Supplementary Information for Replacing Cu(II)Br₂ with Me₆-TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect

Xiaojing Feng,^{†, ‡} Devendra S. Maurya,[†] Nabil Bensabeh,[§] Adrian Moreno,^{§,†} Takahiro Oh,^{†,}∥

Yuqing Luo,[†] Jānis Lejnieks,[†] Marina Galià,[§] Yoshiko Miura,^{II}

Michael J. Monteiro,¹ Gerard Lligadas,^{§,†} and Virgil Percec^{*,†}

[†]Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States

[‡]School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China

[§]Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain

Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan

¹Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

Table of Contents

1.	Kinetic Plots, Molecular Weight and Polydispersity Evolution for the SET-LRP of MA	S2
	Figure S1	S2
	Figure S2	S3
	Figure S3	S4
	Figure S4	S5
	Figure S5	S6
	Figure S6	S7
2.	Digital Images of Control Experiments	S8
	Figure S7	S8
3.	¹ H NMR and MALDI-TOF MS of PMA after SET-LRP	S9
	Figure S8	S9
	Figure S9	S10
	Figure S10	S11
	Figure S11	S12
	Figure S12	S13
	Figure S13	S14
	Figure S14	S15
	Figure S15	S16
	Figure S16	S17
	Figure S17	S18
	Figure S18	S19
	Figure S19	S20
	Figure S20	S21
4.	Summary of SET-LRP of MA	S22
	Table S1	S22
	Table S2	S23
	Table S3	S23

1. Kinetic Plots, Molecular Weight and Polydispersity Evolution for the SET-LRP of MA

Figure S1. Evolution of M_w/M_n and I_{eff} for the SET-LRP of MA initiated with BPE in various "programmed" biphasic reaction mixtures at 25 °C. (a) NMP/water mixture (8/2, v/v) using 9.0 cm nonactivated Cu(0) wire as catalyst. (b) DMF/water mixture (8/2, v/v) using 9.0 cm of nonactivated Cu(0) wire as catalyst. (c) DMF/water mixture (8/2, v/v) using 4.0 cm of nonactivated Cu(0) wire as catalyst. (d) DMF/water mixture (8/2, v/v) using 12.5 cm of nonactivated Cu(0) wire as catalyst. (e) DMAc/water mixture (8/2, v/v) using 9.0 cm of nonactivated Cu(0) wire as catalyst. (e) DMAc/water mixture (8/2, v/v) using 9.0 cm of nonactivated Cu(0) wire as catalyst. (e) DMAc/water mixture (8/2, v/v) using 9.0 cm of nonactivated Cu(0) wire as catalyst. Reaction conditions: MA = 1 mL, organic solvent = 0.4 mL, water = 0.1 mL, and [MA]₀/[BPE]₀/[L]₀ = 222/1/0.1.

Figure S2. Kinetic plots, molecular weight and polydispersity evolution for the SET-LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by 9.0 cm nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from different kinetics experiments sometimes performed by different researches. k_p^{app} and I_{eff} are the average values of three experiments. Reaction conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 mL, [MA]_0/[BPE]_0/[L]_0 = 222/1/0.1.

Figure S3. Kinetic plots, molecular weight and polydispersity evolution for the SET-LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by 4.0 cm nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from different kinetics experiments sometimes performed by different researches. k_p^{app} and I_{eff} are the average values of three experiments. Reaction conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 mL, [MA]_0/[BPE]_0/[L]_0 = 222/1/0.1.

Figure S4. Kinetic plots, molecular weight, polydispersity evolution and representative GPC traces of the evolution of molecular weight as a function of conversion for the SET-LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by 12.5 cm nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from different kinetics experiments sometimes performed by different researches. k_p^{app} and I_{eff} are the average values of three experiments. Reaction conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 mL, [MA]_0/[BPE]_0/[L]_0 = 222/1/0.1.

Figure S5. Kinetic plots, molecular weight and polydispersity evolution for the SET-LRP of MA in DMF/water mixture (8/2, v/v) initiated with BPE and catalyzed by the 12.5 cm nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from different kinetics experiments sometimes performed by different researches. k_p^{app} and I_{eff} are the average values of three experiments. Reaction conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 mL, [MA]_0/[BPE]_0/[L]_0 = 222/1/0.075 (panels a,d), [MA]_0/[BPE]_0/[L]_0 = 222/1/0.05 (panels b,e), [MA]_0/[BPE]_0/[L]_0 = 222/1/0.025 (panels c,f).

