=p-1.09 \cdot\left(\widehat{\rho}^{*}\right)^{2}$
[POWLES]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{\mu}_{\text {res }}^{*}=\mu_{1}-\widehat{T}^{*} \cdot \ln \left(\widehat{\rho}^{*}\right)$
		$+\frac{3}{2} \widehat{T}^{*} \cdot \ln \left(\widehat{T}^{*}\right)-1.86 \widehat{\rho}^{*}$
$H a{ }^{161}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\mu}_{\text {res }}^{*}=\widehat{T}^{*} \cdot \mu_{\mathrm{r}}^{*}$
[HAN]	$\widehat{\rho}^{*}=\rho^{*}$	
Holcomb et al. ${ }^{105}$	$\widehat{T}^{*}=T^{*}$	$\widehat{\gamma}^{*}=\gamma^{*}$
[HOLCOMB]	$\widehat{\rho}^{*}=\widehat{\rho}^{*}$	

Continued on next page

Authors \& [Acronym]	state point T, ρ	thermophysical properties
Stoll et al. ${ }^{128}$	$\widehat{T}^{*}=\frac{T^{*}}{4}$	$\widehat{p}_{v}^{*}=\frac{1}{4} p_{v}^{*}$
[STOLL]	$\widehat{\rho}^{*}=\widehat{\rho}^{*}$	$\Delta \widehat{h}_{v}^{*}=\frac{h_{v, v a p}-h_{v, l i q}}{4}$
Deiters and Neumaier ${ }^{43,97}$	$\widehat{T}^{*}=\frac{T \cdot k_{\mathrm{B}}}{\varepsilon}$	$\widehat{p}^{*}=\frac{p^{*} \cdot 10^{-24} \cdot \sigma^{3}}{\left(\varepsilon / k_{\mathrm{B}}\right) \cdot k_{\mathrm{B}}}$
[DEINEU]	$\widehat{\rho}^{*}=\frac{10^{-24 \cdot} \cdot N_{\mathrm{AV}} \cdot \sigma^{3}}{V_{M}}$	$\begin{aligned} & \widehat{u}_{\mathrm{res}}^{*}=\frac{u_{\mathrm{m}}}{\left(\varepsilon / k_{\mathrm{B}}\right) \cdot k_{\mathrm{B}} \cdot N_{\mathrm{AV}}} \\ & \text { with } \frac{\varepsilon}{k_{\mathrm{B}}}=119.8 \mathrm{~K}, \sigma=3.405 \AA \end{aligned}$
Sun and Teja ${ }^{168}$	$\widehat{T}^{*}=T^{*}$	$\widehat{B}^{*}=\frac{2}{3} \pi \cdot B_{2}^{*}$
[SUNTEJA]		$\widehat{C}^{*}=\left(\frac{2}{3} \pi\right)^{2} \cdot B_{3}^{*}$
Sadus and Prausnitz ${ }^{108}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=P^{*}$
[SADUS]	$\widehat{\rho}^{*}=\rho^{*}$	$\Delta \widehat{h}_{v}^{*}=\left(E_{\mathrm{v}}^{*}+\frac{\widehat{p}_{v}^{*}}{\hat{\rho}_{v}^{*}}-\left(E_{1}^{*}+\frac{\widehat{p}_{1}^{*}}{\widehat{\rho}_{1}^{*}}\right)\right.$)
Yigzawe and Sadus ${ }^{87}$	$\widehat{T}^{*}=\varphi \cdot 1.312$	$\widehat{p}^{*}=p^{*}$
[YIGSAD]	$\widehat{\rho}^{*}=\rho^{*}$	
Yigzawe ${ }^{86}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p^{*}$
[YIGZAWE]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}^{*}=u^{*}-\frac{3}{2} \widehat{T}^{*}$
		$\widehat{c}_{p}^{*}=C_{p}^{*}$
		$\widehat{c}_{v}^{*}=C_{v}^{*}$
		$\widehat{\alpha}^{*}=\alpha_{\mathrm{P}}^{*}$
		$\widehat{\beta}^{*}=\beta_{\mathrm{T}}^{*}$
		$\widehat{\gamma}^{*}=\gamma_{\mathrm{V}}^{*}$
		$\widehat{\mu}_{\mathrm{JT}}^{*}=\mu_{\mathrm{JT}}^{*}$
		$\widehat{w}^{*}=w_{0}^{*}$
Mairhofer and Sadus ${ }^{88,89}$	$\widehat{T}^{*}=T^{*}$	$\widehat{p}_{v}^{*}=p^{*}$
[PRIVMAI]	$\widehat{\rho}^{*}=\rho^{*}$	$\widehat{u}^{*}=u^{*}-\frac{3}{2} \widehat{T}^{*}$
		$\widehat{c}_{p}^{*}=C_{p}^{*}$
		$\widehat{c}_{v}^{*}=C_{v}^{*}$
		$\widehat{\beta}^{*}=\beta_{\mathrm{T}}^{*}$

