Supporting Information

Polyfunctional Imidazolium Aryloxide Betaine /
 Lewis Acid Catalysts as Tool for the Asymmetric Synthesis of Disfavored Diastereomers

Felix Willig, ${ }^{\neq}$Johannes Lang, ${ }^{* \neq}$ Andreas C. Hans, ${ }^{*}$ Mark R. Ringenberg, ${ }^{\S}$ Daniel Pfeffer, ${ }^{\text { }}$ Wolfgang Frey,* and René Peters**
${ }^{7}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
${ }^{\text {§ }}$ Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

Email: rene.peters@oc.uni-stuttgart.de

Table of Contents

General Remarks 8
General Procedures. 10
General Procedure for the Imidazolium Synthesis (GP1) 10
General Procedure for the Synthesis of Trifluoromethylsulfonamides (GP2) 10
General procedure for the Imine-Synthesis (GP3) 11
General Procedure for the Complexation (GP4) 11
General Procedure for the Activation of the Complexes (GP5) 12
General Procedure for the Catalytic Reaction under Standard Conditions (GP6-standard) 12
General Procedure for Catalytic Reaction under Neat Conditions (GP6-neat) 13
General Procedure for the Catalytic Reaction with External Base (GP6-control) 14
General Procedure for the Catalytic Reaction with α, β-Substituted Nitroolefins (GP7) 15
Synthesis of Sulfonamides 16
N-((1R,2R)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9a) 16
N-((1S,2S)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9b) 16
Synthesis of the Imidazols 17
(R)-2-(Imidazol-1-yl)-2'-hydroxy-1,1'-binaphthyl (6) 17
2-(1H-Imidazol-1-yl)ethan-1-ol (15) 17
2-(2-Methyl-1H-imidazol-1-yl)ethan-1-ol (16) 18
1-(2-Methoxyphenyl)-1H-imidazole (17) 18
2-(1H-Imidazol-1-yl)phenol (18) 19
2'-Methoxy-[1,1'-biphenyl]-2-amine (19) 20
1-(2'-Methoxy-[1,1'-biphenyl]-2-yl)-1H-imidazole (20) 20
2'-(1H-Imidazol-1-yl)-[1,1'-biphenyl]-2-ol (21) 21
Synthesis of the Aldehydes 22
(R)-3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (8)22
3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (22) 23
3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (23) 23
3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride
(24) 24
(R)-5-(tert-Butyl)-2-hydroxy-3-(((2'-hydroxy-[1,1'-binaphthalen]-2-yl)oxy)methyl)benzaldehyde (25) . 24
3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (26) 25
3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (27) 26
Synthesis of Imine-Ligands 27
3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-((R)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1a)............. 273-(5-(tert-Butyl)-3-((E)-(((1S,2S)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)-methyl)-2-
hydroxybenzyl)-1-((R)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1b) 28
N-((1R,2R)-2-(((E)-3,5-Di-tert-butyl-2-hydroxybenzylidene)amino)-1,2-diphenylethyl)-1,1,1- trifluoromethanesulfonamide (L2) 29
3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (L3) 29
3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (L4)30
3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride (L5)31
N-((1R,2R)-2-(((E)-5-(tert-butyl)-2-hydroxy-3-(((2'-hydroxy-[(R)-1,1'-binaphthalen]-2-
yl)oxy)methyl)benzylidene)amino)-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (L6) 32
3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (L7) 33
3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (L8) 34
Synthesis of the Complexes 35
$\mathrm{Cu}(\mathrm{II})$-Phenoxyimine-Complex $(S, S)(R)(\mathrm{C} 1 \mathrm{~b}-\mathrm{Cu})$ 35
Activated $\mathrm{Cu}(\mathrm{II})$-Phenoxyimine-Complex $(S, S)(R)(\mathrm{C} 1 \mathrm{~b}-\mathrm{Cu*})$ 36
$\mathrm{Cu}(\mathrm{II})$-Phenoxyimine-Complex $(R, R)(R)(\mathrm{C} 1 \mathrm{a}-\mathrm{Cu})$ 37
$\mathrm{Ni}(I I)$-Phenoxyimine-Complex $(S, S)(R)(\mathrm{C} 1 \mathrm{~b}-\mathrm{Ni})$ 37
$\mathrm{Ni}(I I)$-Phenoxyimine-Complex $(R, R)(R)$ (C1a-Ni) 38
Control Systems. 39
$\mathrm{Cu}(I I)$-Phenoxyimine-Complex $(R, R)(\mathrm{C} 2)$ 39
$\mathrm{Cu}(I I)$-Phenoxyimine-Complex $(R, R)(\mathrm{C} 3)$ 39
$\mathrm{Cu}(I I)$-Phenoxyimine-Complex $(R, R)(\mathrm{C} 4)$ 40
$\mathrm{Cu}(I I)$-Phenoxyimine-Complex (R, R) (C5) 40
$\mathrm{Cu}(\mathrm{II})$-Phenoxyimine-Complex $(R, R)(R)(\mathrm{C} 6)$ 41
$\mathrm{Cu}(I I)$-Phenoxyimine-Complex (R, R) (C7) 42
$\mathrm{Cu}(I I)$-Phenoxyimine-Complex (R, R) (C8) 42
Catalytic Products 43
Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3aA) 43
Ethyl (S)-1-((S)-1-(4-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aB) 44
Ethyl (S)-1-((S)-1-(3-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aC) 45
Ethyl (S)-1-((R)-1-(2-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aD) 46
Ethyl (S)-1-((S)-1-(4-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aE) 46
Ethyl (S)-1-((S)-1-(3-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aF) 47
Ethyl (S)-1-((R)-1-(2-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aG) 48
Ethyl (S)-1-((S)-2-Nitro-1-(4-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aH). 49
Ethyl (S)-1-((S)-2-Nitro-1-(3-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3al) 50
Ethyl (S)-1-((S)-2-Nitro-1-(2-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aJ) 50
Ethyl (S)-1-((S)-2-Nitro-1-(p-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aK) 51
Ethyl (S)-1-((S)-2-Nitro-1-(m-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aL) 52
Ethyl (S)-1-((S)-2-Nitro-1-(o-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aM) 53
Ethyl (S)-1-((S)-1-(4-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aN) 53
Ethyl (S)-1-((S)-1-(3-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aO) 54
Ethyl (S)-1-((S)-1-(2-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aP) 55
Ethyl (S)-1-((S)-1-(Benzo[d][1,3]dioxol-5-yl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aQ) 55
Ethyl (S)-1-((S)-1-(Furan-2-yl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aR) 56
Ethyl (S)-1-((S)-2-Nitro-1-(thiophen-2-yl)ethyl)-2-oxocyclopentane-1-carboxylate (3aS) 57
Ethyl (S)-1-((S,E)-1-Nitro-4-phenylbut-3-en-2-yl)-2-oxocyclopentane-1-carboxylate (3aT) 57
Ethyl (S)-1-((S)-3-Methyl-1-nitrobutan-2-yl)-2-oxocyclopentane-1-carboxylate (3aU) 58
Ethyl (S)-1-((S)-1-Cyclohexyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aV) 59
Ethyl (S)-1-((S)-1-Cyclopropyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aW) 59
Ethyl (S)-1-((S)-4-Methyl-1-nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aX) 60
Ethyl (S)-1-((S)-1-Nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aY) 61
Ethyl (S)-1-((S)-1-(Benzyloxy)-3-nitro-1-oxopropan-2-yl)-2-oxocyclopentane-1-carboxylate (3aZ) 61
Ethyl (1S)-1-((1S,2R)-2-Nitro-1-phenylpropyl)-2-oxocyclopentane-1-carboxylate (3aA-Me) 62
Ethyl (1S)-1-((1S,2R)-1-(4-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aB-Me). 63
Ethyl (1S)-1-((1S,2R)-1-(3-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aC-Me). 63
Ethyl (1S)-1-((1S, 2R)-1-(4-Chlorophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aE-Me).. 64
Ethyl (1S)-1-((1S,2R)-1-(3-Nitroophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3al-Me)... 65
Ethyl (1S)-1-((1S,2R)-2-nitro-1-p-tolylpropyl)-2-oxocyclopentane-1-carboxylate (3aK-Me). 66
Methyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3bA) 66
Isopropyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3cA) 67
Ethyl (S)-2-((S)-2-Nitro-1-phenylethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3dA) 68
Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclohexane-1-carboxylate (3eA) 69
Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocycloheptane-1-carboxylate (3fA) 69
Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclooctane-1-carboxylate (3gA) 70
Methyl (2S,3S)-2-Acetyl-2-methyl-4-nitro-3-phenylbutanoate (3hA) 71
Dimethyl (R)-2-(2-Nitro-1-phenylethyl)malonate (3iA) 72
Ethyl (S)-1-Methyl-3-((S)-2-nitro-1-phenylethyl)-2-oxopyrrolidine-3-carboxylate (3jA) 72
Ethyl (S)-1-Methyl-3-((S)-2-nitro-1-phenylethyl)-2,5-dioxopyrrolidine-3-carboxylate (3kA) 74
Ethyl (1S,2S,3S,4R)-3-Nitro-6-oxo-2-phenylbicyclo[2.2.2]octane-1-carboxylate (4-D2) 74
Confirming the Configurational Outcome with 2D-NMR Experiments of Compound 4-D2. 76
Upscaling Experiment for the Synthesis of Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1- carboxylate 3aA 78
Catalyst Recycling: 79
Derivatisation of the Catalytic Product 3aA 80
Ethyl (1S,2R)-2-hydroxy-1-((S)-2-nitro-1-phenylethyl)cyclopentane-1-carboxylate (10) 80
Ethyl (1S,2R)-2-hydroxy-1-((S)-2-nitro-1-phenylethyl)cyclopentane-1-carboxylate (11) 81
(4S,5S,6R)-6-hydroxy-4-phenyl-2-azaspiro[4.4]nonan-1-one (15) 82
Ethyl (3S,3aS)-3-phenyl-2,4,5,6-tetrahydrocyclopenta[b]pyrrole-3a(3H)-carboxylate (12) 82
(3S,3aS)-3a-(Ethoxycarbonyl)-3-phenyl-2,3,3a,4,5,6-hexahydro-1|4-cyclopenta[b]pyrrol-1-olate (13). 83
6a-ethyl 2,3-dimethyl (3aR,6aS,7S)-7-Phenyl-5,6,7,8-tetrahydrocyclopenta[2,3]pyrrolo[1,2-b][1,2]
oxazole-2,3,6a(4H)-tricarboxylate (14) 84
Confirming the Configurational Outcome with 2D-NOESY-NMR Experiments of Compound 14 85
Kinetic Experiments. 86
Kinetic Experiments - Initial Rate Kinetic Analysis 86
Determining the Partial Reaction Order for the Catalyst C1b-Cu* 86
Determining the Partial Reaction Order for the Ketoester 1a 87
Determining the Partial Reaction Order for the Nitroolefin 2A 89
Kinetic Experiments - Probing Catalyst Robustness and Product Influence. 91
Raw Data and Calculated Concentrations for the "Same-Excess"- and "Product Addition"-
Experiments 92
Kinetic Experiments - Determination of reaction orders using variable time normalization graphical analysis (VTNA) 95
Raw Data, Calculated Concentrations and Processed Data for the VTNA. 100
Investigation of Possible Non-Linear-Effects. 106
Beer's Law Plot 107
Titration Experiments in the UV-Vis 108
Titration Experiments in the EPR. 109
Epimerization Experiment of Third Stereocenter with Base 112
Control Experiments Regarding the Formation of the Third Stereocenter 113
Computational Methods 115
NMR-Data 122
HPLC-Data 198
References 242

