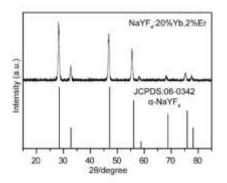
Supporting Information


Tuning upconversion efficiency and spectrum of upconversion nanoparticles through surface decorating of organic dye

Meng Xue^a, Cong Cao^{a,b}, Xiaobo Zhou^a, Ming Xu^a, Wei Feng^{a*}, Fuyou Li^{a*}

^aDepartment of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China.

^bDepartment of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China

E-mail: fengweifd@fudan.edu.cn and fyli@fudan.edu.cn

Figure S1: X-ray diffraction (XRD) pattern of NaYF₄:20%Yb,2%Er nanoparticles and the standard of cubic phase NaYF₄ (JCPDS card No. 06-0342).

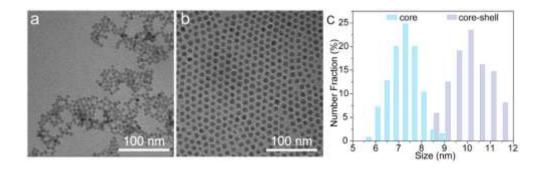


Figure S2: (a) Low-resolution TEM image of NaYF₄:20%Yb,2%Er NPs. (b) Low-resolution TEM image of NaYF₄:20%Yb,2%Er@CaF₂(1:2) NPs. (c) Particle size distribution of core NaYF₄:20%Yb,2%Er NPs and core-shell NaYF₄:20%Yb,2%Er@CaF₂(1:2) NPs. These data were obtained from the TEM images with more than 100 nanoparticles.

Figure S3: (a) Upconversion luminescence spectrum of NaYF₄:20%Yb,2%Er@CaF₂(1:2) with (orange dash line) and without (green solid line) Cy3-SO₃ in DMSO excited by a 980 nm laser. (b) Fluorescence (blue solid line, Ex: 488 nm) and absorption (purple dash line) spectrum of Cy3-SO₃ in DMSO.

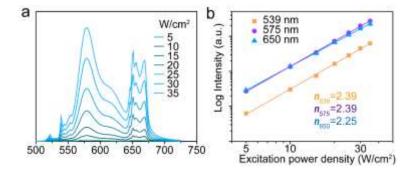
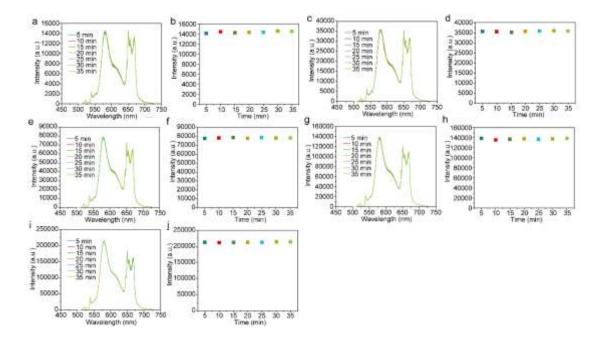
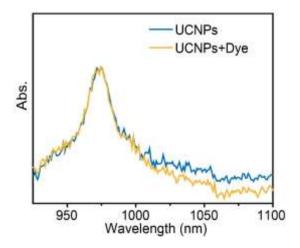
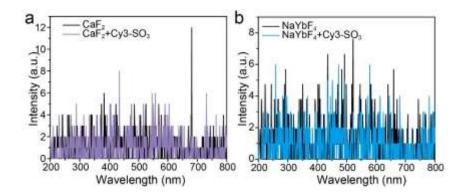

We measured the upconversion luminescence spectrum of NaYF4:20%Yb,2%Er@CaF2(1:2) NPs with Cy3-SO3 with different power density (Figure S4a) and converted the luminescence spectrum into CIE 1931 color coordinates (Table S1). The luminescence color changed with different pump power density.

Table S1: The luminescence color coordinates of NaYF₄:20%Yb,2%Er@CaF₂(1:2) NPs with different pump power density of the 980 nm laser.