Continued on next page
\(\left.$$
\begin{array}{lll}\hline \hline \begin{array}{l}\text { Authors \& } \\
\text { [Acronym] }\end{array} & \begin{array}{l}\text { state point } \\
T, \rho\end{array} & \begin{array}{l}\text { thermophysical } \\
\text { properties }\end{array} \\
\hline & & \begin{array}{l}\widehat{\gamma}^{*}=\gamma^{*} \\
\widehat{\mu}_{\text {JT }}^{*}=\mu_{\mathrm{JT}}^{*}\end{array}
$$

\& \& \widehat{w}^{*}=w_{0}^{*}\end{array}\right]\)| | $\widehat{T}_{v}^{*}=P^{*}$ |
| :--- | :--- |
| Plačkov and Sadus ${ }^{110}$ | $\widehat{T}^{*}=T^{*}$ |
| [PLACKOV] | $\widehat{\rho}^{*}=\rho^{*}$ |

Details on the assessment of homogeneous states data

Fig. S1 shows the results of the EOS test on the homogeneous state points as the percentage of the overall confirmed data as a function of the parameter $P_{\max }$. The chosen value of $P_{\max }=4$ is indicated, which entails approximately 90% confirmed data. For smaller $P_{\max }$ values, the EOS test becomes more stringent as more data points are characterized as outliers. For larger $P_{\max }$ values, the EOS test becomes more lenient (i.e. more conservative) and less data points are identified as outliers. Evidently, the EOS test converges for large $P_{\max }$ values to approximately $N_{\text {conf }}=98 \%$,
which means that these 2% of all homogeneous data are particularly gross outliers.

Details on the calculation of thermophysical properties by the Lustig-formalism

The Lustig formalism in combination with Widom's test particle insertion method, ${ }^{176}$ as implemented in the simulation package $m s 2,{ }^{177}$ provides the Helmholtz energy and its derivatives with respect to the density and the inverse temperature simultaneously from a single simulation run. The Helmholtz energy per particle $a=A / N$ is formally split into an ideal gas contribution (superscript o) and a residual contribution (superscript res), i.e. $a=a^{\circ}+a^{\text {res }}$. The following notation is used for the derivatives of the Helmholtz energy $\tilde{a}=a / T$ with respect to inverse temperature and density

$$
\begin{equation*}
\tilde{a}_{n m}=\tilde{a}_{\mathrm{nm}}^{\mathrm{o}}+\tilde{a}_{\mathrm{nm}}^{\mathrm{res}}=(1 / T)^{n} \rho^{m} \frac{\partial^{n+m}\left(\tilde{a}^{\mathrm{o}}+\tilde{a}^{\mathrm{res}}\right)}{\partial(1 / T)^{n} \partial \rho} \tag{1}
\end{equation*}
$$

where only $n, m=0,1,2$ and were considered here. The numerical values of the $\tilde{a}_{n m}$ obtained in the studies of Refs. ${ }^{90-92}$ and from this work are included in the database, as such are the primary simulation data. The relations used for the computation of thermodynamic properties from the sampled $\tilde{a}_{n m}$ values are as follows:
entropic properties

