Electronic Supporting Information

Surface Carbon Hydrogenation on Pre-covered Fe(110) with Spectators-

Coverage-Dependent Chain Initiation and Propagation

Teng Li, a,b,c Xiaodong Wena,c Yong-Wang Li,a,c and Haijun Jiaoa,d*

(a) State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China; (b) University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China; (c) National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China; (d) Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein Strasse 29a, 18059 Rostock, Germany. haijun.jiao@catalysis.de

Content

Table S1	Reaction	s summary of e	thane	and propane	e formati	ion				S2
Table S2	Tempera	ture effects on	the re	action energ	ies of et	hylene and et	hane formation	n		S3
Table S3	Structure	e parameters as	carbo	n coverage v	ariation	on (4×4) Fe(1	.10)			S4
Table S4	Compari	son of the barri	ers an	d reaction er	nergies u	nder high and	l low coverage	9		S4
Figure S1	. Thermo	dynamic proper	ties of	stepwise hyd	drogenat	ion to methan	e of surface ca	arbon	including hydi	rogen adsorption
and meth	ane deso	rption								S5
Figure S2	Thermo	dynamic propert	ies of (CH-CH couplin	ng and hy	drogenation t	o CH₂CH as we	ell as CI	H₂+CH couplin	ig S6
Figure S3	Thermo	dynamic propert	ies of e	ethylene and	CH₃CH fo	ormation				\$6
Figure S4	Thermo	dynamic propert	ies of e	ethylene step	wise hyd	rogenation to	ethane and co	upling	of two CH ₃	S7
Figure S5	Reaction	ns of CH+CH cou	oling to	o acetylene ai	nd CH hy	drogenation				\$8
Figure S6	First hyd	Irogenation path	from	CH ₂ CH to CH ₂	CH ₂ and	CH ₂ CH ₃				S9
Figure S7	Second	hydrogenation p	ath of	CH₂CH to CH₃	CH and C	CH ₃ CH ₂				S10
Figure S8	Ethane f	ormation via eth	ıyl hyd	rogenation						S10
Figure S9	Dehydro	genation of CH ₃	CH to (CH₃C and com	npetition	between CH h	ydrogenation	and CH	I+CH₃C coupli	ng S11
Figure S1	0 Compe	tition of hydroge	enation	n at middle ar	nd termir	nal carbon of C	:H₃CCH			S12
Figure S1	1 Format	tion of propenyl	via dir	ect C-C coupli	ing					S12
Figure	S12	Competition	of	CH₃CHCH₂	and	CH ₃ CH ₂ CH	formation	of	CH ₃ CHCH	hydrogenation
S13										
Figure S1	3 CH ₃ CH ₂	2CH hydrogenati	on to p	propyl and co	mpetitive	e hydrogenatio	on of CH₃CHCH	₂ to CH	₃ CH ₂ CH ₂ and (CH₃CHCH₃ S14
Figure		S14	Propa	ane	forma	tion	via	pro	pyl	hydrogenation
S15										
Referenc	e									S15