General Remarks

All air and moisture sensitive reactions were performed in oven-dried glassware ($150^{\circ} \mathrm{C}$ and heated to $630^{\circ} \mathrm{C}$ for several min under high vacuum) and under a positive pressure of nitrogen (ca. 0.2 bar). Liquids were added via syringe, solids were added neat against a nitrogen flow. Solvents were removed using a rotary evaporator ($40^{\circ} \mathrm{C}$ water bath). Non-volatile compounds were dried in vacuo at 0.03 mbar and freeze-dried using liquid nitrogen. Technical grade solvents (dichloromethane, petroleum ether, diethyl ether, tetrahydrofuran and toluene) were distilled before use. Anhydrous solvents (acetonitrile, tetrahydrofuran, toluene, dichloromethane) were dried in a solvent purification system (MBraun MB SPS800). Purchased chemicals were used without further purification. For catalytic enantioselective reactions were carried out in a parallel synthesizer (Heidolph Synthesis 1, shaking at 450 rpm) in some cases and are annotated. $\mathrm{Ni}(\mathrm{acac})_{2}$ was dried in a Kugelrohr distilliation apparatus under reduced pressure (0.01 mbar) at $100^{\circ} \mathrm{C}$ for 1 h . The aldehyde $\mathbf{7}$ was synthesized according to the literature of Nayak et al. ${ }^{1}$ Trans- β nitrostyrene 2A, trans-3-methoxy- β-nitrosytrene 20, trans-2-methoxy- β-nitrostyrene $\mathbf{2 P}$, trans-4-methoxy- β-nitrostyrene $\mathbf{2 N}, 3,4$-methylenedioxy- β-nitrosytrene $\mathbf{2 Q}$ were purchased from commercial suppliers (Sigma-Aldrich, Fluorochem) and were used without further purification. 1-Nitro-4phenylbutadiene $2 \mathbf{T}$ was synthesized according to a procedure of Lautens et al., ${ }^{2}$ benzyl (E) $-\beta$-nitroacrylate $\mathbf{2 Z}$ was synthesized according to the literature, ${ }^{3}$ (E)-(2-nitrovinyl)cyclopropane $\mathbf{2 W}$ was synthesized according to literature ${ }^{4}$ and all other nitroolefins were synthesized according to literature known procedures. ${ }^{5,6}$ Ethyl 2-oxocyclopentanecarboxylate 1a, methyl 2-oxocyclopentanecarboxylate 1b, dimethyl malonate $\mathbf{1 i}$ and ethyl 2-oxocyclohexanecarboxylate $\mathbf{1 e}$ were purchased from commercial suppliers (Sigma-Aldrich, Alfa Aesar). According to the literature the ketoesters, isopropyl 2oxocyclohexanecarboxylate 1c, methyl 2-methylacetoacetate $\mathbf{7}^{7},{ }^{8}$ ethyl 2oxocycloheptanecarboxylate $\mathbf{1 f},{ }^{9}$ ethyl 2 -oxocyclooctanecarboxylate $\mathbf{1 g},{ }^{9}$ ethyl 1 -oxo-2,3-dihydro-1H-indene-2-carboxylate $\mathbf{1 d},{ }^{10}$ ethyl 1 -methyl-2-oxopyrrolidine-3-carboxylate $\mathbf{1} \mathbf{j}^{11}$, ethyl 1 -methyl-2,5-dioxopyrrolidine-3-carboxylate $\mathbf{1} \mathbf{k}^{12}$ and ethyl 2-oxocyclohex-3-ene-1-carboxylate $\mathbf{1}^{13}$ were synthesized. The α, β-disubstituted nitroolefins $\mathbf{3 A - M e}$, $\mathbf{3 B - M e}, \mathbf{3 C}-\mathrm{Me}, \mathbf{3 E}-\mathrm{Me}, \mathbf{3 I - M e}$ and $\mathbf{3 K}-\mathrm{Me}$ were synthesized according to the Literature. ${ }^{14}$ Yields refer to purified compounds. Except as indicated otherwise, reactions were magnetically stirred and monitored by NMR-spectroscopy or thin layer-chromatography (TLC) using silica gel plates (silica gel $60 \mathrm{~F}_{254}$). Visualization occurred by fluorescence quenching under UV light and/or by staining with $\mathrm{KMnO}_{4} / \mathrm{NaOH}$. Purification by flash-chromatography was performed on silica gel 60 (40$63 \mu \mathrm{~m}$ particle size), using a forced flow of eluent at $0.2-0.4$ bar overpressure. NMR spectra were recorded at room temperature on spectrometers (Bruker Avance) operating at $700,500,400$ or $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 176$,

125,100 or $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and $376 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$. Chemical shifts δ are referred in terms of ppm, coupling constants J are given in Hz . The following abbreviations classify the multiplicity: $s=\operatorname{singlet}, d=$ doublet, t $=$ triplet, $q=$ quartet, quint $=$ quintet, sept $=$ septet,$m=$ multiplet (denotes a complex pattern), $d d=$ doublet of doublets, $d t=$ doublet of triplets, $t d=$ triplet of doublets and $b r=$ broad signal. Infrared spectra were recorded by the IR service of the University of Stuttgart on an FT-IR spectrometer (Bruker Alpha FT-IR) with an ATR unit and the signals are given by wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Optical rotation was measured on a polarimeter operating at the sodium D line with a 100 mm path cell length. Melting points were measured using a melting point apparatus (Büchi 535) in open glass capillaries and are uncorrected. Mass spectra (Finnigan MAT95 for El- or CI-measurements, Bruker Daltonics micrOTOF-Q for ESI-measurements) were obtained from the MS service of the University of Stuttgart. Ionization methods are stated in parentheses. The UV-Vis spectra were recorded with a Lambda 365-Spectrometer (PerkinElmer). EPR spectra in the X band were recorded with a Bruker System EMX at 108 K in THF. Enantiomeric excesses (ee) were determined by high performance liquid chromatography (HPLC) using an Elite LaChrom System with HITACHI-modules and chiral stationary phase HPLC columns (Daicel Chiralpak ODH, ADH, ASH). Single crystal X-ray analysis was performed by Dr. Wolfgang Frey (University of Stuttgart).

General Procedures

General Procedure for the Imidazolium Synthesis (GP1)

To a solution of the corresponding imidazole Im (1.0 equiv) in dichloromethane or acetonitrile ($c=0.2$ to $0.1 \mathrm{~mol} / \mathrm{L}$) was added the chloromethylated aldehyde $\mathbf{7}$ (1.0 equiv) and the reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure, the residue redissolved in a small amount of dichloromethane ($10 \mathrm{~mL} / \mathrm{mmol}$) and the solution was added to a stirred solution of diethylether ($80-100 \mathrm{ml} / \mathrm{mmol}$) to cause precipitation. The precipitate was filtered, washed with diethylether and the resulting solid was dried in vacuo.

General Procedure for the Synthesis of Trifluoromethylsulfonamides (GP2)

DA
1.) 1.0 equiv $\mathrm{Tf}_{2} \mathrm{O}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$,
to rt overnight
$\xrightarrow{\text { 2.) } 1.1 \text { equiv } \mathrm{NEt}_{3,} \mathrm{rt}}$

9

The 1,2-diphenylethane-1,2-diamine DA (1.0 equiv) was dissolved in anhydrous dichloromethane ($c=0.10-0.15 \mathrm{~mol} / \mathrm{L}$) and cooled to $-78^{\circ} \mathrm{C}$ under N_{2}-atmosphere. Afterwards trifluoromethanesulfonic anhydride (1.0 equiv, 1 M in dichloromethane) was added via a syringe pump ($1 \mathrm{~mL} / \mathrm{h}$). The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and was warmed to room temperature overnight. The reaction was quenched by adding water ($2 \mathrm{~mL} / \mathrm{mmol}$) and triethylamine (1.1 equiv). The layers were separated, the aqueous layer was extracted with dichloromethane ($2 \times 10 \mathrm{~mL} / \mathrm{mmol}$), dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ as eluent $\left(30 / 1 \rightarrow 15 / 1, \mathrm{R}_{\mathrm{f}}(10 / 1)=0.2\right.$) and was isolated as a white solid.

General procedure for the Imine-Synthesis (GP3)

A mixture of the corresponding aldehyde Ald (1.0 equiv) and the corresponding amine 9 (1.0 equiv) was dissolved in anhydrous dichloromethane ($c=0.02-0.05 \mathrm{~mol} / \mathrm{L}$) under nitrogen atmosphere. To the reaction mixture was added molecular sieves (4 A) and the mixture was stirred for 12 h at ambient temperature. The molecular sieves were removed via filtration through a pad of celite ${ }^{\circledR}$, they were washed with dichloromethane and the solvent of the solution was removed under reduced pressure. The residue was dissolved again in dichloromethane (1 to $2 \mathrm{~mL} / \mathrm{mmol}$) and the product was precipitated by adding this solution to a stirred solution of diethylether ($150 \mathrm{~mL} / \mathrm{g}$ crude product). The solid was filtered off, washed with diethylether ($50 \mathrm{~mL} / \mathrm{g}$ crude product) and dried in vacuo to yield a yellow solid, which was used in the following steps without further purification.

General Procedure for the Complexation (GP4)

The ligand \mathbf{L} (1.0 equiv) was dissolved in anhydrous acetonitrile ($c=0.02-0.05 \mathrm{~mol} / \mathrm{L}$) and the corresponding metal source (1.0 equiv) was added in one portion to the stirred solution under nitrogen atmosphere at room temperature. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for $12-14 \mathrm{~h}$. Afterwards the solution was filtered over a small pad of celite ${ }^{\circledR}$, the filter cake was washed with dichlormethane ($20 \mathrm{~mL} / \mathrm{mmol}$) and the solvent was removed under reduced pressure. The residue was dissolved in a small amount of dichloromethane and the product was precipitated by adding this solution to pentane ($100 \mathrm{~mL} / \mathrm{g}$ crude product). The solid was filtered off, washed with pentane ($20 \mathrm{~mL} / \mathrm{g}$ crude product) and dried in vacuo.

General Procedure for the Activation of the Complexes (GP5)

The complexes C1-Cu were dissolved in a solvent mixture of THF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NEt}_{3}(33 / 66 / 1,1 \mathrm{~mL} / 50 \mathrm{mg}$ complex) and the solution was filtered over to a small silica pad ($5 \mathrm{~cm}, \emptyset 2.5 \mathrm{~cm}$) in a glass frit. The activated complex was eluted by the $\mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NEt}_{3}$ mixture ($33 / 66 / 1,30$ to $50 \mathrm{~mL} / 50 \mathrm{mg}$ complex). The volatiles were removed under reduced pressure and the product $\mathbf{C 1}-\mathbf{C u}^{*}$ was dried under high vacuum for 1 hour. The activated catalyst could be used without further purification in the catalytic Michael additions.

General Procedure for the Catalytic Reaction under Standard Conditions (GP6-standard)

In a synthesizer tube was added a solution of the corresponding nitroolefin $2(0.20 \mathrm{mmol}, 1.0$ equiv) in THF $(0.1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The activated catalyst C1-Cu* $9.32 \mathrm{mg}, 0.01 \mathrm{mmol}$, $5 \mathrm{~mol} \%$) was added as a stock solution (0.1 mL) in THF and the reactions mixture was shaken for 5 min (450 rpm). The corresponding Michael-donor $\mathbf{1}(0.22 \mathrm{mmol}, 1.1$ equiv) was added plus additional solvent $(0.2 \mathrm{~mL})$ to avoid loss of material at the glass wall. The reaction mixture was shaken at $-20^{\circ} \mathrm{C}$ for the appropriate time using a parallel synthesizer system (Heidolph Synthesis 1, shaking at 450 rpm). Afterwards the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1,

1-2 mL), filtered through a small pad of silica to separate the catalyst from the reaction mixture and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure the crude product was purified via column chromatography with petroleum ether/ethyl acetate as eluent $(10 / 1 \rightarrow 5 / 1)$ to yield the pure product.

General Procedure for Catalytic Reaction under Neat Conditions (GP6-neat)

The corresponding nitroolefin 2 ($0.2 \mathrm{mmol}, 1.0$ equiv) and the activated catalyst C1-Cu* (9.32 mg , $0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added to the liquid Michael-Donor 1 ($0.4 \mathrm{mmol}, 2.0$ equiv) in a catalysis vial fitted with a magnetic stir bar at the corresponding temperature under nitrogen atmosphere. The reaction mixture was stirred at the corresponding temperature for the given time in a catalysis tube. Afterwards the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1, 1-2 mL), filtered through a small pad of silica to remove the catalyst from the reaction mixture and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL$)$. After the removal of the solvent under reduced pressure the crude product was purified via column chromatography with petroleum ether/ethyl acetate as eluent $(10 / 1 \rightarrow 5 / 1)$ to yield the pure product.

General Procedure for the Catalytic Reaction with External Base (GP6-control)

2A

C6

C7

C8

The corresponding catalyst C3-C9 (5 mol\%) and the corresponding base ($2.5 \mathrm{~mol} \%$) was added to a catalysis tube with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.05 \mathrm{~mL})$ at room temperature. Afterwards the trans- β-nitrostyrene $\mathbf{2 A}$ ($7.46 \mathrm{mg}, 0.050 \mathrm{mmol}, 1.0$ equiv) and the β-ketoester 1 a ($8.59 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.1$ equiv) were added as separate stock solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (each 0.1 mL) and the reaction mixture was stirred 24 h at room temperature. Then the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate ($1 / 1,1 \mathrm{~mL}$), filtered through a small pad of silica and the crude product was eluted with additional petroleum ether/ethyl acetate ($1 / 1,5 \mathrm{~mL}$). After the removal of the solvent under reduced pressure, the crude product was purified via preparative TLC (petroleum ether/ethyl acetate, $5 / 1$).