Gibbs energy

$$
\begin{equation*}
g=h-T s=T\left(1+\tilde{a}_{00}^{\mathrm{o}}+\tilde{a}_{00}^{\text {res }}+\tilde{a}_{01}^{\text {res }}\right) \tag{2}
\end{equation*}
$$

thermal properties
pressure

$$
\begin{equation*}
p=-\left(\frac{\partial a}{\partial v}\right)_{T}=\rho T\left(1+\tilde{a}_{01}^{\mathrm{res}}\right) \tag{3}
\end{equation*}
$$

thermal pressure coefficient $\quad \gamma=\left(\frac{\partial p}{\partial T}\right)_{\rho}=\rho\left(1+\tilde{a}_{01}^{\text {res }}-\tilde{a}_{11}^{\text {res }}\right)$
isothermal compressibility $\quad \beta=\left(\rho \frac{\partial p}{\partial \rho}\right)_{T}^{-1}=\frac{1}{\rho T\left(1+2 \tilde{a}_{01}^{\text {res }}+\tilde{a}_{02}^{\text {res }}\right)}$
thermal expansion coeffi- $\alpha=\beta \gamma=\frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho\left(\frac{\partial p}{\partial \rho}\right)_{T}}=\frac{1+\tilde{a}_{01}^{\text {res }}-\tilde{a}_{11}^{\text {res }}}{T\left(1+2 \tilde{a}_{01}^{\text {res }}+\tilde{a}_{02}^{\text {res }}\right)}$
cient
caloric properties
internal energy

$$
\begin{align*}
& u=a+T s=T\left(\tilde{a}_{10}^{0}+\tilde{a}_{10}^{\mathrm{res}}\right) \tag{7}\\
& u_{\mathrm{res}}=a_{\mathrm{res}}+T s_{\mathrm{res}}=T \tilde{a}_{10}^{\mathrm{res}} \tag{8}
\end{align*}
$$

enthalpy

$$
\begin{equation*}
h=u+p v=T\left(1+\tilde{a}_{10}^{\mathrm{o}}+\tilde{a}_{10}^{\text {res }}+\tilde{a}_{01}^{\text {res }}\right) \tag{9}
\end{equation*}
$$

isobaric heat capacity $\quad c_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}=-\left(\tilde{a}_{20}^{\mathrm{o}}+\tilde{a}_{20}^{\text {res }}\right)+\frac{\left(1+\tilde{a}_{00}^{\text {res }}-\tilde{a}_{01}^{\text {res }}\right)^{2}}{1+2 \tilde{a}_{01}^{\text {res }}+\tilde{a}_{02}^{\text {res }}}$
isochoric heat capacity $\quad c_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}=-\left(\tilde{a}_{20}^{\mathrm{o}}+\tilde{a}_{20}^{\text {res }}\right)$
speed of sound

$$
\begin{equation*}
w=\sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{s}}=\left(T\left(1+2 \tilde{a}_{01}^{\mathrm{res}}+\tilde{a}_{02}^{\mathrm{res}}\right)-\frac{\left(1+\tilde{a}_{01}^{\mathrm{res}}-\tilde{a}_{11}^{\mathrm{res}}\right)^{2}}{\tilde{a}_{20}^{0}+\tilde{a}_{20}^{\text {res }}}\right)^{0.5} \tag{12}
\end{equation*}
$$

