Supporting Information Sandwich-nanostructured *n*-Cu₂O/AuAg/*p*-Cu₂O Photocathode with Highly Positive Onset Potential for Improved Water Reduction Yu-Chang Lin,† Liang-Ching Hsu,‡ Chia-Yu Lin,§ Chao-Lung Chiang,‡ Che-Min Chou,‡ Wen-Wei Wu,† San-Yuan Chen,*,†,¶ Yan-Gu Lin*,‡ [†]Department of Material Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan [‡]National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan §Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan KEYWORDS: solar water splitting; sandwich structure; copper(I) oxide; photocathode; localized surface-plasmon resonance. Corresponding Author: *E-mail: sanyuanchen@mail.nctu.edu.tw (Prof. San-Yuan Chen); *E-mail: lin.yg@nsrrc.org.tw (Dr. Yan-Gu Lin). **Figure S1.** (a) TEM, (b) STEM images of an as-prepared n-Cu₂O/AuAg/p-Cu₂O with the corresponding element mappings of (c) merge, (d) Cu, (e) O, (f) Au, and (g) Ag. **Figure S2**. (a) *n*-Cu₂O with LSV measured under chopped light (100 mW cm⁻²). The arrow shows the position where a transition from anodic photocurrent to cathodic photocurrent is observed. (b) Mott–Schottky plot of n-Cu₂O. A 0.5 M Na₂SO₄ solution was used as the electrolyte for these measurements. **Figure S3.** Photocatalytic activities of *p-n* homojunction with Au and Ag plasmonic NPs insertion under chopped AM 1.5 G illumination. **Figure S4.** (a) XRD data of *n*-Cu₂O/Au/*p*-Cu₂O photocathode. (b) A SEM image of a top view for Au NPs atop *p*-Cu₂O with the corresponding elemental mapping images of (c) O, (d) Cu, and (e) Au. **Figure S5.** (a) XRD data of n-Cu₂O/Ag/p-Cu₂O photocathode. (b) A SEM image of a top view for Ag NPs atop p-Cu₂O with the corresponding elemental mapping images of (c) O, (d) Cu, and (e) Ag. Figure S6. Pt/n-Cu₂O/p-Cu₂O with LSV measurement under chopped light illumination (100 mW/cm²). A 0.5 M Na₂SO₄ solution was used as the electrolyte for this measurement. Figure S7. (a) SEM image of Pt NPs deposited dispersedly atop the *n*-Cu₂O/*p*-Cu₂O. (b) XRD patterns of Pt/*n*-Cu₂O/*p*-Cu₂O photocathode. (c) TEM, (d) STEM images of Pt/*n*-Cu₂O/*p*-Cu₂O with the corresponding element mappings of (e) merge, (f) Cu, (g) O, and (h) Pt. **Figure S8.** Wavelength-dependent photocatalytic activity of *n*-Cu₂O/AuAg/*p*-Cu₂O and *n*- Cu₂O/p-Cu₂O photocathodes measured at applied bias of 0.7 V_{RHE}. **Figure S9.** (a) IPCE characteristics and (b) IPCE enhancement spectra of *n*-Cu₂O/Au/*p*-Cu₂O and *n*-Cu₂O/Ag/*p*-Cu₂O photocathodes measured at applied bias of 0.7 V_{RHE}. **Figure S10.** n-Cu₂O/AuAg/p-Cu₂O with LSV measurement under chopped light illumination (100 mW/cm²). A 0.5 M Na₂SO₄ solution was used as the electrolyte for this measurement. **Figure S11.