	CIE x	CIE y
5 W/cm ²	0.5513	0.447
10 W/cm ²	0.5514	0.447
15 W/cm ²	0.5505	0.4478
20 W/cm ²	0.5503	0.448
25 W/cm ²	0.5491	0.4491
30 W/cm ²	0.5487	0.4495
35 W/cm ²	0.5481	0.4502

The dependence of the visible fluorescence intensity on the pump-laser power was calculated as shown in **Figure S4b**. In principle, the UCL emission intensity, I_{em} , is proportional to the power *n* of the near-infrared (NIR) exciting pump power. We found


that the n value of 539 and 575 nm is larger than that of 650 nm, which means the change tendency of emission intensity at 539, 575 and 650 nm with the exciting pump power are different. Because Cy3-SO₃ received energy from Er^{3+} ions (²H_{11/2} and ⁴S_{3/2}), the change tendency of emission at 575 nm (Cy3-SO₃) is the same with 539 nm (Er^{3+} ions). And the emission intensity at 539 nm increased more than 650 nm. So the color of the UCNPs-Cy3-SO₃ system will changed with the power density.


Figure S4: (a) Upconversion luminescence spectrum of 6.67 mM NaYF₄:20%Yb,2%Er@CaF₂(1:2) NPs with 5.33 μ M Cy3-SO₃ in DMSO excited with different power density. (b) Log-log plots of luminescence emission of NaYF₄:20%Yb,2%Er@CaF₂(1:2) as a function of pump power of the 980 nm laser.

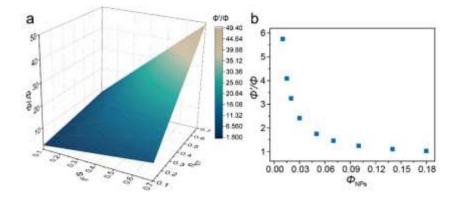

Figure S5: Changes in fluorescence spectra with 5.33 μ M Cy3-SO₃ in 6.67 mM UCNPs DMSO solution and the fluorescence intensity of Cy3-SO₃ at 580 nm as a function of time with power density 10 W/cm² (a, b), 15 W/cm² (c, d), 20 W/cm² (e, f), 25 W/cm² (g, h), and 30 W/cm² (i, j), respectively. (Ex: 980 nm)

Figure S6: The absorption spectrum of NaYF₄:20%Yb,2%Er@CaF₂(1:2) with (orange) and without (blue) Cy3-SO₃ dye.

Figure S7: Upconversion luminescence spectrum of NaYbF₄ and CaF₂ with and without Cy3-SO₃ in DMSO excited by a 980 nm CW laser. The experiment condition was the same with the experiment condition in Figure 2.

Figure S8: (a) The relationship of ϕ_{dye} and η_{ET} with ϕ'/ϕ . ϕ_{NPs} was assumed as 1%. (b) The relationship of ϕ_{UCNPs} with ϕ'/ϕ . ϕ_{dye} and η_{ET} were assumed as 20% and 25%, respectively.

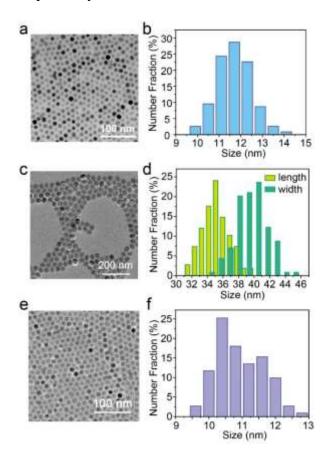
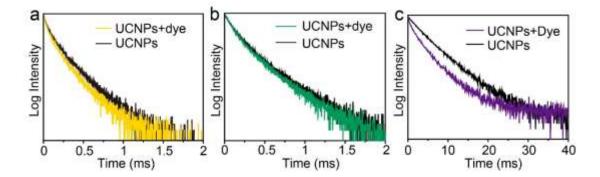
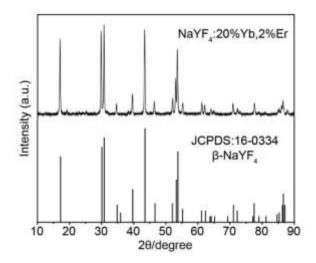
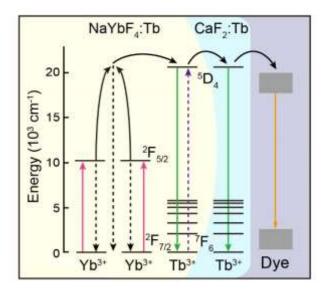
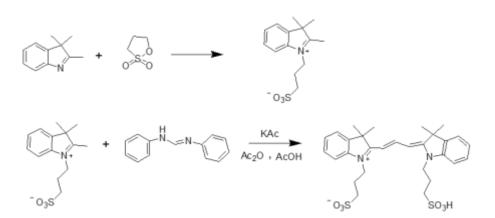
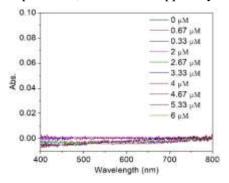