Joule-Thomson coefficient $\quad \mu_{\mathrm{JT}}=\left(\frac{\partial T}{\partial p}\right)_{h}$

$$
=\rho^{-1} \frac{-\left(\tilde{a}_{01}^{\text {res }}+\tilde{a}_{02}^{\text {res }}+\tilde{a}_{11}^{\text {res }}\right)}{\left(1+\tilde{a}_{01}^{\text {res }}-\tilde{a}_{11}^{\text {res }}\right)^{2}-\left(\tilde{a}_{20}^{\mathrm{o}}+\tilde{a}_{20}^{\text {res }}\right)\left(1+2 \tilde{a}_{01}^{\text {res }}+\tilde{a}_{02}^{\text {res }}\right)}
$$

Grüneisen coefficient $\quad \Gamma=\frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}}{\rho c_{v}}=\frac{1+\tilde{a}_{01}^{\text {res }}-\tilde{a}_{11}^{\text {res }}}{-\tilde{a}_{20}^{o}-\tilde{a}_{20}^{\text {res }}}$

Details on the assessment of VLE bulk data

The results of the three VLE tests for all data sets (both confirmed and discarded) are shown in Figs. S2, S3, and S4 for the sake of completeness. Fig. S2 of the supplementary material shows the results of the compressibility factor test for all VLE data, Fig. S3 shows the results of the Clausius-Clapeyron test for all VLE data, and Fig. S4 shows the deviations from all VLE data and the base correlations (6)-(9).

Data sets that were discarded according the criteria for the compressibility factor test (cf. Fig. S2) outlined in the main part of this work are those from Adams, ${ }^{58}$ Adams, ${ }^{60}$ Anisimov
et al., ${ }^{115}$ Baidakov et al., ${ }^{117}$ Baidakov et al., ${ }^{129}$ Betancourt-Cárdenas et al., ${ }^{130}$ Kioupis et al., ${ }^{124}$ Martin and Siepmann, ${ }^{113}$ Panagiotopoulos, ${ }^{100}$ Panagiotopoulos et al., ${ }^{101}$ Smit and Frenkel, ${ }^{103}$ and Trokhymchuk and Alejandre. ${ }^{114}$

For the data sets from the literature that report all VLE properties required for the ClausiusClapeyron test, the RHS of Eq. (10) was computed and shown in Fig. S3 for comparison. Large deviations from the base correlation and the most precise data sets (Refs. ${ }^{23,71,135,136}$ and this work) were found for the data of Adams, ${ }^{58}$ Adams, ${ }^{60}$ Kioupis et al., ${ }^{124}$ Betancourt-Cárdenas et al., ${ }^{130}$ Panagiotopoulos, ${ }^{100}$ Panagiotopoulos et al., ${ }^{101}$ and Smit and Frenkel. ${ }^{103}$ According the criteria outlined in the main part of this work, these data sets were discarded.

Fig. S4 shows the deviation plots for each VLE property ($p^{s}, \rho^{\prime}, \rho^{\prime \prime}$, and Δh_{v}) for all VLE data sets considered in this work. The following data sets contain two or more data points with deviations larger than 5%, i.e. are out of the range of Fig. S4: Adams, ${ }^{58}$ Adams, ${ }^{60}$ Anisimov et al., ${ }^{115}$ Baidakov et al., ${ }^{117}$ Baidakov et al., ${ }^{129}$ Baidakov et al., ${ }^{123}$ Betancourt-Cárdenas et al., ${ }^{130}$ Guo et al.,,111 Guo and Lu, ${ }^{112}$ Galliero et al., ${ }^{132}$ Hunter and Reinhardt, ${ }^{107}$ Holcomb et al., ${ }^{105}$ Janeček, ${ }^{131}$ Kioupis et al., ${ }^{124}$ Kofke, ${ }^{104}$ Lee et al., ${ }^{98}$ Martin and Siepmann, ${ }^{113}$ Mecke et al., ${ }^{109}$ Okumura and Yonezawa, ${ }^{118,119}$ Panagiotopoulos, ${ }^{100}$ Panagiotopoulos et al., ${ }^{101}$ Potoff and Panagiotopoulos, ${ }^{197}$ Smit and Frenkel, ${ }^{103}$ and Trokhymchuk and Alejandre. ${ }^{114}$ These pronounced deviations were found in most cases for the vapor pressure and the saturated vapor density. Deviations of data points that exceed 5% in the saturated liquid density or the enthalpy of vaporization were only found for the data from Panagiotopoulos, ${ }^{100}$ Smit and Frenkel, ${ }^{103}$ Kofke, ${ }^{104}$ Kioupis et al., ${ }^{124}$ Hunter and Reinhardt, ${ }^{107}$ Mecke et al., ${ }^{109}$ and Lee et al. ${ }^{98}$ Data sets exhibiting particularly large deviations from Eqs. (6) - (9) at multiple state points are those from Anisimov et al., ${ }^{115}$ Baidakov et al., ${ }^{117}$ Baidakov et al., ${ }^{129}$ Galliero et al., ${ }^{132}$ Hunter and Reinhardt, ${ }^{107}$ Kioupis et al., ${ }^{124}$ Lee et al., ${ }^{98}$ Panagiotopoulos, ${ }^{100}$ and Trokhymchuk and Alejandre. ${ }^{114}$ To avoid visual clutter, these out-of-range data points are not shown in Fig. S4. This confirms the findings from the compressibility factor and the Clausius-Clapeyron tests where these data sets could be applied.