** LSV measurement of the *n*-Cu₂O/AuAg/*p*-Cu₂O under consecutive light illumination (100 mW/cm²). A 0.5 M Na₂SO₄ solution was used as the electrolyte for this measurement. The amount of hydrogen generation was detected and quantified by headspace gas analysis with Agilent 7890A Series gas chromatography (GC) equipped with a 5 Å molecular sieve column (N₂ carrier gas at a flow rate of approximately 3 mL min⁻¹). The temperature in a GC oven was measured with a thermal conductivity detector that was kept at 40 °C. The electrochemical cell was purged with 2% CH₄ in N₂ for at least 30 min before PEC experiments; methane is used as an internal standard for H₂ quantification by gas chromatography (GC). A 2.7 mL aliquots of the headspace gas was removed from the air-light electrochemical cell for GC analysis after applying the charge of 0.05 C (at 0.0 V vs. RHE for three-electrode system).⁶⁰ **Figure S12.** Stability of n-Cu₂O/AuAg/p-Cu₂O was examined using a chronoamperometry technique at a constant potential (0 V_{RHE}) under chopped light illumination (100 mW/cm²) in a 0.5 M Na₂SO₄ electrolyte. **Figure S13.** The LSV measurements of p-Cu₂O and n-Cu₂O/p-Cu₂O in the presence of H₂O₂ sacrificial solution under chopped light (100 mW/cm²). Figure S14. Valence band XPS spectrum of (a) ρ -Cu₂O and (b) n-Cu₂O in the region of the valence band maximum. The binding energy scale is with respect to the Fermi level (E_{Fermi}). The valence band maximum occurs at the intersection of a line fit to the linear portion of the leading edge and the extended background line between the valence band maximum and the Fermi level. The work function of (c) ρ -Cu₂O, (d) AuAg, and (e) n-Cu₂O/AuAg/ ρ -Cu₂O electrodes measured from ultraviolet photoelectron spectrum (UPS). Table S1. Comparison of the reported photocathodes' onset potential. | I /-Cu ₂ O/AuAg/ p -Cu ₂ O 0.8 V_{RHE} This work Pt/ZnO/Al ₂ O ₃ /TiO ₂ /Cu ₂ O/Au $\sim 0.5 \text{ V}_{RHE}$ [08] Pt/TiO ₂ /ZnS/Cu ₂ O/Au 0.72 V_{RHE} [09] RuO _x /TiO ₂ /AZO/Cu ₂ O/Au 0.55 V_{RHE} [10] RuO ₂ /TiO ₂ /AZO/Cu ₂ O/Au 0.5 V_{RHE} [11] Pt/TiO ₂ /Ga ₂ O ₃ /Cu ₂ O 1.02 V_{RHE} [12] Pt/TiO ₂ /Ga ₂ O ₃ /Cu ₂ O 1.0 V_{RHE} [13] RuO _x /TiO ₂ /AZO/Cu ₂ O NWs 0.48 V_{RHE} [14] TiO ₂ /CuO/Cu ₂ O NWs $\sim 0.45 \text{ V}_{RHE}$ [37] (PEI/NiPOM) _n /Cu ₂ O/Au $\sim 0.5 \text{ V}_{RHE}$ [45] RuO _x /TiO ₂ /Ga ₂ O ₃ /Cu ₂ O NWs 1.0 V_{RHE} [51] Graphene/Cu ₂ O/Cu mesh $\sim 0.55 \text{ V}_{RHE}$ [55] Ni/CuO/Cu ₂ O bilayered composite $\sim 0.8 \text{ V}_{RHE}$ [57] Pt/Cu ₂ O/Au $\sim 0.6 \text{ V}_{RHE}$ [58] BFO/Au/Cu ₂ O 1.01 V_{RHE} [59] | Photocathode | Onset Potential | Ref. | |---|---|-------------------------|-----------| | Pt/TiO2/ZnS/Cu2O/Au 0.72 VRHE [09] RuOx/TiO2/AZO/Cu2O/Au 0.55 VRHE [10] RuO2/TiO2/AZO/Cu2O/Au 0.5 VRHE [11] Pt/TiO2/Ga2O3/Cu2O 1.02 VRHE [12] Pt/TiO2/Ga2O3/Cu2O 