General Procedure for the Catalytic Reaction with α, β-Substituted Nitroolefins (GP7)

The activated catalyst C1b-Cu* ($9.32 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added as a stock solution (0.1 mL) in anhydrous THF to a catalysis tube fitted with a magnetic stirring bar under nitrogen atmosphere. Afterwards the corresponding nitroolefin 2-Me ($0.20 \mathrm{mmol}, 1.0$ equiv) was added and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. The corresponding Michael-donor $\mathbf{1}(0.40 \mathrm{mmol}, 2.0$ equiv) was added plus additional solvent $(0.1 \mathrm{~mL})$ to avoid loss of material at the glass wall and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for the appropriate time. Afterwards the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate ($1 / 1,1-2 \mathrm{~mL}$), filtered through a small pad of silica to separate the catalyst from the reaction mixture and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure the crude product was purified via column chromatography with petroleum ether/ethyl acetate as eluent $(10 / 1 \rightarrow 5 / 1)$ to yield the pure product (possible impurities of remaining $\mathbf{1}$ can be removed using high vacuum at $100^{\circ} \mathrm{C}$ in a Kugelrohr apparatus for 1 h$)$.

Synthesis of Sulfonamides

N-((1R,2R)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9a)

9a

9a was prepared according to GP2, using ($1 R, 2 R$)-1,2-diphenylethylenediamine ($0.178 \mathrm{~g}, 0.838 \mathrm{mmol}$, 1.0 equiv) and trifluoromethanesulfonic anhydride $(0.838 \mathrm{~mL}, 0.670 \mathrm{~g}, 0.838 \mathrm{mmol}, 1 \mathrm{M}$ in dichloromethane) in anhydrous dichloromethane (8 mL). The reaction was quenched with water (2 mL) and triethylamine ($0.128 \mathrm{~mL}, 0.093 \mathrm{~g}, 1.1$ equiv). After purification via column chromatography, the product 9a was isolated as a white solid ($0.226 \mathrm{~g}, 0.656 \mathrm{mmol}, 78 \%)$
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$. MW: $344.35 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.28(m, 10 \mathrm{H}, \mathrm{ArH}), 4.71(d, 1 \mathrm{H}$, $J=3.0 \mathrm{~Hz}, \mathrm{CHNHTf}), 4.41\left(d, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{CHNH}_{2}\right), 3.05\left(b r, 3 \mathrm{H}, \mathrm{NH}_{2}\right.$ and NHTf).

The analytical data of 9 a is in agreement with the literature. ${ }^{15}$

N-((1S,2S)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9b)

9b

9b was prepared according to GP2, using (1S,2S)-1,2-diphenylethylenediamine ($0.504 \mathrm{~g}, 2.37 \mathrm{mmol}$, 1.0 equiv) and trifluoromethanesulfonic anhydride ($2.37 \mathrm{~mL}, 0.670 \mathrm{~g}, 2.37 \mathrm{mmol}, 1 \mathrm{M}$ in dichloromethane) in anhydrous dichloromethane (25 mL). The reaction was quenched with water (5 mL) and triethylamine ($0.36 \mathrm{~mL}, 0.264 \mathrm{~g}, 1.1$ equiv). After purification via column chromatography, the product 9 b was isolated as a white solid ($0.623 \mathrm{~g}, 1.81 \mathrm{mmol}, 76 \%$).
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$. MW: $344.35 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.28(m, 10 \mathrm{H}, \mathrm{ArH})$, $4.71(d, 1 \mathrm{H}$, $J=3.0 \mathrm{~Hz}, \mathrm{CHNHTf}), 4.41\left(d, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{CHNH}_{2}\right), 3.07$ (br, $3 \mathrm{H}, \mathrm{NH}_{2}$ and NHTf).

The analytical data of $\mathbf{9 b}$ is in agreement with the literature. ${ }^{16}$

Synthesis of the Imidazols

(R)-2-(Imidazol-1-yl)-2'-hydroxy-1,1'-binaphthyl (6)

6

Imidazole derivative 6 was synthesized according to procedure by Crabtree et al. ${ }^{17}(R)-2,2$ - Diamino-1,1'binaphthyl 5 ($0.807 \mathrm{~g}, 2,84 \mathrm{mmol}, 1.0$ equiv) was added to 20 mL of demineralized water, followed by two drops of concentrated $\mathrm{H}_{3} \mathrm{PO}_{4}$ and the reaction mixture was stirred for 5 min at room temperature. Afterwards 40% aqueous glyoxal solution ($1.62 \mathrm{~mL}, 2.058 \mathrm{~g}, 14.18 \mathrm{mmol}, 5.0$ equiv), paraformaldehyde ($0.426 \mathrm{~g}, 14.18 \mathrm{mmol}, 5$ equiv) and dioxane (20 mL) were added. The reaction mixture was heated to $80^{\circ} \mathrm{C}$, ammonium chloride ($0.759 \mathrm{~g}, 14.2 \mathrm{mmol}, 5.0$ equiv) was added and refluxing was continued for 5 h . After cooling to room temperature, the mixture was treated with 20 mL of saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$-solution and the product was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic fractions were dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified via column chromatography on silica gel (acetone/ $\mathrm{MeOH}, 10 / 1$) to yield the pure product 6 as a slightly yellow solid ($0.529 \mathrm{~g}, 1.57 \mathrm{mmol}, 55 \%$).
$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$. MW: $336.39 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.46(b r, 1 \mathrm{H}, \mathrm{OH}), 8,06(d, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$, ArH), 7.99 ($d, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{ArH}$), 7.87-7.79 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCHN}$ and ArH), 7.60-7.49 ($\mathrm{m}, 3 \mathrm{H}, \operatorname{ArH}$), 7.45-7.33 (m , 2H, ArH), 7.32-7.24 ($m, 1 \mathrm{H}, \mathrm{ArH}$), 7.22-7.14 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}$), 6.89 ($d, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \operatorname{ArH}$), 6.86 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHN}$), $6.83(m, 1 H, C H N), 6.74(d, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$.

The analytical data of 6 is in agreement with the literature. ${ }^{17}$

2-(1H-Imidazol-1-yl)ethan-1-ol (15)

15

Imidazole ($0.60 \mathrm{~g}, 8.81 \mathrm{mmol}, 1.0$ equiv) was added to a solution of $\mathrm{NaOEt}(1.44 \mathrm{~g}, 21.15 \mathrm{mmol}, 2.4$ equiv) in absolute ethanol (10 mL) and heated for 30 min to reflux. Subsequently, 2-chloroethanol (1.18 mL , $1.42 \mathrm{~g}, 17.63 \mathrm{mmol}, 2.0$ equiv) was added dropwise to the reaction mixture and refluxing was continued for 12 h . The resulting suspension was filtered and the solvent was removed under reduced pressure to
yield a sticky oil. The crude product was purified via column chromatography on silica (EE/MeOH 10/1 to $5 / 1$) to yield product 15 as slightly yellow oil ($0.298 \mathrm{~g}, 2.64 \mathrm{mmol}, 30 \%$).
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$. MW: $112.13 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 6.92-6.84(\mathrm{~m}, 2 \mathrm{H}$, NCHCHN), $4.38(b r, 1 \mathrm{H}, \mathrm{OH}), 4.02\left(t, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.85\left(\left(t, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\right.$.

The analytical data of $\mathbf{1 5}$ is in agreement with the literature. ${ }^{18}$

2-(2-Methyl-1H-imidazol-1-yl)ethan-1-ol (16)

16

2-Methyl-1H-imidazole ($0.852 \mathrm{~g}, 10.37 \mathrm{mmol}, 1.0$ equiv), dissolved in anhydrous DMF (2 mL), was added dropwise to a suspension of $\mathrm{NaH}(0.453 \mathrm{~g}, 10.37 \mathrm{mmol}, 1.0 \mathrm{eq})$ in anhydrous DMF (10 mL). The mixture was stirred for 60 min at $90^{\circ} \mathrm{C}$, then cooled to $0^{\circ} \mathrm{C}$. 2-chloroethanol ($0.696 \mathrm{~mL}, 0.835 \mathrm{~g}, 10.37 \mathrm{mmol}$, 1.0 equiv), dissolved in anhydrous DMF (2 mL), was added dropwise and the mixture was heated again to $90^{\circ} \mathrm{C}$ for 12 h . The resulting suspension was filtered, the filter cake was washed with 10 mL ethanol and the solvent was removed under reduced pressure. The crude product was purified via column chromatography on silica ($\mathrm{EE} / \mathrm{MeOH} 15 / 1$ to $5 / 1$). The isolated material still contained 5% starting material as an impurity which was removed via Kugelrohr distillation ($100^{\circ} \mathrm{C}, 3.5 \times 10^{-1} \mathrm{mbar}$). The analytically pure product 16 ($0.943 \mathrm{~g}, 8.42 \mathrm{mmol}, 81 \%$) was isolated as a slightly yellow solid.
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$. MW: $126.16 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=80-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.01(d, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{NCH})$, $6.80(d, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{NCH}), 4.01\left(t, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.78\left(t, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=146.3,126.7,121.1,62.4,12.6$. IR (solid): $\tilde{v}=3127,3106,2963,2932$, 2828, 1530, 1501, 1425, 1352, 1291, 1073, 761, $682 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$ 127.0866, measured 127.0858.

1-(2-Methoxyphenyl)-1H-imidazole (17)

17

An aqueous solution of formaldehyde ($2.11 \mathrm{~mL}, 28.4 \mathrm{mmol}, 1.0$ equiv, 37% in water) and an aqueous solution of glyoxal ($3.25 \mathrm{~mL}, 28.4 \mathrm{mmol}$, 1.0 equiv, 40% in water) were dissolved in acetic acid (10 mL) and the resulting solution was heated to $70^{\circ} \mathrm{C}$. o-Anisidine ($3.20 \mathrm{~mL}, 28.4 \mathrm{mmol}, 1.0$ equiv), ammonium acetate ($2.19 \mathrm{~g}, 28.4 \mathrm{mmol}, 1.0$ equiv) and acetic acid (10 mL) were suspended in a beaker and added to the reaction. The beaker was rinsed with a mixture of water (1 mL) and acetic acid (3 mL) transferring all material to the reaction mixture, which was stirred at $70^{\circ} \mathrm{C}$ overnight. The mixture was cooled to room temperature and was poured in a saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$. A small amount of potassium hydroxide was added to raise the pH over 8 and the suspension was extracted with THF ($3 \times 100 \mathrm{~mL}$), the combined organic layers were washed with brine and dried over MgSO_{4}, and the solvent was removed under reduced pressure. The crude product was purified via column chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 60 / 1\right.$ to $\left.40 / 1\right)$ to yield 17 as a brownish oil ($2.50 \mathrm{~g}, 14.35 \mathrm{mmol}, 51 \%$).
$\mathbf{C}_{10} \mathrm{H}_{10} \mathbf{N}_{2} \mathrm{O}$. MW: $174.20 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta=7.78(t, 1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}, \mathrm{NCHN})$, 7.39-7.31(m, $1 \mathrm{H}, \mathrm{ArH}), 7.28(d d, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, \mathrm{ArH}), 7.20(t, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}, \mathrm{NCH}), 7.16(t, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}, \mathrm{NCH})$, 7.07-7.00 ($m, 2 \mathrm{H}, \mathrm{ArH}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.

The analytical data of $\mathbf{1 7}$ is in agreement with the literature. ${ }^{19}$

2-(1H-Imidazol-1-yl)phenol (18)

18

To 1-(2-methoxyphenyl)-1H-imidazole $17(2.50 \mathrm{~g}, 14.35 \mathrm{mmol}, 1.0$ equiv) was added 47% aqueous hydrobromic acid ($16.7 \mathrm{~mL}, 24.71 \mathrm{~g}, 143.51 \mathrm{mmol}, 10.0$ equiv) and the mixture was refluxed for 48 h under N_{2}-atmosphere. After 24 h additional 47% aqueous hydrobromic acid ($16.7 \mathrm{~mL}, 24.71 \mathrm{~g}, 143.51 \mathrm{mmol}$, 10 equiv) was added. Afterwards the reaction mixture was neutralized by adding saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$, the product precipitated as a beige solid and was collected by filtration. The crude product was purified via Soxhlet extraction using chloroform (100 mL) as solvent. The pure product precipitated in the still pot, was filtered off, washed with chloroform (50 mL) and dried in vacuo. The product 18 was isolated as a greyish solid ($0.851 \mathrm{~g}, 5.31 \mathrm{mmol}, 37 \%$).
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$. MW: $160.17 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$): $\delta=10.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.92(t, 1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}$, $N C H N), 7.44(t, 1 H, J=1.1 \mathrm{~Hz}, \mathrm{NCH}), 7.32(d d, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, \mathrm{ArH}), 7.25-7.18(m, 1 \mathrm{H}, \mathrm{ArH}), 7.08-7.02$ ($m, 2 \mathrm{H}, \mathrm{ArH}$ and NCH), 6.94-6.87 (m, 1H, ArH).