The data sets of Hunter and Reinhardt, ${ }^{107}$ Potoff and Panagiotopoulos, ${ }^{197}$ Shi and Johnson ${ }^{120}$ (only saturated densities reported) show small, but distinct systematic deviations to the base
correlation and the seven most precise data sets.

Details on the assessment of VLE interfacial data

Fig. S5 shows the surface tension of all considered data in this work. The surface tension results reported by Trokhymchuk and Alejandre ${ }^{114}$ and the MC results of Galliero et al. ${ }^{132}$ are slightly but noticeably below the mutually best agreeing data sets. The data of Anisimov et al. ${ }^{115}$ show large deviations, which is likely a result of the employed LJ potential version.

The surface tension data of Potoff and Panagiotopoulos ${ }^{116}$ shows distinct deviations from the above mentioned data of best mutual agreement - especially close to the critical point. The same was found for the saturated densities data of Potoff and Panagiotopoulos ${ }^{116}$. This is in line with the relatively low critical temperature reported by Ref.. ${ }^{116}$

Table S 4 summarizes the identified outliers in the data sets that were identified to be the best VLE data sets: Errington, ${ }^{126,127}$ Janeček et al., ${ }^{135,136}$ Lotfi et al., ${ }^{71}$ Mick et al., ${ }^{23}$ Okumura and Yonezawa, ${ }^{121,122}$ and this work.

Table S3 summarizes the results for the vapor-liquid equilibrium data obtained in this work using the Grand Equilibrium method ${ }^{179}$ as implemented in $m s 2 .{ }^{177}$

Table S3: Simulation results for the VLE data set obtained in this work. The columns are from left to right: vapor pressure, saturated liquid density, saturated vapor density, and the enthalpy of vaporization. The numbers in parentheses indicate the uncertainties of the last decimal digits.