Table S1 Reactions summary of ethane and propane formation

	Reaction		E _a +E _{zpe} /eV	$(E_a + E_{ZPE})$ - E_a / eV	E _r /eV	E _r +E _{zpe} /eV	(E _r +E _{ZPE}) -E _r /eV	r(C-H or C-C)/Å	r(Fe-H or Fe-C)/Å	(v/i)/cm ⁻¹	k(550 K)/s ⁻¹
1	CH+CH+12H+2C→CHCH+12H+2C	0.49	0.48	-0.01	-0.36	-0.32	0.04	1.848	1.864,1.875,2.118; 1.910,1.912,2.001	536	3.318×10 ⁸
2	CH+CH+12H+2C→CH₂+CH+12H+2C	0.52	0.48	-0.04	0.44	0.48	0.04	1.452	1.580	737	1.731×10 ⁸
3	$CH_2CH+12H+2C\rightarrow CH_2CH_2+11H+2C$	0.52	0.47	-0.05	-0.17	-0.07	0.10	1.568	1.562	993	2.109×10 ⁸
4	$CH_2CH_2+12H+2C \rightarrow CH_2CH_3+11H+2C$	0.51	0.43	-0.08	0.15	0.19	0.04	1.548	1.630, 2.134	787	2.588×10 ⁸
5	$CH_2CH+12H+2C\rightarrow CH_3CH+11H+2C$	0.48	0.43	-0.05	0.03	0.09	0.06	1.520	1.624; 2.145	852	4.031×10 ⁸
6	$CHCH_3+12H+2C \rightarrow CH_2CH_3+11H+2C$	0.60	0.56	-0.04	0.13	0.24	0.11	1.531	1.581; 2.038, 2.010, 2.319	940	3.050×10 ⁷
7	$CH_2CH_3+12H+2C \rightarrow CH_3CH_3+11H+2C$	0.72	0.65	-0.07	-0.58	-0.52	0.06	1.475	1.642; 2.314	1066	3.182×10 ⁶
8	$CH_3CH+CH+11H+2C\rightarrow CH_3C+CH+12H+2C$	0.03	-0.06	-0.09	-0.58	-0.63	0.05	1.483	1.538	652	5.604×10 ¹²
9	$CH_3C+CH+12H+2C\rightarrow CH_3C+CH_2+11H+2C$	0.59	0.56	-0.03	0.37	0.43	0.06	1.494	1.549	772	4.093×10 ⁷
10	$CH_3C+CH+12H+2C\rightarrow CH_3CCH+11H+2C$	0.60	0.60	0.00	-0.25	-0.21	0.04	1.880	1.846, 1.866	453	3.219×10 ⁷
11	CH₃CCH+12H+2C→CH₃CHCH+11H+2C	0.49	0.44	-0.05	0.31	0.41	0.10	1.560	1.612	858	3.519×10 ⁸
12	$CH_3CCH+12H+2C\rightarrow CH_3CCH_2+11H+2C$	0.82	0.77	-0.05	0.33	0.43	0.10	1.533	1.706	776	3.633×10⁵
13	CH₃CH+CH+12H+2C→CH₃CHCH+12H+2C	0.73	0.76	0.03	-0.44	-0.34	0.10	1.931	1.930	424	2.145×10 ⁶
14	$CH_3CHCH+12H+2C\rightarrow CH_3CH_2CH+11H+2C$	0.60	0.55	-0.05	0.08	0.14	0.06	1.511	1.661	790	3.413×10 ⁷
15	$CH_3CHCH+12H+2C\rightarrow CH_3CHCH_2+11H+2C$	0.56	0.51	-0.05	0.04	0.14	0.10	1.553	1.568	996	8.557×10 ⁷
16	$CH_3CH_2CH+12H+2C\rightarrow CH_3CH_2CH_2+11H^3+2C$	0.64	0.58	-0.06	0.25	0.34	0.09	1.523	1.575	930	1.650×10 ⁷
17	$CH_3CHCH_2+12H+2C\rightarrow CH_3CH_2CH_2+11H^b+2C$	0.61	0.55	-0.06	0.28	0.33	0.05	1.505	1.641;2.187	890	3.018×10 ⁷
18	$CH_3CHCH_2+12H+2C\rightarrow CH_3CHCH_3+11H+2C$	1.38	1.31	-0.07	0.25	0.32	0.07	1.479	1.569	1063	2.625
19	$CH_3CH_2CH_2+12H+2C\rightarrow CH_3CH_2CH_3+11H+2C$	0.67	0.62	-0.05	-0.68	-0.62	0.06	1.517	1.658; 2.335	1075	8.128×10 ⁶

Table S2 Temperature effects on the reaction energies of ethylene and ethane formation