Figure S9: (a) Low-resolution TEM image of NaYF₄:20%Yb,2%Er@CaF₂(1:4) NPs. (b) Particle size distribution of NaYF4:20%Yb,2%Er@CaF2(1:4) NPs. (c) Low-resolution TEM image of NaYF4:20%Yb,2%Er NPs. (d) Particle size distribution NaYF4:20%Yb,2%Er NPs. TEM of Low-resolution of (e) image NaYbF4:30%Tb@CaF2:20%Tb NPs. (f) Particle size distribution of NaYbF4:30%Tb@CaF2:20%Tb NPs. These data were obtained from the TEM images with more than 100 nanoparticles.

Figure S10: (a) Decay curves of Er^{3+} ions emission at 540 nm from NaYF₄:20%Yb,2%Er@CaF₂(1:4) NPs with and without Cy3-SO₃ in DMSO excited by a 488 nm pulse laser. (b) Decay curves of Er^{3+} ions emission at 540 nm from NaYF4:20%Yb,2%Er with and without Cy3-SO₃ in DMSO excited by a 488 nm pulse laser. (c) Decay curves of Tb³⁺ ions emission at 541 nm from NaYbF₄:30%Tb@CaF₂:20%Tb(1:2) NPs with and without Cy3-SO₃ in DMSO excited by a 488 nm pulse laser.

Figure S11: (a) X-ray diffraction (XRD) pattern of hexagonal NaYF₄:20%Yb,2%Er nanoparticles and the standard of hexagonal phase NaYF₄ (JCPDS card No. 16-0334).


Figure S12: Part of energy level diagram of Yb³⁺ and Tb³⁺ doped NaYbF₄.

Scheme S1. Synthetic route of Cy3-SO₃.

Calculation of the number of Cy3-SO₃ dye on per nanoparticle

We mixed UCNPs (6.67 mM, 1500 μ L) with 0 μ L, 1 μ L, 2 μ L, 3 μ L, 4 μ L, 5 μ L, 6 μ L, 7 μ L, 8 μ L and 9 μ L Cy3-SO₃ dye (10⁻³ M), respectively. Then the nanoparticles were centrifuged at 16500 rpm for 40 min. Take out the supernatant and measure the absorption spectra of supernatant. As shown in Figure S13, after centrifugation, there was no absorption peak of Cy3-SO₃ in the supernatant, indicating that no free dye exists in the supernatant, and all the dripped Cy3-SO₃ has attached to the UCNPs surface.

Figure S13: After centrifugation, changes in absorption spectra of supernatant with different addition of Cy3-SO₃ in UCNPs solution.

We consider the volume of NaYF₄ and NaYF₄:Yb,Er are approximately equal due to the low doping concentration of Yb³⁺ and Er³⁺ ions. The volume of NaYF₄ unit cell can be described as

V_{unit cell}=a³=0.16 nm³

The volume of NaYF4:Yb,Er is

 $V_{NP}=4/3^{*}\pi^{*}r^{3}=187.40 \text{ nm}^{3}$

So one NaYF₄:Yb,Er nanoparticle has about 1171 unit cells. A unit cell contains 2 rare earth atoms. So one NaYF₄:Yb,Er nanoparticle has about 2342 rare earth atoms. Take 1500 μ L UCNPs (6.67 mM) with 1 μ L Cy3-SO₃ dye (10⁻³ M) in DMSO as example. 0.01 mmol UCNPs has 0.01 mmol rare earth ions which construct about 2.57*10¹⁵ nanoparticles. 1 μ L Cy3-SO₃ (10⁻³ M) dye solution has 6.02*10¹⁴ dye molecule. So there is 0.23 dye attach on a nanoparticle. According to the concentration of UCNPs and Cy3-SO₃, we calculated the number of Cy3-SO₃ attached on per UCNPs shown in **Table S2**. **Table S2**: The relationship between Cy3-SO₃ concentration and the number of Cy3-SO₃ on per UCNPs.

N _{oye}	0	0.23	0.46	0.69	0.92	1.15	1.38	1.61	1.84	2.07
c _{dye} (µM)	0.00	0.67	1.33	2.00	2.67	3.33	4.00	4.67	5.33	6.00