Figure S6. Kinetic plots, molecular weight, polydispersity evolution and representative GPC traces of the evolution of molecular weight as a function of conversion for the SET-LRP of MA in DMAc/water mixture (8/2, v/v) initiated with BPE and catalyzed by 9.0 cm nonactivated Cu(0) wire at 25 °C. Experimental data in different colors were obtained from different kinetics experiments sometimes performed by different researches. k_p^{app} and I_{eff} are the average values of three experiments. Reaction conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 mL, [MA]_0/[BPE]_0/[L]_0 = 222/1/0.1.

2. Digital Images of Control Experiments

Figure S7. Visualization of the reaction mixture for the control experiments performed under the conditions placed at the top of each series of experiments. EA is the short name used for ethyl acetate employed to mimic an inert compound resembling methyl acrylate (MA).

3. ¹H NMR and MALDI-TOF MS of PMA after SET-LRP

Figure S8. ¹H NMR spectra at 400 MHz of α,ω -di(phenylthio)PMA at (a) 93% monomer conversion $(M_n = 7,420 \text{ and } M_w/M_n = 1.15)$ ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1); (b) 91% monomer conversion $(M_n = 8,260 \text{ and } M_w/M_n = 1.17)$ ([MA]₀/[BPE]₀/[Me₆-TREN]₀/[TREN]₀ = 60/1/0.05/0.05); (c) 94% monomer conversion $(M_n = 6,090 \text{ and } M_w/M_n = 1.34)$ ([MA]₀/[BPE]₀/[TREN]₀ = 60/1/0.1). Polymerization conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 ml using 12.5 cm of nonactivated Cu(0) wire 20-gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl₃ and dichloromethane, respectively.

Figure S9. MALDI-TOF of α, ω -di(bromo)PMA isolated at 93% monomer convesion from SET-LRP of MA in DMF/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 mL using 12.5 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

Figure S10. MALDI-TOF of α,ω -di(bromo)PMA isolated at 94% monomer conversion from SET-LRP of MA in DMF/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, DMF = 0.4 mL, water = 0.1 ml using 12.5 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[TREN]₀ = 60/1/0.1). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

Figure S11. ¹H NMR spectra at 400 MHz of α,ω -di(bromo)PMA at (a) 98% monomer conversion ($M_n = 6,850$ and $M_w/M_n = 1.17$) ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1); (b) 98% monomer conversion ($M_n = 4,750$ and $M_w/M_n = 1.25$) ([MA]₀/[BPE]₀/[Me₆-TREN]₀/[TREN]₀ = 60/1/0.05/0.05); (c) 99% monomer conversion ($M_n = 6,470$ and $M_w/M_n = 1.33$) ([MA]₀/[BPE]₀/[TREN]₀ = 60/1/0.1). Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-

gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl₃ and dichloromethane, respectively.

Figure S12. ¹H NMR spectra at 400 MHz of α, ω -di(phenylthio)PMA at (a) 98% monomer conversion $(M_n = 7,340 \text{ and } M_w/M_n = 1.17)$ ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1); (b) 98% monomer conversion $(M_n = 5,890 \text{ and } M_w/M_n = 1.29)$ ([MA]₀/[BPE]₀/[Me₆-TREN]₀/[TREN]₀ = 60/1/0.05/0.05); (c) 99% monomer conversion $(M_n = 7,400 \text{ and } M_w/M_n = 1.35)$ ([MA]₀/[BPE]₀/[TREN]₀ = 60/1/0.1). Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl₃ and dichloromethane, respectively.

Figure S13. MALDI-TOF of α,ω -di(bromo)PMA isolated at 98% monomer conversion from SET-LRP of MA in NMP/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

Figure S14. MALDI-TOF of α,ω -di(bromo)PMA isolated at 98% monomer conversion from SET-LRP of MA in NMP/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[Me₆-TREN]₀/[TREN]₀ = 60/1/0.05/0.05). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

Figure S15. MALDI-TOF of α, ω -di(bromo)PMA isolated at 99% monomer conversion from SET-LRP of MA in NMP/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, NMP = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[TREN]₀ = 60/1/0.1). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

Figure S16. ¹H NMR spectra at 400 MHz of α,ω -di(bromo)PMA at (a) 96% monomer conversion ($M_n = 6,280$ and $M_w/M_n = 1.16$) ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1); (b) 98% monomer conversion ($M_n = 6,150$ and $M_w/M_n = 1.29$) ([MA]₀/[BPE]₀/[Me₆-TREN]₀/[TREN]₀ = 60/1/0.05/0.05); (c) 83% monomer conversion ($M_n = 4,870$ and $M_w/M_n = 1.95$) ([MA]₀/[BPE]₀/[TREN]₀ = 60/1/0.1). Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl₃ and dichloromethane, respectively.