The analytical data of 18 is in agreement with the literature. ${ }^{20}$

2'-Methoxy-[1,1'-biphenyl]-2-amine (19)

19

The preparation of 19 was performed as described in the literature. ${ }^{21}$ To a 50 mL round bottom flask was added $\mathrm{K}_{2} \mathrm{CO}_{3}\left(1.96 \mathrm{~g}, 14.2 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.164 \mathrm{~g}, 0.142 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, 2-bromoaniline ($0.80 \mathrm{~mL}, 1.22 \mathrm{~g}, 0.709 \mathrm{mmol}, 1.0$ equiv), 2-methoxyphenylboronic acid ($1.62 \mathrm{~g}, 1.06 \mathrm{mmol}, 1.5$ equiv), demineralized water $(2 \mathrm{~mL})$, THF (14 mL), and toluene $(3.5 \mathrm{~mL})$. The reaction mixture was stirred for 12 h at $80^{\circ} \mathrm{C}$. Afterwards the reaction mixture was concentrated under reduced pressure and the residue was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified via column chromatography (petroleum ether/ethyl acetate, $5 / 1$ to $3 / 1$) to yield the product 19 as a white solid ($0.784 \mathrm{~g}, 3.93 \mathrm{mmol}, 56 \%$).
$\mathbf{C}_{13} \mathbf{H}_{13}$ NO. MW: $199.25 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=7.36(m, 1 \mathrm{H}, \mathrm{ArH}), 7.27(d, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$, $\operatorname{ArH}), 7.18(t, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.11(d, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.05(t, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.01(d, 1 \mathrm{H}$, $J=8.2 \mathrm{~Hz}, \operatorname{ArH}), 6.84(t, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.78(d, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 3.817 .01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.68(s$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{NH}_{2}$).

The analytical data of 14 is in agreement with the literature. ${ }^{21}$

1-(2'-Methoxy-[1,1'-biphenyl]-2-yl)-1H-imidazole (20)

20

Amine 19 ($559 \mathrm{mg}, 2.80 \mathrm{mmol}, 1.0$ equiv) was dissolved in methanol (5.0 mL) in a 50 mL round-bottomed flask, then glyoxal ($322 \mathrm{~mL}, 407 \mathrm{mg}, 2.80 \mathrm{mmol}, 1.0$ equiv, 40% in water) was added and the reaction
mixture was stirred for 2 h at room temperature. Afterwards ammonium chloride ($300 \mathrm{mg}, 5.61 \mathrm{mmol}$, 2.0 equiv) followed by paraformaldehyde ($417 \mathrm{~mL}, 455 \mathrm{mg}, 5.61 \mathrm{mmol}, 2.0$ equiv, 37% in water) were added and the reaction mixture was refluxed for one hour. Then phosphoric acid ($3.78 \mathrm{~mL}, 646 \mathrm{mg}$, $0.561 \mathrm{mmol}, 2.0$ equiv 85% in water) was added and refluxing was continued for 12 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was basicified with 40% aqueous potassium hydroxide. The aqueous mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified via column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 30 / 1\right.$ to 20/1) and the product 20 was isolated as yellowish oil ($0.139 \mathrm{~g}, 0.555 \mathrm{mmol}, 20 \%$).
$\mathrm{C}_{16} \mathrm{H}_{14} \mathbf{N}_{2} \mathrm{O} . \mathrm{MW}: 250.30 \mathrm{~g} / \mathrm{mol}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}$, NCHN and ArH), 7.31-7.27 ($m, 1 \mathrm{H}, \mathrm{ArH}$), $7.17(d d, 1 \mathrm{H}, \mathrm{J}=7.5,1.7 \mathrm{~Hz}, \mathrm{ArH}), 6.97(t, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.92$ ($s, 1 \mathrm{H}, \mathrm{NCHCHN}$), 6.80-6.76 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCHCHN}$ and ArH), $3.49\left(s, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): δ $=156.5,137.4,136.6,134.5,132.2,130.9,129.8,128.69,128.67,128.2,127.1,125.4,120.9 ., 120.1,110.7$, 55.3. IR (solid): $\tilde{v}=3394,3115,3067,2927,2836,2156,1596,1508,1461,1434,1296,1275,1245,1118$, 1059, 1025, $757 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$251.1179, measured 251.1185.

2'-(1H-Imidazol-1-yl)-[1,1'-biphenyl]-2-ol (21)

21

Imidazole 20 ($139 \mathrm{mg}, 0.543 \mathrm{mg}, 1.0$ equiv) and hydrobromic acid ($1.0 \mathrm{~mL}, 1.50 \mathrm{~g}, 16.0$ equiv, 47% in water) were refluxed for 48 h . The reaction mixture was neutralized with saturated aqueous $\mathrm{NaHCO}_{3}{ }^{-}$ solution (5 mL) and the aqueous suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. After drying over MgSO_{4}, the solvent was removed under reduced pressure to yield the pure product 21 as a slightly brown solid ($126 \mathrm{mg}, 0.533 \mathrm{mmol}, 98 \%$).
$\mathrm{C}_{15} \mathrm{H}_{12} \mathbf{N}_{2} \mathbf{O}$. MW: $236.27 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=190-191{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta=10.63(\mathrm{br}, 1 \mathrm{H}, \mathrm{ArOH}), 7.61$ ($s, 1 \mathrm{H}, \mathrm{NCHN}$), 7.52-7.46 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), 7.36 ($d, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArH}$), 7.18-712 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 6.88-6.81 (m , $3 \mathrm{H}, \mathrm{NCHCHN}$ and ArH), 6.69 ($s, 1 \mathrm{H}, \mathrm{NCHCHN}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.3,137.5,136.4,135.9$, 132.1, 130.7, 129.7, 128.9, 128.5, 126.9, 125.8, 125.7, 120.7, 119.4, 116.2. IR (solid): $\tilde{v}=3061,2926,2854$, 2692, 2590, 1730, 1594, 1506, 1444, 1400, 1290, 1240, 1107, 1063, 755, $733 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$237.1022, measured 237.1011.

Synthesis of the Aldehydes

(R)-3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3ium chloride (8)

8

Aldehyde 8 was prepared according to GP1, using 3-(chloromethyl)-5-(tert-butyl)-2-hydroxybenzaldehyde 7 ($0.318 \mathrm{~g}, 1.41 \mathrm{mmol}, 1.0$ equiv) and (R)-2-(imidazol-1-yl)-2'-hydroxy-1, 1^{\prime}-binaphthyl 6 (0.473 g , $1.41 \mathrm{mmol}, 1.0$ equiv) in dichloromethane (10 mL). The imidazolium salt 8 was isolated as a beige solid ($0.789 \mathrm{~g}, 1.40 \mathrm{mmol},>99 \%$).
$\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{3} . \mathrm{MW}: 563.09 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=194-195^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=14.9\left(\mathrm{c}=0.12 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArOH}), 10.13(\mathrm{~b}, 1 \mathrm{H}, \mathrm{ArOH}), 9.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 8.21$ $(d, 1 H, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 8.03(d, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \operatorname{ArH}), 7.95(d, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.71(t, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{ArH})$, 7.59-7.51 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), 7.41-7.32 ($\mathrm{m}, 2 \mathrm{H}, \operatorname{ArH}$), $7.19(t, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \operatorname{ArH}$), 7.13-7.07 (m, 1H, ArH), $7.12(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NCHCHN}), 6.80(s, 1 \mathrm{H}, \mathrm{NCHCHN}), 6.75(d, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \operatorname{ArH}), 5.56(d, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}, \operatorname{ArCHH}), 5.47(d$, $1 \mathrm{H}, \mathrm{J}=14.0 \mathrm{~Hz}, \mathrm{ArCHH}), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.6,157.4,153.8,144.2$, 137.7, 137.1, 134.1, 133.5, 133.2, 132.5, 1311.4, 131.3, 130.8, 130.2, 128.5, 128.45, 128.38, 128.1, 127.8, 126.9, 123.4, 123.2, 122.7, 122.4, 121.9, 121.4, 120.4, 120.3, 113.6, 47.9, 34.6, 31.4. IR (solid): $\tilde{v}=3053$, 2958, 2869, 1651, 1622, 1507, 1478, 1433, 1344, 1274, 1207, 1099, 817, 748, 723, $627 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 527.2329$, measured 527.2332.
3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (22)

22

Aldehyde 22 was prepared according to GP1, using 3-(chloromethyl)-5-(tert-butyl)-2hydroxybenzaldehyde 7 ($0.626 \mathrm{~g}, 2.76 \mathrm{mmol}, 1.0$ equiv) and 1-methylimidazole ($0.228 \mathrm{~g}, 2.76 \mathrm{mmol}$, 1.0 equiv) in acetonitrile (10 mL). The imidazolium salt 22 was isolated as a beige solid ($0.663 \mathrm{~g}, 2.15 \mathrm{mmol}$, 78\%).
$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}$. MW: $308.81 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.45$ (br, $1 \mathrm{H}, \mathrm{OH}$), $11.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN})$, $9.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 7.07(\mathrm{~s}, 1 \mathrm{H}$, CHN), $5.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

The analytical data of $\mathbf{1 7}$ is in agreement with the literature. ${ }^{22}$

3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (23)

23

Aldehyde 23 was prepared according to GP1, using 3-(chloromethyl)-5-(tert-butyl)-2hydroxybenzaldehyde $7(0.307 \mathrm{~g}, 1.35 \mathrm{mmol}, 1.0 \mathrm{equiv})$ and 2-(1H-imidazol-1-yl)ethan-1-ol 15 (0.152 g , $1.35 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (5 mL). The crude product was dissolved in acetone (1 mL) and precipitated in diethylether $(30 \mathrm{~mL})$. The product 23 was isolated as a beige solid ($0.355 \mathrm{~g}, 1.04 \mathrm{mmol}$, 77\%).
$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} . \mathrm{MW}: 338.83 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=207-208{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=9.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 9.07$ ($s, 1 \mathrm{H}, \mathrm{NCHN}$), 7.91-7.84 (m, 2H, ArH), $7.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHCHN}), 7.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHCHN}), 5.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right)$, $4.29\left(t, 2 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.85\left(t, 2 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz,
$\left.\mathrm{CDCl}_{3}\right): \delta=198.9,158.4,144.9,138.1,136.7,133.2,124.1,123.7,122.7,122.1,61.0,53.30,53.28,35.2$, 31.6. IR (solid): $\tilde{v}=3130,3067,2953,2861,1650,1560,1469,1440,1383,1270,1223,1152,1063,1008$, 763, 720, $632 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 303.1703$, measured 303.1709

3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride

 (24)

24

Aldehyde 24 was prepared according to GP1, using 3-(chloromethyl)-5-(tert-butyl)-2hydroxybenzaldehyde $7(0.243 \mathrm{~g}, 1.07 \mathrm{mmol}, 1.0$ equiv) and 2-(2-methyl-1H-imidazol-1-yl)ethan-1-ol 16 ($0.135 \mathrm{~g}, 1.07 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (5 mL). The imidazolium salt $\mathbf{2 4}$ was isolated as yellow oil ($0.275 \mathrm{~g}, 0.78 \mathrm{mmol}, 73 \%$).
$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} . \mathrm{MW}: 352.86 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.19(\mathrm{br}, 1 \mathrm{H}, \mathrm{ArOH}), 9.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$, $7.88(d, 1 H, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.58(d, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.53(d, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{NCHCHN}), 7.30(d, 1 \mathrm{H}$, $J=2.1 \mathrm{~Hz}, \mathrm{NCHCHN}), 5.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.29\left(t, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.87\left(t, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, $2.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta=196.7,157.5,144.8,143.8,136.4$, 131.3, 122.0, 121.5, 121.2, 120.5, 60.3, 51.5, 47.3, 34.4, 31.3, 11.0. IR (solid): $\tilde{v}=3280,2958,2870,1651$, 1478, 1426, 1385, 1274, 1219, 1075, 1008, $733,673 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}$ 317.1860, measured 317.1846.
(R)-5-(tert-Butyl)-2-hydroxy-3-(((2'-hydroxy-[1,1'-binaphthalen]-2-yl)oxy)methyl)benzaldehyde (25)

To a stirred suspension of $\mathrm{NaH}(0.155 \mathrm{~g}, 3.56 \mathrm{mmol}, 2.0$ equiv) in anhydrous THF (2.5 mL) in a Schlenk-flask was added a solution of (\boldsymbol{R})-BINOL ($0.509 \mathrm{~g}, 1.78 \mathrm{mmol}, 1.0$ equiv) dissolved in anhydrous THF (3.0 mL). After stirring the reaction mixture for 30 min , a solution of the aldehyde 7 ($0.403 \mathrm{~g}, 1.78 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (3.0 mL) was added dropwise and stirring was continued for 12 h at room temperature. Afterwards the solvent was removed under reduced pressure and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. The organic layer was washed with aqueous $1 \mathrm{M} \mathrm{HCl}(2 x 5 \mathrm{~mL})$, water $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified via column chromatography on silica with petroleum ether/ethyl acetate ($15 / 1$ to $10 / 1, R_{f}(6 / 1)=0.35$) as eluent and the product 25 was isolated as slightly beige foam ($0.451 \mathrm{~g}, 0.95 \mathrm{mmol}, 53 \%$).
$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{4} . \mathrm{MW}: 476.56 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=147-148^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=4.5\left(\mathrm{c}=0.13 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=11.10(b r, 1 \mathrm{H}, \mathrm{OH}), 9.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8: 07(d, 1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}, \mathrm{ArH}), 7.95-7.82(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.62$ $(d, 1 H, J=9.1 \mathrm{~Hz}, \mathrm{ArH}), 7.43-7.26(m, 5 H, \operatorname{ArH}), 7.25-7.08(m, 4 \mathrm{H}, \mathrm{ArH}), 5.52(d, 1 \mathrm{H}, \mathrm{J}=13.2 \mathrm{~Hz}, \operatorname{ArCHH})$, $5.16(d, 1 \mathrm{H}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{ArCHH}), 4.94(\mathrm{~s}, 1 \mathrm{H}$, Naphty OH$), 1.01\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl $\left.)_{3}\right): \delta=$ $197.0,156.2,154.9,151.4,142.8,134.2,133.9,132.9,131.3,130.0,129.8,129.3,128.6,128.34,128.31$, 127.5, 126.7, 125.11, 125.07, 125.0, 124.5, 123.4, 119.4, 117.7, 116.1, 115.2, 114.9, 64.7, 34.1, 31.1. IR (solid): $\tilde{v}=3428,3056,2962,2868,1651,1620,1592,1463,1381,1265,1215,1090,814,747,732 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{4}\right]^{+}$499.1880, measured 499.1872.