Rea	action 3: C	H₂CH+12H+2C-	→CH ₂ CH ₂ +11H+2C	Reaction 7: $CH_3CH_2+12H+2C\rightarrow CH_3CH_3+11H+2C$					
$\Delta E_{\rm elec}/{\rm eV}$ -0.166				$\Delta E_{\rm elec}/{\rm eV}$		-	-0.582		
$\Delta(E_{\text{elec}}+E_{\text{ZPE}})$		-0.068			_{lec} +E _{ZPE})	-0.517			
Δ <i>H</i> ~ <i>T</i>					ΔH ~ T				
T/K	ΔH/eV	ΔH - $\Delta E_{\rm elec}$ /e	ΔH - $\Delta (E_{\text{elec}}$ - $E_{\text{ZPE}})$ /e	T/K	Δ <i>H</i> /eV	ΔH - $\Delta E_{\rm elec}$ /e	ΔH - $\Delta (E_{\text{elec}}$ - $E_{\text{ZPE}})$ /e		
		V	V			V	V		
250	-0.054	0.112	0.014	250	-0.496	0.086	0.021		
300	-0.053	0.113	0.015	300	-0.496	0.086	0.021		
350	-0.052	0.114	0.016	350	-0.498	0.084	0.019		
400	-0.052	0.114	0.016	400	-0.500	0.082	0.017		
450	-0.053	0.113	0.015	450	-0.504	0.078	0.013		
500	-0.054	0.112	0.014	500	-0.508	0.074	0.009		
550	-0.055	0.111	0.013	550	-0.513	0.069	0.004		
600	-0.057	0.109	0.011	600	-0.518	0.064	-0.001		

The formation enthalpy (ΔH) of reaction is composed by three parts: the electronic energy (E_{elec}), the zero point correction (E_{ZPE}), the integration of heat capacity at constant volume from 0 K to real temperature. (Grabow, Lars C. "Computational catalyst screening. "Computational Catalysis, RSC Publishing, 2013, 1-58.):

$$H(T) = E_{\text{elec}} + E_{\text{ZPE}} + \int_{0K}^{T} C_{V} d\tilde{T} \text{ (Equation S1)}$$

$$E_{\text{ZPE}} = \frac{1}{2} \sum_{i=0}^{\text{\#DOF}} h v_{i} \text{ (Equation S2)}$$

$$\int_{0K}^{T} C_{V} d\tilde{T} = \sum_{i=0}^{\text{\#DOF}} \frac{h v_{i}}{e^{h v_{i} / k_{B}T} - 1} \text{ (Equation S3)}$$

The results were presented in the Table S1. By comparing ΔE_{elec} and ΔH , we concluded that temperature has little effect on the reaction energy ($\leq 0.11 \text{ eV}$).

Table S3. Structure parameters as carbon coverage variation on (4×4) Fe(110)

ML		r(Fe-C)ª/Å	r(Fe-C)♭/Å	r(Fe _{sub} -C) ^c /Å	∠Fe-Fe-Fe	r(Fe-Fe)/Å
0.00 ML/C					70.53°	2.452
0.0625 ML/C	С	1.797, 1.797	1.955, 1956	2.392	84.51°	2.578
0.25 ML/C	C^1	1.790, 1.790	1.954, 1.954	2.606	83.41°	2.507, 2.507, 2.507, 2.507
	C^2	1.789, 1.790	1.954, 1.953	2.604	83.42°	2.508, 2.508, 2.508, 2.508
	C_3	1.790,1.789	1.954, 1.954	2.603	83.40°	2.508, 2.508, 2.507, 2.508
	C^4	1.790, 1.790	1.954, 1.953	2.606	83.41°	2.507, 2.507, 2.507, 2.507
0.25 ML/C +0.75 ML/H	C^1	1.764, 1.770	1.858, 1.904	2.013		2.570, 2.566, 2.591, 2.595
	C^2	1.733, 1.757	1.920, 1.941	2.535		2.519, 2.499, 2.466, 2.538
	C_3	1.738, 1.736	1.872, 1.928	2.066		2.557, 2.512, 2.670, 2.552
	C^4	1.877, 1.812	1.893, 1.911	1.853		2.473, 2.630, 2.607, 2.487
C/(2×2)(110) ¹		1.787	1.955	2.594		