Figure S17. ¹H NMR spectra at 400 MHz of α,ω -di(phenylthio)PMA at (a) 96% monomer conversion $(M_n = 6,460 \text{ and } M_w/M_n = 1.17) ([MA]_0/[BPE]_0/[Me_6-TREN]_0 = 60/1/0.1)$; (b) 98% monomer conversion $(M_n = 6,560 \text{ and } M_w/M_n = 1.30) ([MA]_0/[BPE]_0/[Me_6-TREN]_0/[TREN]_0 = 60/1/0.05/0.05)$; (c) 83% monomer conversion $(M_n = 7,380 \text{ and } M_w/M_n = 1.69) ([MA]_0/[BPE]_0/[TREN]_0 = 60/1/0.1)$. Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire. The signals at 7.26 ppm and 5.30 ppm are due to partially nondeuterated residue of CDCl₃ and dichloromethane, respectively.

Figure S18. MALDI-TOF of α,ω -di(bromo)PMA isolated at 96% monomer conversion from SET-LRP of MA in DMAc/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

Figure S19. MALDI-TOF of α,ω -di(bromo)PMA isolated at 96% monomer conversion from SET-LRP of MA in DMAc/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[Me₆-TREN]₀/[TREN]₀ = 60/1/0.05/0.05). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

Figure S20. MALDI-TOF of α,ω -di(bromo)PMA isolated at 83% monomer conversion from SET-LRP of MA in DMAc/water (8/2, v/v) mixture initiated with BPE and catalyzed by nonactivated Cu(0) wire at 25 °C: (a) before and (b) after "thio-bromo "click". Polymerization conditions: MA = 1 mL, DMAc = 0.4 mL, water = 0.1 ml using 9.0 cm of nonactivated Cu(0) wire 20-gauge wire ([MA]₀/[BPE]₀/[Me₆-TREN]₀ = 60/1/0.1). The dotted line in expansion after thioetherification shows the original peak from before thioetherification, while 58 represents the increase in molar mass after thioetherification i.e., 2x[SPh (109. 2) - Br (79.9)] = 58.57 for each chain end.

4. Summary of SET-LRP of MA

	Wire		1, app	l_r app /		
entry	length	Reaction conditions	(\min^{-1})	$k_{\rm p}^{\rm app}$ (TREN)	$M_w/M_{ m n}$	$I_{\rm eff}(\%)$
	(cm)			P		
1	12.5	[MA]/[BPE]/[Me ₆ -1REN] 222/1/0 1	0.079	1.4	1.12	79
		[MA]/[BPF]/[Me]				
2	12.5	TRFN]/[TRFN]	0.086	15	1 14	78
2	12.5	222/1/0 075/0 025	0.000	1.0	1.1.1	70
		$[MA]/[BPE]/[Me_{e}-$				
3	12.5	TREN]/[TREN]	0.095	1.6	1.21	78
_		222/1/0.05/0.05		-		
		[MA]/[BPE]/[Me ₆ -				
4	12.5	TREN]/[TREN]	0.084	1.4	1.23	80
		222/1/0.025/0.075				
5	10.5	[[MA]/[BPE]/[TREN]	0.059	1.0	1.26	70
5	12.5	222/1/0.1	0.038	1.0	1.50	19
6	9.0	[MA]/[BPE]/[Me ₆ -TREN]	0.055	1.0	1 09	76
0	2.0	222/1/0.1	0.055	1.0	1.09	70
	9.0	[MA]/[BPE]/[Me ₆ -	0.057		1.08	82
7		TREN]/[TREN]		1.0		
,		222/1/0.075/0.025				
	9.0	[MA]/[BPE]/[Me ₆ -	0.082		1.09	87
8		TREN]/[TREN]		1.5		
-		222/1/0.05/0.05				
	0.0	[MA]/[BPE]/[Me ₆ -	0.063	1 1	1 1 2	78
9	9.0	I KENJ/[I KEN]		1.1	1.13	
		222/1/0.023/0.073				
10	9.0	$\frac{[[MA]/[DFE]/[IKEN]}{222/1/0.1}$	0.055	1.0	1.25	66
10		$M\Delta 1/[BPF1/[Me_TRFN]]$				
11	4.0	222/1/0 1	0.038	1.1	1.14	81
11		[MA]/[BPE]/[Me ₆ -				
10	4.0	TREN]/[TREN]	0.044	1.3	1.14	82
12		222/1/0.075/0.025				
	4.0	[MA]/[BPE]/[Me ₆ -	0.051		1.16	86
12		TREN]/[TREN]		1.4		
15		222/1/0.05/0.05				
		[MA]/[BPE]/[Me ₆ -				
14	4.0	TREN]/[TREN]	0.048	1.4	1.28	66
17		222/1/0.025/0.075				
	4.0	[[MA]/[BPE]/[TREN]	0.035	1.0	1 40	51
15	ч. 0	222/1/0.1	0.055	1.0	1.40	51