3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (26)

Aldehyde 26 was prepared according to GP1, using 3-(chloromethyl)-5-(tert-butyl)-2hydroxybenzaldehyde 7 ($96.2 \mathrm{mg}, 0.424 \mathrm{mmol}, 1.0$ equiv) and 2'-(1H-Imidazol-1-yl)-[1,1'-biphenyl]-2-ol 21 ($100.3 \mathrm{mg}, 0.424 \mathrm{mmol}, 1.0$ equiv) in a solvent mixture of acetonitrile (1 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL). The imidazolium salt 26 was isolated as a beige solid ($0.105 \mathrm{~g}, 0.227 \mathrm{mmol}, 53 \%$).
$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3} . \mathrm{MW}: 462.97 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=251^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=9.99(\mathrm{~s}, 1 \mathrm{H}$, CHO), 8.84 ($s, 1 \mathrm{H}, \mathrm{NCHN}$), 7.87-7.81 ($m, 2 \mathrm{H}, \mathrm{ArH}$), 7.69-7.57 ($m, 4 \mathrm{H}, \mathrm{ArH}$), $7.63(t, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{NCHCHN}$), $7.50(d, 1 H, J=7.3 \mathrm{~Hz}, \mathrm{NCHCHN}), 7.14(d, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.08(t, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 6.81(t, J=7.5 \mathrm{~Hz}, \mathrm{ArH})$, $6.58(d, J=8.1 \mathrm{~Hz}, \operatorname{ArH}), 5.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{MeOD}$): $\delta=199.0$, $158.3,155.3,144.8,138.3,136.7,136.6,135.5,133.4,133.3,132.0,131.8,131.4,130.1,126.6,125.1$, 124.6, 123.1, 122.3,122.1, 121.0,116.3, 49.3, 35.2, 31.6. IR (solid): $\tilde{v}=3064,2959,1651,1481,1445,1365$, 1273, 1219, 1104, 1073, 834, $758,632 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 427.2016$, measured 427.2030.

3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (27)

27

Aldehyde 27 was prepared according to GP1, using 3-(chloromethyl)-5-(tert-butyl)-2hydroxybenzaldehyde $7(0.182 \mathrm{~g}, 0.803 \mathrm{mmol}, 1.0$ equiv) and 2-(1 H -imidazol- 1 -yl)phenol 18 (0.129 g , $0.803 \mathrm{mmol}, 1.0$ equiv) in a solvent mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and methanol ($10 / 1,1.5 \mathrm{~mL}$). The reaction mixture was washed with aqueous $1 \mathrm{M} \mathrm{HCl}(2 \times 5 \mathrm{~mL})$, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Afterwards the purification of the crude product was continued as described in GP1 to yield a beige solid ($0.171 \mathrm{~g}, 0.442 \mathrm{mmol}, 73 \%$)
$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} . \mathrm{MW}: 386.88 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=137^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right): \delta=11.39(b r, 1 \mathrm{H}$, $\mathrm{OH}), 9.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}$ and $\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}) ; 8: 35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{ArH}), 7.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}$, $\operatorname{ArH}), 7.41(s, 1 \mathrm{H}, \mathrm{CHN}), 7.22(d, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \operatorname{ArH}), 7.12(t, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \operatorname{ArH}), 6.76(t, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$, $5.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.9,157.6,150.8,144.4,137.5$, 136.3, 131.7, 131.3, 124.1, 123.0, 122.4, 121.8, 121.7, 120.4, 119.9, 119.1, 48.0, 34.6, 31.4 IR (solid): $\tilde{v}=$ $3057,2963,2868,1655,1623,1456,1509,1478,1433,1345,1275,1216,1099,819,729 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 351.1703$, measured 351.1693.

Synthesis of Imine-Ligands

3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-((R)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1a)

Imine L1a was prepared according to GP3, using aldehyde $8(44.59 \mathrm{mg}, 0.0792 \mathrm{mmol}, 1.0$ equiv), amine 9a ($27.27 \mathrm{mg}, 0.0792 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The product L 1 a was isolated as a yellow solid ($58.1 \mathrm{mg}, 0.0653 \mathrm{mmol}, 82 \%$).
$\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} . \mathrm{MW}: 889.43 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=224-225^{\circ} \mathrm{C} .\left[\alpha_{D}^{20}\right]=120.8\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.08$ (br, 1H, ArOH), 10.58 (br, 1H, NHTf), $9.81(b r, 1 \mathrm{H}, \mathrm{ArOH}), 9.39(s, 1 \mathrm{H}, \mathrm{NCHN})$, $8.21(s, 1 H, C H N), 8.05(d, 1 H, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.95(d, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.65-7.49(\mathrm{~m}$, 5H, ArH), 7.40-7.31 ($m, 5 \mathrm{H}, \mathrm{ArH}$), 7.19-7.04 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}$), 7.01-6.97 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), $6.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCCHN})$, $6.79(s, 1 H, N H C C H N), 6.77(d, 1 H, J=8.2 H z, A r H), 5.64(d, 1 H, J=13.8 \mathrm{~Hz}, \operatorname{ArCHH}), 5.42(d, 1 H, J=10.6 \mathrm{~Hz}$, CNCHAr), $5.29(d, 1 H, J=13.8 \mathrm{~Hz}, \operatorname{ArCHH}), 4.93(d, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \operatorname{ArCHNHTf}), 1.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=78.0 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.8,157.1,153.4,141.7$, 140.4, 139.5, 138.3, 136.8, 134.2, 133.6, 133.2, 132.9, 132.4, 131.6, 130.7, 130.1, 129.5, 129.0, 128.6, 128.4, $128.19,128.17,128.08,128.05,128.0,127.8,127.61,127.60,126.9,123.6,123.1,122.62,122.59,122.4$, 120.8., 119.9, $119.5\left(q, \mathrm{~J}=321.8 \mathrm{~Hz}, C F_{3}\right.$), 118.2, 113.8, 73.6, 65.7, 48.3, 34.2, 31.5.IR (solid): $\tilde{v}=3143$, $3060,3032,2962,2870,1628,1509,1479,1371,1275,1226,1193,1147,1050,817,750,732,699 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$853.3030, measured 853.3032.

3-(5-(tert-Butyl)-3-((E)-(((1S,2S)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)-methyl)-2-hydroxybenzyl)-1-((R)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1b)

L1b

Imine L1b was prepared according to GP3, using aldehyde $\mathbf{8 (2 3 9 . 6 ~} \mathbf{~ m g}, 0.425 \mathrm{mmol}, 1.0$ equiv), amine 9b ($146.5 \mathrm{mg}, 0.425 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The product L 1 b was isolated as a yellow solid ($360.1 \mathrm{mg}, 0.405 \mathrm{mmol}, 95 \%$).
$\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} . \mathrm{MW}: 889.43 \mathrm{~g} / \mathrm{mol} \mathrm{MP}=192^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=41.8$ (c=0.15 g/dl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.00(b r, 1 \mathrm{H}, \mathrm{ArOH}), 9.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 8.27(s, 1 \mathrm{H}, \mathrm{CHN}), 8.01(d, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, $\operatorname{ArH}), 7.90(d, 1 H, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 7.74-7.63(m, 4 \mathrm{H}, \mathrm{ArH}), 7.54(t, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \operatorname{ArH}), 7.49(d, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, ArH), 7.45-7.31 (m, 4H, ArH), $7.22(t, 1 H, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.19(s, 1 \mathrm{H}, \mathrm{NHCCHN})$, 7.16-7.07 ($m, 7 \mathrm{H}, \mathrm{ArH}$), 7.05-7.01 (m, 2H, ArH), $6.92(s, 1 H, \operatorname{ArH}), 6.76(d, 1 H, J=8.4 H z, A r H), 6.69(s, 1 H, N H C C H N), 5.69(d, 1 H$, $J=13.7 \mathrm{~Hz}, \mathrm{ArCHH}), 5.32(d, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}, \mathrm{CNCHAr}), 5.19(d, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}, \operatorname{ArCHH}), 5.32(d, 1 \mathrm{H}$, $J=10.0 \mathrm{~Hz}, \operatorname{ArCHNHTf}), 1.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=77.6 .{ }^{13} \mathrm{C} \mathbf{N M R}(176 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=167.5,157.5,153.3,141.5,138.8,138.2,136.2,134.2,133.5,133.2,132.6,131.8,131.6,131.0$, $130.1,130.0,129.0,128.8,128.7,128.63,128.56,128.4,128.3,128.2,128.14,128.09,127.9,127.7,127.1$, $123.5,123.4,122.5,122.42,122.37,120.7,119.8,119.6\left(q, \mathrm{~J}=321.5 \mathrm{~Hz}, C F_{3}\right), 118.7,118.2,116.9,113.3$, 74.9, 65.8, 49.1, 34.1, 31.4. IR (solid): $\tilde{v}=3058,3031,2958,2866,1626,1600,1478,1434,1369,1345$, 1225, 1187, 1145, 1048, 937, 816, 749, 698, $598 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$ 853.3030, measured 853.3008.

N-((1R,2R)-2-(((E)-3,5-Di-tert-butyl-2-hydroxybenzylidene)amino)-1,2-diphenylethyl)-1,1,1trifluoromethanesulfonamide (L2)

L2

Imine L2 was prepared according to GP3, using 3,5-di-tert-butyl-2-hydroxybenzaldehyde (42.29 mg, 0.181 mmol, 1.0 equiv), amine 9a ($27.27 \mathrm{mg}, 0.181 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL). The product L2 was purified via column chromatography (petroleum ether/ethyl acetate 20/1 to 10/1) and was isolated as a slightly yellow solid ($64.0 \mathrm{mg}, 0.114 \mathrm{mmol}, 63 \%$).
$\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} . \mathrm{MW}: 560.68 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=114-115^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=18.4\left(\mathrm{c}=0.22 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=12.85(b r, 1 \mathrm{H}, \mathrm{ArOH}), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 7.41(d, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{ArH}), 7.36-7.22(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{ArH}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{ArH}), 5.86(\mathrm{br}, 1 \mathrm{H}, \mathrm{NHTf}), 5.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}$, CNCHAr), $4.63(d, 1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, \operatorname{ArCHNHTf}), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}) : $\delta=77.5 .{ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.5,157.9,140.8,138.3,137.5,137.1,129.0,128.8$, $128.5,128.4,127.7,127.0,126.8,119.6\left(q, \mathrm{~J}=336.5 \mathrm{~Hz}, C F_{3}\right), 117.6,78.4,64.8,35.3,34.3,31.5,29.6$. IR (Solid): $\tilde{v}=3270,2958,1619,1596,1455,1436,1371,1228,1196,1141,1048,1027,757,696 \mathrm{~cm}^{-1}$, HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}\right]^{+}$583.2213, measured 583.2301.