⁽a) Fe-C distance along the short diagonal line. (b) Fe-C distance along the long diagonal line. (c) Fe-C distance of C and subsurface Fe

Table S4 Comparison of the barriers and reaction energies under high and low coverage

High coverage	Low coverage ²				
Reaction	E _a /e V	E _r /eV	Reaction	E _a /e V	E _r /eV
CH+CH+12H+2C→CHCH+12H+2C	0.49	-0.36	CH+CH→CHCH	0.61	-0.36
$CH+CH+12H+2C\rightarrow CH_2+CH+12H+2C$	0.52	0.44	CH+H→CH ₂	0.74	0.71
$CH_2CH+12H+2C \rightarrow CH_2CH_2+11H+2C$	0.52	-0.17	$CH_2CH+H\rightarrow CH_2CH_2$	0.72	0.36
$CH_2CH_2+12H+2C \rightarrow CH_2CH_3+11H+2C$	0.51	0.15	$CH_2CH_2+H\rightarrow CH_2CH_3$	0.65	0.51
$CHCH_3 \text{+} 12H \text{+} 2C {\longrightarrow} CH_2 CH_3 \text{+} 11H \text{+} 2C$	0.60	0.13	$CHCH_3 \rightarrow CH_2CH_3$	0.80	0.39
$CH_2CH_3+12H+2C \rightarrow CH_3CH_3+11H+2C$	0.72	-0.58	$CH_2CH_3+H\rightarrow CH_3CH_3$	1.13	0.28

Figure S1 Thermodynamic properties of stepwise hydrogenation to methane of surface carbon including hydrogen adsorption and methane desorption

Note: blue balls are iron, black balls are carbon and white balls are hydrogen

Figure S2 Thermodynamic properties of CH-CH coupling and hydrogenation to CH₂CH as well as CH₂+CH coupling

Figure S3 Thermodynamic properties of ethylene and CH₃CH formation

Figure S4 Thermodynamic properties of ethylene stepwise hydrogenation to ethane and coupling of two CH₃

Figure S5 Reactions of CH+CH coupling to acetylene and CH hydrogenation

Figure S6 First hydrogenation path from CH₂CH to CH₂CH₂ and CH₂CH₃

Figure S7 Second hydrogenation path of CH_2CH to CH_3CH and CH_3CH_2

Figure S8 Ethane formation via ethyl hydrogenation

Figure S9 Dehydrogenation of CH₃CH to CH₃C and competition between CH hydrogenation and CH+CH₃C coupling

Figure S10 Competition of hydrogenation at middle and terminal carbon of CH₃CCH

Figure S11 Formation of propenyl via direct C-C coupling

Figure S12 Competition of CH₃CHCH₂ and CH₃CH₂CH formation of CH₃CHCH hydrogenation

Figure S13 CH₃CH₂CH hydrogenation to propyl and competitive hydrogenation of CH₃CHCH₂ to CH₃CH₂CH₂ and CH₃CHCH₃

 $RCH_2CH_2 + H \rightarrow RCH_2CH_3$; $E_a = 0.67 \text{ eV}$, $E_r = -0.68 \text{ eV}$

Figure S14 Propane formation via propyl hydrogenation

Reference

- (1) Liu, X.-W.; Huo, C.-F.; Li, Y.-W.; Wang, J.; Jiao, H., Energetics of Carbon Deposition on Fe(100) and Fe(110) Surfaces and Subsurfaces. *Surf. Sci.* **2012**, 606, 733-739.
- (2) Li, T.; Wen, X.; Li, Y.-W.; Jiao, H., Successive Dissociation of CO, CH₄, C₂H₆, and CH₃CHO on Fe(110): Retrosynthetic Understanding of FTS Mechanism. *J. Phys. Chem. C* **2018**, 122, 28846-28855.