T	p^{s}	ρ^{\prime}	$\rho^{\prime \prime}$	Δh_{v}
0.69	$0.001172(24)$	$0.847111(1)$	$0.001729(35)$	$6.766422(34)$
0.7	$0.001343(25)$	$0.8427(1)$	$0.001956(36)$	$6.762403(39)$
0.72	$0.001784(28)$	$0.834385(1)$	$0.002538(39)$	$6.652809(43)$
0.74	$0.002319(29)$	$0.825751(1)$	$0.003227(40)$	$6.641588(48)$
0.76	$0.002932(32)$	$0.817195(2)$	$0.003994(44)$	$6.528674(58)$
0.78	$0.003689(40)$	$0.8083(1)$	$0.004929(54)$	$6.513863(71)$
0.8	$0.004649(44)$	$0.799470(2)$	$0.006103(57)$	$6.395171(72)$
0.82	$0.005608(44)$	$0.7903(1)$	$0.007233(57)$	$6.278050(94)$
0.84	$0.006872(44)$	$0.7812(1)$	$0.008730(55)$	$6.25512(12)$
0.86	$0.008299(53)$	$0.7718(1)$	$0.010397(66)$	$6.13070(14)$
0.88	$0.009902(63)$	$0.7623(1)$	$0.012248(78)$	$6.10391(17)$
0.9	$0.011795(39)$	$0.7527(1)$	$0.014435(48)$	$5.97235(16)$
0.92	$0.013783(67)$	$0.7427(1)$	$0.016686(81)$	$5.84091(21)$
0.94	$0.016237(79)$	$0.7328(1)$	$0.01952(10)$	$5.80088(26)$
0.96	$0.018686(63)$	$0.7224(1)$	$0.02228(07)$	$5.66382(30)$
0.98	$0.021625(75)$	$0.7120(1)$	$0.02567(09)$	$5.51804(44)$
1	$0.024843(87)$	$0.7009(1)$	$0.02938(10)$	$5.46904(50)$
1.02	$0.02823(10)$	$0.6899(1)$	$0.03329(12)$	$5.31864(67)$
1.04	$0.03216(11)$	$0.6785(1)$	$0.03795(13)$	$5.15826(69)$
1.06	$0.03623(09)$	$0.6664(1)$	$0.04277(11)$	$4.9978(11)$
1.08	$0.04058(10)$	$0.6537(2)$	$0.04799(11)$	$4.8332(12)$

Continued on next page

T	p^{s}	ρ^{\prime}	$\rho^{\prime \prime}$	Δh_{v}
1.1	$0.04568(12)$	$0.6409(2)$	$0.05443(14)$	$4.7536(16)$
1.12	$0.05112(13)$	$0.6275(2)$	$0.06145(15)$	$4.5688(18)$
1.14	$0.05674(16)$	$0.6133(2)$	$0.06885(19)$	$4.3817(24)$
1.16	$0.06323(20)$	$0.5985(2)$	$0.07810(24)$	$4.1717(33)$
1.18	$0.06957(21)$	$0.5820(2)$	$0.08715(26)$	$3.9681(39)$
1.2	$0.07684(25)$	$0.5639(3)$	$0.09862(32)$	$3.7339(59)$
1.22	$0.08429(33)$	$0.5446(4)$	$0.11101(44)$	$3.3941(87)$
1.24	$0.09260(36)$	$0.5235(5)$	$0.12657(50)$	$3.122(11)$
1.26	$0.10129(44)$	$0.5007(5)$	$0.14451(62)$	$2.823(16)$
1.28	$0.11082(39)$	$0.4747(8)$	$0.17041(60)$	$2.350(21)$

Table S4: Identified outliers in the best VLE data sets: Errington, ${ }^{126,127}$ Janeček et al., ${ }^{135,136}$ Lotfi et al., ${ }^{71}$ Mick et al., ${ }^{23}$ Okumura and Yonezawa, ${ }^{121,122}$ and this work.

Reference	T	p^{s}	ρ^{\prime}	$\rho^{\prime \prime}$	Δh_{v}
Mick et al. 23	0.75	$0.0022(1)$	$0.8208(2)$	$0.0030(1)$	$6.595(3)$
	1.25	$0.0967(4)$	$0.514(2)$	$0.135(2)$	$3.30(3)$
this work $^{(\mathrm{a})}$	1.08	$0.040583(62)$	$0.65371(20)$	$0.047992(74)$	$4.8332(12)$
Lotfi et al. 71	0.7	$0.00131(6)$	$0.84266(18)$	$0.00193(10)$	$6.758(4)$
Errington 125	1.3	$0.1212(10)$	$0.4271(13)$	$0.2096(13)$	-
Errington 126,127	1.3	$0.1215841(996)$	$0.4442(51)$	$0.193072(5552)$	-
	1.25	$0.0975052(672)$	$0.5049(12)$	$0.143990(335)$	-

${ }^{(a)}$ data point is slightly off the statistical uncertainties regarding the self-consistency Clausius-Clapeyron test (see Fig. S3).