3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (L3)

L3

Imine L3 was prepared according to GP3, using 3-(5-(tert-butyl)-3-formyl-2-hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride ($31.70 \mathrm{mg}, 0.1037 \mathrm{mmol}, 1.0$ equiv), amine 9 a ($35.70 \mathrm{mg}, 0.1037 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL). The product L 3 was isolated as a yellow solid ($42.1 \mathrm{mg}, 0.0663 \mathrm{mmol}, 64 \%$).
$\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} . \mathrm{MW}: 635.14 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=188-189^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=114\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, MeOD): $\delta=8.99(s, 1 \mathrm{H}, \mathrm{NCHN}), 8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$ and NHCCHN$)$, 7.54$7.51(m, 2 H, \operatorname{ArH}$ and NHCCHN), 7.23-7.14 (m, 8H, ArH), 7.12-7.08 (m, 2H, $\operatorname{ArH}), 5.53(d, 1 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}$, $\operatorname{ArCHH}), 5.38(d, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}, \mathrm{ArCHH}), 4.96(d, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{CNCHAr}), 4.62(d, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}$, ArCHNHTf), 3.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$). $1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=80.1$. ${ }^{13} \mathrm{C}$ NMR (176 MHz, MeOD): $\delta=168.3,158.3,143.5,140.4,139.3,132.5,131.5,129.6,129.4,129.1,129.0,128.7$, $124.7,124.6,123.9,123.8,122.1,120.9\left(q, \mathrm{~J}=320.6 \mathrm{~Hz}, C F_{3}\right), 120.0,79.6,66.6,36.45,36.42,35.1,31.7$. IR (Solid): $\tilde{v}=2957,1628,1455,1367,1281,1225,1188,1147,1049,955,758,699,598 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right]^{+}$599.2298, measured 599.2281.

3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (L4)

L4

Imine L4 was prepared according to GP3, using aldehyde 23 ($31.52 \mathrm{mg}, 0.0930 \mathrm{mmol}, 1.0$ equiv), amine 9a $\left(32.03 \mathrm{mg}, 0.0930 \mathrm{mmol}, 1.0\right.$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. The product $\mathrm{L4}$ was isolated as a yellow solid ($38.8 \mathrm{mg}, 0.0583 \mathrm{mmol}, 63 \%$).
$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} . \mathrm{MW}: 665.17 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=250-251{ }^{\circ} \mathrm{C} .\left[\alpha_{D}^{20}\right]=20.2\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}$ (500 MHz, MeOD): $\delta=9.08(s, 1 H, N C H N), 8.61(s, 1 H, C H N), 7.69(t, 1 H, J=1.7 \mathrm{~Hz}, \mathrm{NHCCHN}), 7.65(d, 1 \mathrm{H}$, $J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.62(t, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, \mathrm{NHCCHN}), 7.54(d, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.25-7.15(m, 8 \mathrm{H}, \mathrm{ArH}), 7.13-$ $7.08(m, 2 H, A r H), 5.55(d, 1 H, J=14.0 \mathrm{~Hz}, \operatorname{ArCHH}), 5.44(d, 1 \mathrm{H}, \mathrm{J}=14.0 \mathrm{~Hz}, \operatorname{ArCHH}), 4.96(d, 1 \mathrm{H}, \mathrm{J}=9.7 \mathrm{~Hz}$, CNCHAr), $4.64(d, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{ArCHNHTf}), 4.31-4.27\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.89-3.85\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, $1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, MeOD): $\delta=79.9 .{ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD): $\delta=168.2,158.6$,
143.4, 140.5, 139.8, 132.5, 131.5, 129.6, 129.3, 129.0, 128.9, 128.9, 128.7, 123.9, 123.9, 123.7, 122.1, 121.4 ($q, \mathrm{~J}=322.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 120.0, 79.7, 66.7, 61.1, 53.3, 49.8, 35.0, 31.7. IR (Solid): $\tilde{v}=2959,2666,1628$, 1600, 1469, 1367, 1282, 1224, 1186, 1147, 1047, 1027, 954, 759, 699, $598 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$629.2404, measured 629.2401.

3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-

 hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride (L5)

L5

Imine L5 was prepared according to GP3, using aldehyde $\mathbf{2 4}$ ($33.03 \mathrm{mg}, 0.0975 \mathrm{mmol}, 1.0$ equiv), amine 9a ($34.40 \mathrm{mg}, 0.0975 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The product $\mathbf{L 5}$ was isolated as a yellow solid ($43.0 \mathrm{mg}, 0.0633 \mathrm{mmol}, 65 \%$).
$\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$. MW: $679.20 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=150^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=18.2\left(\mathrm{c}=0.11 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.29(b, 1 \mathrm{H}, \mathrm{ArOH}), 8.65(s, 1 \mathrm{H}, \mathrm{CHN}), 7.37-7.35(m, 2 \mathrm{H}, \mathrm{ArH}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$ and NHCCHN), 7.17-7.05 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{ArH}$), $6.76(t, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}, \mathrm{NHCCHN}), 5.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.2 \mathrm{~Hz}, \operatorname{ArCHH}$), $5.12(d, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{CNCHAr})$, 4.93-4.88 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArCHH}$ and ArCHNHTf), 4.22-4.09 ($m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.90-3.77 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=78.3$. ${ }^{13}{ }^{1}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.5,158.2,144.8,141.4,139.3,138.6,130.6,130.3,128.6,128.35$, 128.28, 128.2, 127.9, 127.7, 122.3, 120.5, 120.2, 119.0, $75.7,65.9,59.9,51.1,48.5,34.2,31.6,10.8$. IR (solid): $\tilde{v}=3300,3033,2962,2872,1630,1601,1456,1370,1226,1191,1147,1049,732,699,600 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+} 643.2560$, measured 643.2556 .
$N-((1 R, 2 R)-2-(((E)-5-($ tert-butyl)-2-hydroxy-3-(((2'-hydroxy-[(R)-1,1'-binaphthalen]-2-yl)oxy)methyl)benzylidene)amino)-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (L6)

L6

Imine L6 was prepared according to GP3, using aldehyde $\mathbf{2 5}$ ($51.04 \mathrm{mg}, 0.107 \mathrm{mmol}, 1.0$ equiv), amine 9a ($36.88 \mathrm{mg}, 0.107 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL). The crude product was purified via crystallization. The received solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, overlaid with n -hexane $(10 \mathrm{~mL})$ and the mixture cooled to $-20^{\circ} \mathrm{C}$ overnight. The crystalline product $\mathbf{L 6}$ was separated, dried under reduced pressure and isolated as a yellow solid ($63.1 \mathrm{mg}, 0.0786 \mathrm{mmol}, 73 \%$).
$\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$. MW: $802.91 \mathrm{~g} / \mathrm{mol} . \mathbf{M P}=133^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=46.6$ (c $=0.19 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.75(b, 1 \mathrm{H}, \mathrm{ArOH}), 8.11(s, 1 \mathrm{H}, \mathrm{CHN}), 8.09(d, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{ArH}), 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.86(d, 1 H, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.69(d, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.42-7.18(m, 14 \mathrm{H}, \mathrm{ArH}), 7.16-7.08(m, 3 \mathrm{H}$, $\operatorname{ArH}), 7.03(d, 1 H, J=1.9 \mathrm{~Hz}, \operatorname{ArH}), 6.93(d, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \operatorname{ArH}), 5.71(b, 1 \mathrm{H}, \operatorname{ArOH}), 5.37(d, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}$, ArCHH), $5.19(d, 1 H, J=12.8 \mathrm{~Hz}, \operatorname{ArCHH}), 5.07(d, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}, \mathrm{CNCHAr}), 4.64(d, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}$, ArCHNHTf), $1.00\left(s, 9 H, C\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=77.4 .{ }^{13} \mathrm{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.6$, 155.5, 155.2, 151.4, 141.9, 138.2, 137.4, 134.3, 134.0, 131.2, 129.9, 129.7, 129.4, 129.4, 129.0, 128.8, $128.6,128.5,128.3,128.3,127.6,127.6,127.4,127.0,126.6,125.1,125.1,124.4,124.4,123.4,119.6$ (q, $\left.J=303.2 \mathrm{~Hz}, C F_{3}\right), 117.8,117.0,116.0,115.5,115.1,75.4,65.5,64.8,34.0,31.2 . \operatorname{IR}$ (solid): $\tilde{v}=3529,3313$, 3063, 2962, 1623, 1597, 1457, 1378, 1265, 1228, 1201, 1145, 1055, 734, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right]^{+} 803.2761$, measured 803.2750.

3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (L7)

Imine L7 was prepared according to GP3, using aldehyde $\mathbf{2 6}$ ($42.58 \mathrm{mg}, 0.0893 \mathrm{mmol}, 1.0$ equiv), amine 9a ($30.77 \mathrm{mg}, 0.0893 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The formed yellow solid was dissolved by addition of methanol (1 mL) and the resulting solution was the filtered over a small pad of celite ${ }^{\circledR}$. After removal of the solvent, the received solid was dissolved in chloroform (0.5 mL), overlaid with diethylether $(3 \mathrm{~mL})$ and the mixture cooled to $-20^{\circ} \mathrm{C}$ overnight. The crystalline product $\mathbf{L 7}$ was separated, dried under reduced pressure and isolated as a yellow solid ($34.6 \mathrm{mg}, 0.0438 \mathrm{mmol}, 67 \%$).
$\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{ClF}_{3} \mathbf{N}_{4} \mathrm{O}_{4} \mathrm{~S} . \mathrm{MW}: 789.31 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=235{ }^{\circ} \mathrm{C}$ (decomp.). $\left[\alpha_{\boldsymbol{D}}^{20}\right]=\ldots 40.2$ (c $=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD): $\delta=8.93(s, 1 H, N C H N), 8.65(s, 1 H, C H N), 7.71-7.55(m, 6 H, \operatorname{ArH}), 7.53-7.47(m$, $2 \mathrm{H}, \mathrm{ArH}$ and NHCCHN), 7.25-7.13 (m, 10H, ArH$), 7.09(d, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{ArH}), 7.04-6.98(m, 1 \mathrm{H}, \mathrm{ArH}), 6.67$ (b, 1H, NHCCHN), $6.61(d, 1 H, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 5.42\left(s, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 5.00(d, 1 \mathrm{H}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{CNCHAr}), 4.70(d$, $1 \mathrm{H}, \mathrm{J}=9.7 \mathrm{~Hz}, \operatorname{ArCHNHTf}), 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=79.8 .{ }^{13} \mathrm{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=168.4,158.3,155.3,143.5,140.5,139.4,138.0,136.6,135.4,133.4,132.5,132.0,131.8,131.7$, $131.3,130.1,129.6,129.4,129.1,129.0,128.7,126.6,125.0,124.9,124.6,123.1,123.0,121.6,121.1$, $120.9\left(q, J=320.6 \mathrm{~Hz}, C F_{3}\right), 120.1,116.3,79.7,66.5,49.8,35.0,31.8$. IR (solid): $\tilde{v}=2966,1631,1602,1444$, 1363, 1224, 1191, 1146, 1047, 957, 760, $729 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+} 753.2717$, measured 753.2744.

3-(5-(tert-Butyl)-3-((E)-(((1R,2R)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2-hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (L8)

L8

Imine L8 was prepared according to GP3, using aldehyde $27(45.00 \mathrm{mg}, 0.116 \mathrm{mmol}, 1.0$ equiv), amine 9a ($40.05 \mathrm{mg}, 0.116 \mathrm{mmol}, 1.0$ equiv) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL). After removing the solvent, the received solid was dissolved in chloroform (1 mL), overlaid with diethylether (10 mL) and cooled to $-20^{\circ} \mathrm{C}$ overnight. The precipitated solid was separated, dried under reduced pressure and the product $\mathbf{L 8}$ was isolated as a yellow solid ($52.5 \mathrm{mg}, 0.0736 \mathrm{mmol}, 63 \%$).
$\mathbf{C}_{36} \mathrm{H}_{36} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$. MW: $713.21 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=186{ }^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=123.0$ (c=0.21 g/dl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR (700 MHz, CDCl ${ }_{3}$) : $\delta=14.51(b r, 1 \mathrm{H}, \mathrm{ArOH}), 9.25(s, 1 \mathrm{H}, \mathrm{NCHN}), 8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.57(s, 1 H, \operatorname{ArH}), 7.47(d, 1 H, J=6.5 \mathrm{~Hz}, \mathrm{ArH}), 7.42-7.38(m, 2 H, \mathrm{ArH}), 7.17-7.07(m, 10 \mathrm{H}, \mathrm{ArH}), 7.02(d, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}, \mathrm{NHCCHN}), 6.72(d, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{NHCCHN}), 5.52(d, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}, \operatorname{ArCHH}), 5.25(d, 1 \mathrm{H}$, $J=10.1 \mathrm{~Hz}, \mathrm{CNCHAr}), 5.20(d, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}, \operatorname{ArCHH}), 5.32(d, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}, \operatorname{ArCHNHTf}), 1.11(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=78.0 .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.7,158.1,150.4,141.9$, 139.0, 138.4, 036.2, 131.5, 131.1, 130.8, 128.7, 128.5, 128.3, 128.2, 128.0, 127.8, 123.5, 122.3, 122.0, 121.8, 120.4, 119.9, $119.6\left(q, J=321.7 \mathrm{~Hz}, C F_{3}\right), 119.0,118.9,75.2,65.8,49.5,34.1,31.3 . \operatorname{IR}$ (Solid): $\tilde{v}=$ $3148,3032,2961,2869,2696,1630,1601,1465,1370,1226,1191,1147,1049,909,756,731,699,598$ cm^{-1}, HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$677.2404, measured 677.2431.

