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Figure S1(A) and (B) show the extinction spectra of Ag seeds and Ag NPs in the range of 300 nm
to 800 nm respectively. One clearly observed that the extinctive peak was red shifted from 412.5 nm
(A) to 477.5 nm (B), and the FHHM (full-width of half maximum) of Ag seeds was broadened of 15
nm due to the enlarged diameter of Ag NPs, accordingly. Inset SEM images displayed the size
distributes and morphology of these two NPs: both displayed quasi-spherical shape, with the size
increased from 5045.3 nm (seeds) to 100+8.8 nm (Ag NPs) averaged from 100 nanoparticles.
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Figure S1. Extinction spectra of the Ag NPs. (A) Ag seeds, and (B) grown Ag NPs.
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Figure S2. Concentration dependent SERS spectra of SB by using 1 M NaCl as aggregating agent.
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Figure S3 (A)-(C) show the effects from concentrations of KI and Ag NPs and aggregation time
for SERS signal by using 1.0x10? pg/L SB as target. The concentration of KI was varied from 0.1 M
to 3 M, the results (A) show the SERS intensity increased with concentration increasing between 0.1-
1.0 M. Then the signal decreased because of large aggregates produced by too fast aggregation. For
Ag NPs (B), with the increasing of Ag NPs, the SERS intensity increased slowly and then decreased.
At the low concentration of Ag NPs, increasing the number of nanoparticles can improve amount of
absorbed molecules, which induced enhancement of SERS signal. After particles reached a high
concentration, total molecules absorbed on each Ag NPs began to decrease, which weakened the signal.
In addition, a large number of nanoparticles aggravated the absorption and scattering of incident light.
Therefore, Ag NPs with concentration of 1.5x10® mol/L were used. The result of aggregating time (C)

indicated the SERS signal decreased slowly after mixing. Therefore, the sample should be detected
immediately after mixture.
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Figure S3. Optimization of detection conditions by using 1.0x10% ug/L SB. (A) SERS intensity of the
693 cm™ peak with different concentrations of KI, (B) SERS intensity of the 693 cm™ peak with

different concentrations of Ag NPs, and (C) SERS intensity of the 693 cm™ peak with different
aggregating time.
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Figure S4. Raman spectra of TAs. (A) SH, (B) MB, (C) SB, and (D) Mixture. (a) SERS of spectra of

Raman shift (cm
aqueous solution, (b) solid normal Raman spectra, and (c) calculated Raman spectra.
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Figure S5. SERS intensity of the 693 cm™ peak with different concentrations. (A) SH, (B) MB, and

(C) SB.
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Figure S6. SERS spectra of SH. (A) Sprite spiked with different concentrations of SH, and (B) Sprite

Spiked at 1.0x10° pg/L was diluted to different times by ultrapure water.
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Figure S7. SERS spectra of MB. (A) Sprite spiked with different concentrations of MB, and (B) Sprite
Spiked at 1.0x10° pug/L was diluted to different times by ultrapure water.
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Figure S8. SERS spectra of SB. (A) Sprite spiked with different concentrations of SB, and (B) Sprite
Spiked at 1.0x10° pug/L was diluted to different times by ultrapure water.
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Figure S9. Sprite Spiked at 1.0x10? pg/L was diluted to different times by ultrapure water. (A) SH, (B)
MB, and (C) SB.
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Figure S10. SERS spectra of SB in Minute Maid Spiked at 1.0x10° pg/L.
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Figure S11. SERS spectra of TAs in Spiked Minute Maid. (A) 1.0x10* ug/L SH, and (B) 1.0x10° pg/L
MB.
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Figure S12. SERS spectra of 2.0x10* ng/L SH in spiked foods. (A) Cauliflower roast pork, and (B)

Pumpkin Spiked.
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Figure S13. SERS spectra of 2.0x10* ug/L MB in spiked foods. (A) Cauliflower roast pork, and (B)

Pumpkin Spiked.
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Table S1 Experimental and calculated vibrational frequencies (cm™) and assignment for TAs

mode
) w;(cm™) 2 (cm™) ;3 (cm™)
Species
Expt 1000 752 1203
Theory 998 780 1192
R-H (SH . . o The deformation
(SH) i The trigonal deformation | The wagging vibration of L
Assignment ) vibration of —-CH,
of the phenyl ring —CH, around N atom
around N atom
Expt 998 700 1249
Theory 996 696 1230
The wagging vibration of .
R-CH3(MB) . . The deformation
) The trigonal deformation | ~CH, around N atom, the o
Assignment ) ) vibration of —-CH,
of the phenyl ring out-of-plane bending of
. . around N atom
CH in the phenyl ring
Expt 1000 698 1249
Theory 998 696 1217, 1249
R-C4Hy (SB Th i
+Hs (SB) . The trigonal deformation | The out-of-plane bending . ef Wagsing .
Assignment . . . vibration of CH in
of the phenyl ring of CH in the phenyl ring
the epoxy group
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Table S2. Recovery of TAs in Spiked Samples.

. o SH MB SB
Spiked Samples Dilution -
Calculated Concentration (pg/L) /Recovery (%)/RSD (%) (n=3)
Sprite 1 5.6 056 1.4 2.4 0.24 43 2.4 0.24 3.1
(spiked 1.0x10° 1/10 114.1 1141 26 156.4 1563 0.7 2213 22,13 2.1
ug/L) 1/10° 466.6 46.66 5.3 2226 2226 23 300.1  30.01 1.0
Minute Maid 1 34 0.03 8.6 04 0.04 2.6 0.4 0.04 3.7
(spiked 1.0x10° 1/10 34.8 035 73 4.2 042 103 42 0.42 55
/L, but 1.0x10*
HE 1/10? 356.3 3.56 43 44.6 4.46 4.8 52.7 5.27 6.8
ug/L for SH)
. 1 3.7 0.07 2.6 1.0 0.02 2.1 1.0 0.02 2.6
Cauliflower roast
" 1/10 42.1 0.84 8.5 14.9 0.30 5.7 9.8 0.20 6.5
b /10> 4061 812 46 1603 321 103 1012 202 58
(spiked 20.0 mg/kg) 3
1/10 ND ND ND 1072.5 21.45 6.8 1016.4  20.33 8.7
1 3.7 0.07 6.3 0.9 0.02 3.6 1.0 0.02 3.6
Pumpkin 1/10 40.6 0.81 8.7 9.3 0.19 8.9 9.9 0.20 5.8
(spiked 200 mgkg) 110> ND ND ND 919 184 46 1006 201 97
1/10° ND ND ND 911.7 18.23 7.3 1011.3  20.23 10.6

ND=Not detected.
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Table S3. Recovery of TAs in Sprite spiked at 1.0x10% ug/L.

o SH MB SB
Dilution .
Calculated Concentration (pg/L) /Recovery (%)/RSD (%) (n=3)
1 4.1 4.12 2.3 1.1 1.11 2.3 1.4 1.36 2.2
Sprite 1/10 382 3824 54 17.3 17.33 33 36.7 36.72 6.8
1/10° ND ND ND 87.9 87.95 1.8 83.6 83.62 4.6

ND=Not detected.
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