1.0 VRHE [13] RuOx/TiO2/AZO/Cu2O NWS 0.48 VRHE [14] TiO2/CuO/Cu2O NWS ~ 0.45 VRHE [16] ZnO/Cu2O/Ag ~ 0.4 VRHE [37] (PEI/NiPOM)n/Cu2O/Au ~ 0.5 VRHE [45] RuOx/TiO2/Ga2O3/Cu2O NWS 1.0 VRHE [51] Graphene/Cu2O/Cu mesh ~ 0.55 VRHE [55] Ni/CuO/Cu2O bilayered composite [57] Pt/Cu2O/Au ~ 0.6 VRHE [58] | <i>n</i> -Cu ₂ O/AuAg/ <i>p</i> -Cu ₂ O | 0.8 V _{RHE} | This work | | RuO _x /TiO ₂ /AZO/Cu ₂ O/Au 0.55 V _{RHE} [10] RuO ₂ /TiO ₂ /AZO/Cu ₂ O/Au 0.5 V _{RHE} [11] Pt/TiO ₂ /Ga ₂ O ₃ /Cu ₂ O 1.02 V _{RHE} [12] Pt/TiO ₂ /Ga ₂ O ₃ /Cu ₂ O 1.0 V _{RHE} [13] RuO _x /TiO ₂ /AZO/Cu ₂ O NWs 0.48 V _{RHE} [14] TiO ₂ /CuO/Cu ₂ O NWs ~ 0.45 V _{RHE} [16] ZnO/Cu ₂ O/Ag ~ 0.4 V _{RHE} [37] (PEI/NiPOM) _n /Cu ₂ O/Au ~ 0.5 V _{RHE} [45] RuO _x /TiO ₂ /Ga ₂ O ₃ /Cu ₂ O NWs 1.0 V _{RHE} [51] Graphene/Cu ₂ O/Cu mesh ~ 0.55 V _{RHE} [56] Ni/CuO/Cu ₂ O bilayered composite ~ 0.8 V _{RHE} [57] Pt/Cu ₂ O/Au ~ 0.6 V _{RHE} [58] | Pt/ZnO/Al ₂ O ₃ /TiO ₂ /Cu ₂ O/Au | ~ 0.5 V _{RHE} | [80] | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Pt/TiO ₂ /ZnS/Cu ₂ O/Au | 0.72 V _{RHE} | [09] | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | RuO _x /TiO ₂ /AZO/Cu ₂ O/Au | 0.55 V _{RHE} | [10] | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | RuO ₂ /TiO ₂ /AZO/Cu ₂ O/Au | 0.5 V _{RHE} | [11] | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Pt/TiO ₂ /Ga ₂ O ₃ /Cu ₂ O | 1.02 V _{RHE} | [12] | | | Pt/TiO ₂ /Ga ₂ O ₃ /Cu ₂ O | 1.0 V _{RHE} | [13] | | | RuO _x /TiO ₂ /AZO/Cu ₂ O NWs | 0.48 V _{RHE} | [14] | | $ (PEI/NiPOM)_{n}/Cu_{2}O/Au $ | TiO ₂ /CuO/Cu ₂ O NWs | ~ 0.45 V _{RHE} | [16] | | $RuO_x/TiO_2/Ga_2O_3/Cu_2O \ NWs \qquad 1.0 \ V_{RHE} \qquad [51]$ $Graphene/Cu_2O/Cu \ mesh \qquad \sim 0.55 \ V_{RHE} \qquad [55]$ $Ni/CuO/Cu_2O \qquad \qquad \sim 0.55 \ V_{RHE} \qquad [56]$ $CuO/Cu_2O \qquad \qquad bilayered \ composite \qquad \sim 0.8 \ V_{RHE} \qquad [57]$ $Pt/Cu_2O/Au \qquad \qquad \sim 0.6 \ V_{RHE} \qquad [58]$ | ZnO/Cu ₂ O/Ag | ~ 0.4 V _{RHE} | [37] | | | (PEI/NiPOM) _n /Cu ₂ O/Au | ~ 0.5 V _{RHE} | [45] | | Ni/CuO/Cu ₂ O $\sim 0.55 V_{RHE}$ [56] CuO/Cu ₂ O bilayered $\sim 0.8 V_{RHE}$ [57] Pt/Cu ₂ O/Au $\sim 0.6 V_{RHE}$ [58] | RuO _x /TiO ₂ /Ga ₂ O ₃ /Cu ₂ O NWs | 1.0 V _{RHE} | [51] | | $\begin{array}{ccc} \text{CuO/Cu}_2\text{O} & \text{bilayered} \\ \text{composite} & \sim 0.8 \text{ V}_{\text{RHE}} & [57] \\ \\ \text{Pt/Cu}_2\text{O/Au} & \sim 0.6 \text{ V}_{\text{RHE}} & [58] \\ \end{array}$ | Graphene/Cu ₂ O/Cu mesh | ~ 0.55 V _{RHE} | [55] | | composite $ \sim 0.8 \text{ V}_{\text{RHE}} $ [57] $ \sim 0.6 \text{ V}_{\text{RHE}} $ [58] | Ni/CuO/Cu ₂ O | ~ 0.55 V _{RHE} | [56] | | | - | ~ 0.8 V _{RHE} | [57] | | BFO/Au/Cu ₂ O 1.01 V _{RHE} [59] | Pt/Cu ₂ O/Au | ~ 0.6 V _{RHE} | [58] | | | BFO/Au/Cu ₂ O | 1.01 V _{RHE} | [59] |