Synthesis of the Complexes

$\mathrm{Cu}(I I)$-Phenoxyimine-Complex $(S, S)(R)(C 1 b-C u)$

Complex C1b-Cu was prepared according to GP4, using ligand L1b ($281.2 \mathrm{mg}, 0.316 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($82.8 \mathrm{mg}, 0.316 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (20 mL). The complex C1b-Cu was isolated as a green solid ($299.4 \mathrm{mg}, 0.309 \mathrm{mmol}, 98 \%$).
$\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} . \mathrm{MW}: 968.98 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=228{ }^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-79.7\left(\mathrm{c}=0.21 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3393,3139,3058,3025,2952$, 2865, 1623, 1541, 1451, 1434, 1318, 1272, 1173, 1094, 1071, 814, 748, 700, $627 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$914.2169, measured 914.2167. Elemental Analysis calculated for [$\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \times 1 \mathrm{H}_{2} \mathrm{O}$]: C 61.98, H 4.58, N 5.78, found: C 61.88, H 4.65, N 5.59.

Activated $\mathrm{Cu}(I I)$-Phenoxyimine-Complex (S, S)(R) (C1b-Cu*)

C1b-Cu*

The deprotonation of the complex C1b-Cu ($40.0 \mathrm{mg}, 0.0413 \mathrm{mmol}, 1.0$ equiv) was performed according to GP5. The complex C1b-Cu* was isolated as a red brown solid ($38.7 \mathrm{mg}, 0.414 \mathrm{mmol},>99 \%$).
$\mathrm{C}_{50} \mathrm{H}_{43} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$. MW: $932.52 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=201{ }^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-867.4$ (c=0.16 g/dl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3138,3057,3026,2962,2864$, 1624, 1591, 1542, 1450, 1438, 1367, 1346, 1319, 1260, 1175, 1093, 1060, 1023, 798, 747, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$914.2169, measured 914.2157. Elemental Analysis calculated for $\left[\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \times 1 \mathrm{H}_{2} \mathrm{O} \times 1 \mathrm{THF}\right]: \mathrm{C} 64.58, \mathrm{H} 5.12, \mathrm{~N} 5.58$, found: C 64.55, H 5.11, N 5.30 .

$\mathrm{Cu}(I I)$-Phenoxyimine-Complex $(R, R)(R)(C 1 a-C u)$

$\mathrm{Cla}-\mathrm{Cu}$

Complex C1a-Cu was prepared according to GP4, using ligand L1a ($18.66 \mathrm{mg}, 0.0210 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($5.49 \mathrm{mg}, 0.0210 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (3 mL). The complex C1a-Cu was isolated as a green solid ($14.8 \mathrm{mg}, 0.0153 \mathrm{mmol}, 73 \%$).
$\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$. $\mathrm{MW}: 968.98 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=225^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=629.2$ (c=0.15 g/dl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3060,2961,1625,1543$, 1451, 1434, 1320, 1274, 1211, 1186, 1095, 1073, 909, 731, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated [$\left.\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+} 914.2169$, measured 914.2170. Elemental Analysis calculated for $\left[\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \times\right.$ $1 \mathrm{H}_{2} \mathrm{O}$]: C 61.98, H 4.58, N 5.78, found: C 61.69, H 4.55, N 5.77.

$\mathrm{Ni}(\mathrm{II})$-Phenoxyimine-Complex $(\mathrm{S}, \mathrm{S})(\mathrm{R})(\mathrm{C} 1 \mathrm{~b}-\mathrm{Ni})$

Complex C1b-Ni was prepared according to GP4, using ligand L1b ($44.30 \mathrm{mg}, 0.0498 \mathrm{mmol}, 1.0$ equiv) and nickel(II) acetylacetonate ($12.79 \mathrm{mg}, 0.0498 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (4 mL). The complex C1b-Ni was isolated as a brown solid ($44.1 \mathrm{mg}, 0.0457 \mathrm{mmol}, 92 \%$).
$\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{NiO}_{5} \mathbf{S}$. MW: $964.12 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=235{ }^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=-203.8\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR: paramagnetic species. ${ }^{13} \mathrm{C}$ NMR: paramagnetic species. IR (solid): $\tilde{v}=3142,3056,3025,2955$, $1622,1600,1544,1510,1451,1434,1323,1274,1210,1180,1095,1067,1002,957,815,749,699 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{NiF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$909.2227, measured 909.2220. Elemental Analysis calculated for [$\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{Cl} \mathrm{NiF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \times 1 \mathrm{H}_{2} \mathrm{O}$]: C 62.29, H 4.60, N 5.81, found: C 61.90, H 4.67, N 5.47.
$\mathrm{Ni}($ II)-Phenoxyimine-Complex $(R, R)(R)$ (C1a-Ni)

Complex C1a-Ni was prepared according to GP4, using ligand L1a ($25.92 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0$ equiv) and nickel(II) acetylacetonate ($7.49 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (3 mL). The complex C1a-Ni was isolated as a brown solid ($26.6 \mathrm{mg}, 0.0276 \mathrm{mmol}, 95 \%$).
$\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{NiO}_{5} \mathrm{~S}$. $\mathrm{MW}: 964.12 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=234{ }^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=53.7$ ($\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR: paramagnetic species. ${ }^{13} \mathrm{C}$ NMR: paramagnetic species. IR (solid): $\tilde{v}=3361,3060,2960,1622,1603$, 1545, 1510, 1451, 1435, 1323, 1275, 1210, 1184, 1147, 910, $732 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{NiF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+} 909.2227$, measured 909.2244.

Control Systems

$\mathrm{Cu}(\mathrm{II})$-Phenoxyimine-Complex (R, R)(C2)

C2

Complex C2 was prepared according to GP4, using ligand L2 ($19.5 \mathrm{mg}, 0.0348 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($9.56 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.05$ equiv) and anhydrous acetonitrile (2 mL). The complex C2 was isolated as a green solid ($19.1 \mathrm{mg}, 0.0298 \mathrm{mmol}, 85 \%$).
$\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{CuF}_{3} \mathbf{N}_{2} \mathrm{O}_{4} \mathrm{~S}$. $\mathbf{M W}: 640.22 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=120^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=19.7$ (c $=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H}$ NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=2955,1617,1576,1526,1450$, 1429, 1387, 1360, 1319, 1172, 1146, 1070, 1009, 939, 778, $698 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{CuF}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}\right]^{+}$644.1352, measured 644.1347.

$\mathrm{Cu}(\mathrm{II})$-Phenoxyimine-Complex (R, R) (C3)

C3

Complex C3 was prepared according to GP4, using ligand L3 ($16.45 \mathrm{mg}, 0.0259 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($7.12 \mathrm{mg}, 0.0272 \mathrm{mmol}, 1.05$ equiv) and anhydrous acetonitrile (2 mL). The complex C3 was isolated as a green solid ($15.2 \mathrm{mg}, 0,0212 \mathrm{mmol}, 82 \%$).
$\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$. MW: $714.69 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=168^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=603.8\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}^{20} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathrm{H}$ NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=2955,1625,1544,1451,1393$, 1321, 1212, 1180, 1073, 996, 942, 766, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right]^{+} 660.1438$, measured 660.1427. Elemental Analysis calculated for [$\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O} 3 \mathrm{~S} \times 1 \mathrm{H}_{2} \mathrm{O}$]: $\mathrm{C} 52.09, \mathrm{H} 4.79, \mathrm{~N}$ 7.84, found: C 51.68, H 4.72, N 7.45.

Cu (II)-Phenoxyimine-Complex (R, R) (C4)

C4

Complex C4 was prepared according to GP4, using ligand $\mathbf{L 4}$ ($16.4 \mathrm{mg}, 0.0247 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($6.78 \mathrm{mg}, 0.0259 \mathrm{mmol}, 1.05$ equiv) and anhydrous acetonitrile (2 mL). The complex C4 was isolated as a green solid ($12.1 \mathrm{mg}, 0.0163 \mathrm{mmol}, 66 \%$).
$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$. $\mathrm{MW}: 744.71 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=180^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=399.4$ ($\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1}$ H NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3423,3062,2959,1625$, 1545, 1451, 1320, 1211, 1176, 1072, 996, 766, $701 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{CuFF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$ 690.1543, measured 690.1556. Elemental Analysis calculated for [$\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \times 1 \mathrm{H}_{2} \mathrm{O}$]: $\mathrm{C} 51.61, \mathrm{H}$ 4.87, N 7.52, found: C 51.73, H 4.84, N 7.38.

Cu(II)-Phenoxyimine-Complex (R, R) (C5)

C5

Complex C5 was prepared according to GP4, using ligand $\mathbf{L 5}$ ($15.8 \mathrm{mg}, 0.0232 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($6.38 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (2 mL). The complex C5 was isolated as a green solid ($15.7 \mathrm{mg}, 0.0206 \mathrm{mmol}, 89 \%$).
$\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$. MW: $758.74 \mathrm{~g} / \mathrm{mol}$. $\mathrm{MP}=160^{\circ} \mathrm{C}$ (decomp.). $\left[\alpha_{D}^{20}\right]=586.8$ (c $=0.15 \mathrm{~g} / \mathrm{dll}^{20} \mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1}$ H NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3387,2962,1626,1544$,

1451, 1395, 1366, 1320, 1212, 1186, 1073, 733, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$ 704.1700, measured 704.1733.

$\mathrm{Cu}(I I)$-Phenoxyimine-Complex (R, R)(R) (C6)

C6

Complex C6 was prepared according to GP4, using ligand L6 ($15.91 \mathrm{mg}, 0.0198 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($5.19 \mathrm{mg}, 0.0198 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (2 mL). The crude product was recrystallized in the freezer by dissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ and overlaying with n hexane (5 mL). The complex C6 was isolated as a green solid ($8.1 \mathrm{mg}, 0.00918 \mathrm{mmol}, 46 \%$).
$\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{CuF}_{3} \mathbf{N}_{2} \mathrm{O}_{6} \mathrm{~S} . \mathrm{MW}: 882.45 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=200^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=53.1$ ($\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1}$ H NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3405,3060,2961,1622$, 1592, 1545, 1507, 1438, 1317, 1262, 1210, 1178, 1146, 1071, 1013, 908, 811, 731, $699 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{47} \mathrm{H}_{39} \mathrm{CuF}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}\right]^{+} 886.1720$, measured 886.1699.

CCDC 1872223 contains the supplementary crystallographic data for compound C6. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

$\mathrm{Cu}(I I)$-Phenoxyimine-Complex (R, R) (C7)

C7

Complex C7 was prepared according to GP4, using ligand $\mathbf{L 7}$ ($24.9 \mathrm{mg}, 0.0315 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($8.26 \mathrm{mg}, 0.0315 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (2 mL). The complex C7 is isolated as a green solid ($23.2 \mathrm{mg}, 0.0267 \mathrm{mmol}, 85 \%$).
$\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}$ S. MW: $868.85 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=112{ }^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=67.2\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3062,2960,2925,2854$, $2251,1655,1625,1547,1489,1451,1403,1318,1273,1187,1144,1072,908,761,729,699 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{CuF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]^{+} 814.1856$, measured 814.1866.

$\mathrm{Cu}(I I)$-Phenoxyimine-Complex (R, R) (C8)

Complex C8 was prepared according to GP4, using ligand $\mathbf{L 8}$ ($37.5 \mathrm{mg}, 0.0526 \mathrm{mmol}, 1.0$ equiv) and copper(II) acetylacetonate ($13.8 \mathrm{mg}, 0.0526 \mathrm{mmol}, 1.0$ equiv) and anhydrous acetonitrile (3 mL). The complex C8 is isolated as a green solid ($39.0 \mathrm{mg}, 0.0492 \mathrm{mmol}, 93 \%$).
$\mathbf{C}_{36} \mathrm{H}_{36} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathbf{S}$. MW: $792.76 \mathrm{~g} / \mathrm{mol} . \mathbf{M P}=199^{\circ} \mathrm{C}$ (decomp.). $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=126.9$ (c $\left.=0.15 \mathrm{~g} / \mathrm{dl}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H}$ NMR: paramagnetic species. ${ }^{13}$ C NMR: paramagnetic species. IR (solid): $\tilde{v}=3061,2961,1724,1625,1547$,

1452, 1366, 1318, 1275, 1212, 1185, 910, $765,732,702 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{CuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right]^{+} 738.1543$, measured 738.1525. Elemental Analysis calculated for $\left[\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{ClCuF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} x\right.$ 2 $\mathrm{H}_{2} \mathrm{O}$]: C 53.33, H 4.72, N 6.91, found: C 53.49, H 4.66, N 6.66.