Figure S1: Percentage of overall confirmed data as a function of the parameter $P_{\max }$ for the homogeneous data EOS test. $N_{\text {conf }}$ is the confirmation rate of all homogeneous data. The dashed line indicates the value $P_{\max }=4$ chosen for the identification of outliers as they are specified in the database.

	correlation Eq. (6) \& (8)	\bigcirc	Hunter \& Reinhardt ${ }^{107}$	\triangle	Panagiotopoulos ${ }^{100}$
\square	Adams ${ }^{60}$	\triangle	Janecek ${ }^{131}$	∇	Panagiotopoulos et al. ${ }^{101}$
-	Adams ${ }^{58}$	\diamond	Janecek et al. ${ }^{135,136}$	∇	Plackov \& Sadus ${ }^{110}$
\triangle	Agrawal \& Kofke ${ }^{106}$	\triangleleft	Kioupis et al. ${ }^{124}$	\diamond	Sadus \& Prausnitz ${ }^{108}$
∇	Anisimov et al. ${ }^{115}$	-	Kofke ${ }^{104}$	-	Smit \& Frenkel ${ }^{103}$
\diamond	Baidakov et al. ${ }^{117}$	-	Lotfi et al. ${ }^{71}$	*	Stephan \& Hasse ${ }^{138}$
\triangleleft	Baidakov et al. ${ }^{129}$	\times	Martin \& Siepmann ${ }^{113}$	+	Stoll et al. ${ }^{128}$
\#	Betancourt-Cardenas et al. ${ }^{130}$	*	Martinez-Ruiz et al. ${ }^{134}$	-	this work
\times	Errington ${ }^{125}$	+	Mick et al. ${ }^{23}$	\times	Trokhymchuk \& Alejandre ${ }^{114}$
*	Errington ${ }^{126,127}$	-	Okumura \& Yonezawa ${ }^{118,119}$	*	Werth et al. ${ }^{137}$
-	Hansen \& Verlet ${ }^{20}$		Okumura \& Yonezawa ${ }^{121,122}$		

Figure S2: Compressibility factor test for the vapor-liquid equilibrium data of the Lennard-Jones fluid according to Nezbeda: ${ }^{213,214}$ saturated vapor phase compressibility factor $Z^{\prime \prime}$ as function of the temperature T (top) and the relative deviation of $Z^{\prime \prime}$ from correlations (6) and (8) (bottom). The dotted line indicates the range of 2.5 times the confidence interval of the most precise data, as discussed in the main part of this work. Error bars are omitted in the bottom plot to avoid visual clutter. For clarity, the out-of-range data points are omitted in both, the top and bottom plot. The black filled star indicates the compressibility factor at the critical point according the base correlation.

Figure S3: Clausius-Clapeyron test according to Eq. (10). Symbols indicate the RHS and the lines the LHS of Eq. (10). The orange line indicates Eq. (6). The purple line is Eq. (22) from Ref. ${ }^{71}$ For clarity, the numeric values of the out-of-range data points are omitted in the plot; they lie in the range of $\mathrm{d}\left(\ln p^{s}\right) / \mathrm{d}\left(T^{-1}\right)=-31$ to -0.8 .