Table S1. Dependence of k_p^{app} on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated with BPE in DMF/water(8/2,v/v) at 25 °C^{*a*}

^aReaction conditions: monomer = 1 mL; solvent + water = 0.5 mL. The v/v ratio must be multiplied by 10 to obtain % solvent/% water. The value of v + v must be divided by 20 to obtain the total volume of solvents, 0.5 mL.

entry	Wire length (cm) 20G	Reaction conditions	k_{p}^{app} (min ⁻¹)	$k_{ m p}^{ m app}/k_{ m p}^{ m app}({ m TREN})$	M_w/M_n	$I_{\rm eff}(\%)$
1	9.0	[MA]/[BPE]/[Me ₆ -TREN] 222/1/0.1	0.068	1.1	1.08	75
2	9.0	[MA]/[BPE]/[Me6- TREN]/[TREN] 222/1/0.075/0.025	0.078	1.3	1.15	87
3	9.0	[MA]/[BPE]/[Me ₆ - TREN]/[TREN] 222/1/0.05/0.05	0.080	1.3	1.18	85
4	9.0	[MA]/[BPE]/[Me ₆ - TREN]/[TREN] 222/1/0.025/0.075	0.076	1.3	1.21	96
5	9.0	[[MA]/[BPE]/[TREN] 222/1/0.1	0.060	1.0	1.42	77

Table S2. Dependence of k_p^{app} on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated with BPE in NMP/water(8/2,v/v) at 25 °C^{*a*}

^aReaction conditions: monomer = 1 mL; solvent + water = 0.5 mL. The v/v ratio must be multiplied by 10 to obtain % solvent/% water. The value of v + v must be divided by 20 to obtain the total volume of solvents, 0.5 mL.

Table S3. Dependence of <i>k</i> p ^{app} on the Dimension of the Cu(0) Wire in the SET-LRP of MA Initiated with	h
BPE in DMAc/water(8/2,v/v) at 25 °C ^a	

entry	Wire length (cm)	Reaction conditions	$k_{ m p}^{ m app}$ (min ⁻¹)	$k_{\rm p}^{\rm app}/k_{\rm p}^{\rm app}({ m TREN})$	M_w/M_n	$I_{ ext{eff}}(\%)$
1	9.0	[MA]/[BPE]/[Me ₆ -TREN] 222/1/0.1	0.076	1.1	1.11	78
2	9.0	[MA]/[BPE]/[Me ₆ - TREN]/[TREN] 222/1/0.075/0.025	0.077	1.1	1.16	83
3	9.0	[MA]/[BPE]/[Me ₆ - TREN]/[TREN] 222/1/0.05/0.05	0.091	1.3	1.29	87
4	9.0	[MA]/[BPE]/[Me ₆ - TREN]/[TREN] 222/1/0.025/0.075	0.075	1.0	1.36	87
5	9.0	[[MA]/[BPE]/[TREN] 222/1/0.1	0.071	1.0	2.14	60

^aReaction conditions: monomer = 1 mL; solvent + water = 0.5 mL. The v/v ratio must be multiplied by 10 to obtain % solvent/% water. The value of v + v must be divided by 20 to obtain the total volume of solvents, 0.5 mL.