-	Adams ${ }^{60}$
-	Adams ${ }^{58}$
\triangle	Agrawal \& Kofke ${ }^{106}$
∇	Anisimov et al. ${ }^{115}$
\bigcirc	Baidakov et al. ${ }^{117}$
\checkmark	Baidakov et al. ${ }^{129}$
-	Baidakov et al. ${ }^{123}$
*	Betancourt-Cárdenas et al. ${ }^{130}$
\triangle	Chapela et al. ${ }^{99}$
-	Chen et al. ${ }^{24}$
\times	Errington ${ }^{125}$
	Errington ${ }^{126,127}$
-	Galliero et al. ${ }^{132}$
	Guo et al. 111
	Guo \& Lu ${ }^{112}$

- Okumura \& Yonezawa ${ }^{118,119}$
- Okumura \& Yonezawa ${ }^{121,122}$
\triangle Panagiotopoulos ${ }^{100}$
Agrawal \& Kofke ${ }^{106}$
∇ Panagiotopoulos et al. ${ }^{101}$
∇ Plackov \& Sadus ${ }^{110}$
\diamond Potoff \& Panagiotopoulos ${ }^{116}$
Baidakov et al. ${ }^{123}$
\diamond Sadus \& Prausnitz ${ }^{108}$
* Betancourt-Cárdenas et al. ${ }^{130}$
\triangleleft Sadus ${ }^{133}$
Chapela et al. ${ }^{99}$
\triangleleft Shi \& Johnson ${ }^{120}$
Chen et al
- Smit \& Frenkel ${ }^{103}$
\times Errington ${ }^{125} \times$ Martin 25 Siepmann ${ }^{113}$
* Stephan \& Hasse ${ }^{138}$
* Errington ${ }^{122,127}$
+ Stoll et al. ${ }^{128}$
- Galliero et al. ${ }^{132}$
- this work
+ Guo et al. ${ }^{11}$
- Nijmeijer et al. ${ }^{102}$
\times Trokhymchuka \& Alejandre ${ }^{114}$
* Werth et al. ${ }^{137}$

Figure S4: Relative deviations of the vapor-liquid equilibrium data for the vapor pressure p^{s}, saturated liquid density ρ^{\prime}, saturated vapor density $\rho^{\prime \prime}$, and enthalpy of vaporization Δh_{v} from correlations (6) - (9) as a function of the temperature T. Error bars were omitted to avoid visual clutter. The dotted lines indicates the range of 2.5 times the confidence interval of the most precise data δx, as discussed in the main part of this work. Error bars are omitted in the plots to avoid visual clutter. For clarity, the out-of-range data points are omitted in the deviation plots.

Eq. (11)	
∇	Anisimov et al. ${ }^{115}$
\triangleleft	Baidakov et al. ${ }^{129}$
\diamond	Baidakov et al. ${ }^{117}$
\triangleright	Baidakov et al. ${ }^{123}$
-	Chen et al. ${ }^{24}$
\triangle	Chapela et al. ${ }^{99}$
\times	Errington ${ }^{125}$
\square	Galliero et al. ${ }^{132}$
\bigcirc	Guo and Lu ${ }^{112}$
+	Guo et al. ${ }^{111}$
\checkmark	Holcomb et al. ${ }^{105}$
∇	Janecek et al. ${ }^{135}$
\triangle	Janecek ${ }^{131}$
π	Lee et al. ${ }^{98}$

* Martínez-Ruiz et al. ${ }^{134}$
- Mecke et al. ${ }^{109}$
- Miyazaki et al. ${ }^{139}$
- Nijmeijer et al. ${ }^{102}$
\diamond Potoff \& Panagiotopoulos ${ }^{116}$
- Shen et al. ${ }^{141}$

4. Stephan \& Hasse ${ }^{138}$
\times Trokhymchuk \& Alejandre ${ }^{114}$

* Werth et al. ${ }^{137}$
- Werth et al. ${ }^{142}$

Figure S5: Surface tension of the LJ fluid as a function of the temperature (top) and the corresponding relative deviation plot (bottom). The black line indicates Eq. (11). Symbols indicate computer experiment data. For clarity, numerical values for out-of-range data points in the vicinity of the critical temperature in the deviation plot are omitted. The dotted lines indicates the range of 2.5 times the confidence interval of the most precise data as discussed in the main part of this work.