Catalytic Products

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3aA)

3aA

The product 3aA was synthesized as described in GP6-standard. 3aA was isolated as a white solid (60.8 mg , $\left.0.199 \mathrm{mmol}, 99 \%, d r_{(S, S+R, R):(R, S+S, R)}=94: 6, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance $3 a A$ was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, detection at $214 \mathrm{~nm}, t(S, S)=22.2 \mathrm{~min}, t(R, S)=15.9 \mathrm{~min}$.
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} . \mathrm{MW}: 305.33 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=86-87^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=13,7\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.33-7.27(m, 3 \mathrm{H}, \mathrm{ArH}), 7.21-7.17(m, 2 \mathrm{H}, \mathrm{ArH}), 5.29\left(d d, 1 \mathrm{H}, \mathrm{J}=13.3,11.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.83$ ($d d, 1 \mathrm{H}, \mathrm{J}=13.3,3.5 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.29-4.15 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CHPh), 2.46-2.38 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.35-2.28 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.03-1.92 ($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.86-1.75 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.47-1.37 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.27\left(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=215.7,171.2,135.7$, 129.3, 129.2, 128.6, 77.1, 62.41, 62.37, 47.4, 39.7, 33.7, 19.7, 14.2. IR (solid): $\tilde{v}=2980,1726,1554,1378$, 1229, 1149, 1229, 1111, $704 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{5}\right]^{+} 328.1155$, measured 328.1158.

CCDC 1872231 contains the supplementary crystallographic data for compound 3aA. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-1-(4-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aB)

$3 a B$

The product 3aB was synthesized as described in GP6-standard. 3aB was isolated as a white solid (70.3 mg, $\left.0.183 \mathrm{mmol}, 92 \%, d r_{(S, S+R, R):(R, S+S, R)}=94: 6, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3aB was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} \mathrm{~min}^{-}$ 1, detection at $214 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=32.9 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=20.5 \mathrm{~min}$.
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{5} . \mathrm{MW}: 384.23 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=115-116^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=38.5 \quad\left(\mathrm{c}=0.14 \mathrm{~g} / \mathrm{dl}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \quad \mathrm{NMR}$ (700 MHz, CDCl $)_{3}$: $\delta=7.44(d, 2 H, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.08(d, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 5.25(d d, 1 \mathrm{H}, J=13.6$, $\left.11.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.83\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.6,3.5 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.28-4.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and CHAr), 2.47$2.41\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.33-2.29\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.02-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.93-1.80(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 1.56-1.49 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.27\left(t, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=215.3,170.9,134.8,132.3,131.0,122.8,76.8,62.6,62.3,46.8,39.6,33.6,19.7,14.2 . \operatorname{IR}$ (solid): $\tilde{v}=$ 2978, 1725, 1533, 1490, 1378, 1228, 1149, 1115, 1076, 1011, $827 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNNaO}_{5}\right]^{+}$406.0261, measured 406.0257.
CCDC 1872225 contains the supplementary crystallographic data for compound 3aB. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-1-(3-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aC)

3aC

The product 3aC was synthesized as described in GP6-standard. 3aC was isolated as a white solid (74.1 mg, $\left.0.193 \mathrm{mmol}, 96 \%, d r_{(S, S+R, R):(R, S+S, R)}=96: 4, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3aC was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel AS-H, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=57.8 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=21.8 \mathrm{~min}$.
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{5} . \mathrm{MW}: 384.23 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=100^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=21.5\left(\mathrm{c}=0.19 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.43(d, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.19(t, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.13(d, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}$, ArH), $5.23\left(d d, 1 \mathrm{H}, J=13.7,11.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.79\left(d d, 1 \mathrm{H}, \mathrm{J}=13.7,3.4 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.27-4.15(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CHAr), 2.48-2.42 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.36-2.31 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.04-1.98 ($m, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\text {cyclopentane }}\right)$, 1.94-1.81 ($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.57-1.51 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.27(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta=215.1,170.7,138.2,132.6,131.8,130.7,127.7,123.2,76.8,62.6$, 62.5, 46.8, 39.5, 33.4, 19.7, 14.2. IR (solid): $\tilde{v}=2980,1723,1551,1476,1432,1377,1317,1226,1147$, 1111, 1076, 1014, 998, 822, 794, $699 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNNaO}_{5}\right]^{+} 406.0261$, measured 406.0271.

CCDC 1872232 contains the supplementary crystallographic data for compound 3aC. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((R)-1-(2-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aD)

3aD

The product 3aD was synthesized as described in GP6-standard. 3aD was isolated as a white solid (64.0 mg , $\left.0.167 \mathrm{mmol}, 83 \%, d r_{(S, R+R, S):(R, R+S, S)}=90: 10, e e_{(S, R)}=99 \%\right)$. Diastereomerically pure substance 3aD was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, R)=23.6 \mathrm{~min}, t(\mathrm{R}, \mathrm{R})=16.3 \mathrm{~min}$.
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{5} . \mathrm{MW}: 384.23 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=84-85^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=54.1\left(\mathrm{c}=0.16 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.61(d d, 1 \mathrm{H}, J=8.0,1.1 \mathrm{~Hz}, \mathrm{ArH}), 7.27(t, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.21(d d, 1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{ArH})$, $7.14(t d, 1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{ArH}), 5.36\left(d d, 1 \mathrm{H}, \mathrm{J}=14.0,10.8 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 5.01(d d, 1 \mathrm{H}, J=10.7,3.3 \mathrm{~Hz}$, CHAr), $4.90\left(d d, 1 \mathrm{H}, \mathrm{J}=13.9,3.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.33-4.20\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.46-2.39\left(m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 1.97-1.81 ($m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.57-1.51 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.29\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $_{3}$): $\delta=216.0,171.2,135.7,133.9,129.9,128.4,128.3,128.0,76.8,62.5,44.5,39.7,33.4$, 20.0, 14.2. IR (solid): $\tilde{v}=2979,1724,1552,147,1434,1377,1274,1228,1147,1025,859,757,660 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNNaO}_{5}\right]^{+}$406.0261, measured 406.0268.

Ethyl (S)-1-((S)-1-(4-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aE)

3aE

The product 3aE was synthesized as described in GP6-standard. 3aE was isolated as a white solid (66.8 mg , $\left.0.197 \mathrm{mmol}, 98 \%, d r_{(S, S+R, R):(R, S+S, R)}=95: 5, \quad e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3aE was
obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, detection at $214 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=26.0 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=16.4 \mathrm{~min}$.
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNO}_{5} . \mathrm{MW}: 339.77 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=124-125^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=32.8\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=7.32-7.26(m, 2 H, A r H), 7.17-7.11(m, 2 H, A r H), 5.26(d d, 1 H, J=13.6,11.1 \mathrm{~Hz}$, $\left.\mathrm{CHHNO}_{2}\right), 4.83\left(d d, 1 \mathrm{H}, J=13.6,3.4 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.32-4.12\left(m, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and CHAr$), 2.51-2.25(m, 2 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 2.06-1.75 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.59-1.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.27(t, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta=215.3,170.9,134.6,134.2,130.7,129.4,76.9,62.5,62.4,46.7$, 39.5, 33.5, 19.7, 14.2. IR (solid): $\tilde{v}=2980,1724,1552,1493,1445,1377,1296,1274,1226,1147,1115$, 1093, 1013, 910, $827,730 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNNaO}_{5}\right]^{+} 362.0766$, measured 362.0737.

CCDC 1872234 contains the supplementary crystallographic data for compound $3 \mathrm{a} E$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-1-(3-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aF)

3aF

The product 3aF was synthesized as described in GP6-standard. 3aF was isolated as a white solid (65.1 mg , $\left.0.192 \mathrm{mmol}, 96 \%, d r_{(S, S+R, R):(R, S+S, R)}=97: 3, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3aF was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, detection at $214 \mathrm{~nm}, t(S, S)=23.1 \mathrm{~min}, t(R, S)=16.7 \mathrm{~min}$.
$\mathbf{C}_{16} \mathbf{H}_{18} \mathrm{ClNO}_{5} . \mathrm{MW}: 339.77 \mathrm{~g} / \mathrm{mol} . \mathbf{M P}=98-99^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=24.6\left(\mathrm{c}=0.31 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{M H z}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.30-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 5.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.6,11.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.79$ (dd, $1 \mathrm{H}, \mathrm{J}=13.6,3.4 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.32-4.12 ($m, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CHAr), 2.52-2.26 ($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$),
2.09-1.76 ($m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.61-1.47 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.27\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.1,170.8,137.9,135.0,130.4,129.7,128.9,127.3,76.8,62.6,62.4,46.9,39.5$, 33.4, 19.7, 14.1. IR (solid): $\tilde{v}=3068,2980,2896,1723,1596,1552,1477,1435,1377,1317,1225,1147$, 1111, 1014, 912, 838, $790,699 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNNaO}_{5}\right]^{+} 362.0766$, measured 362.0740.

CCDC 1872233 contains the supplementary crystallographic data for compound 3aF. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((R)-1-(2-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aG)

3aG

The product 3aG was synthesized as described in GP6-standard within 72 h reaction time. 3aG was isolated as a white solid $\left(56.3 \mathrm{mg}, \quad 0.166 \mathrm{mmol}, 83 \%, \quad d r_{(S, R+R, S):(R, R+S, S))}=93: 7, \quad e e_{(S, R)}=99 \%\right)$. Diastereomerically pure substance 3aG was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel ODH, n-hexane/ $\mathrm{iPrOH}(90 / 10), 0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(\mathrm{~S}, R)=22.3 \mathrm{~min}, t(\mathrm{R}, \mathrm{R})=15.1 \mathrm{~min}$.
$\mathbf{C}_{16} \mathbf{H}_{18} \mathrm{ClNO}_{5} . \mathrm{MW}: 339.77 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=89-90^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=21.8\left(\mathrm{c}=0.23 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.46-7.38(m, 1 \mathrm{H}, \mathrm{ArH}), 7.25-7.19(m, 3 \mathrm{H}, \mathrm{ArH}), 5.37\left(d d, 1 \mathrm{H}, J=14.0,10.9 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 5.01$ (dd, 1H, J = 10.9, 3.3 Hz, CHAr), 4.90 (dd, $\left.1 \mathrm{H}, J=14.0,3.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.36-4.16\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.50-$ $2.32\left(m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.00-1.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.61-1.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.29(t, 3 \mathrm{H}$, $J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta=215.9,171.3,136.7,134.0,130.5,129.6,128.3,127.7$, 76.6, 62.51, 62.50, 41.7, 39.6, 33.4, 19.9, 14.2. IR (solid): $\tilde{v}=2979,2922,1724,1552,1476,1438,1377$, $1275,1228,1147,1110,1038,1014,859,758 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNNaO}_{5}\right]^{+} 362.0766$, measured 362.0788 .

Ethyl (S)-1-((S)-2-Nitro-1-(4-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aH)

3 aH

The product 3aH was synthesized as described in GP6-standard. 3aH was isolated as a white solid (69.5 mg , $\left.0.198 \mathrm{mmol}, 99 \%, d r_{(S, S+R, R):(R, S+5, R)}=94: 6, e e_{(S, S)}=96 \%\right)$. Diastereomerically pure substance 3 aH was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, detection at $214 \mathrm{~nm}, t(S, S)=98.5 \mathrm{~min}, t(R, S)=57.8 \mathrm{~min}$.
$\mathbf{C}_{16} \mathrm{H}_{18} \mathbf{N}_{2} \mathrm{O}_{7} . \mathrm{MW}: 350.33 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=124-125 \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=37.8\left(\mathrm{c}=0.18 \mathrm{~g} / \mathrm{dl}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, CDCl_{3}): $\delta=8.23-8.14(m, 2 \mathrm{H}, \mathrm{ArH}), 7.46-7.38(m, 2 \mathrm{H}, \mathrm{ArH}), 5.32\left(d d, 1 \mathrm{H}, \mathrm{J}=14.1,11.9 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.82$ (dd, $1 \mathrm{H}, \mathrm{J}=14.1,3.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.38-4.14 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CHAr), 2.57-2.31 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.08-1.78 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.67-1.52 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.28\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=214.6,170.4,148.0,143.4,130.5,124.2,76.5,62.8,62.5,46.8,39.3,33.4,19.7,14.2$. IR (solid): $\tilde{v}=2980,2259,1724,1605,1554,1522,1447,1377,1347,1318,1227,1148,1111,1014,909$, 857, 727, $700 \mathrm{~cm}^{-1}$. HRMS (EI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+} 350.1114$, measured 350.1105 .

CCDC 1872227 contains the supplementary crystallographic data for compound 3aH. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-2-Nitro-1-(3-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3al)

3al

The product 3al was synthesized as described in GP6-standard. 3al was isolated as a colorless oil (70.1 mg, $\left.0.199 \mathrm{mmol}, 99 \%, d r_{(S, S+R, R):(R, S+S, R)}=97: 3, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3al was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/ $\mathrm{iPrOH}(90 / 10), 0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=59.7 \mathrm{~min}, t(R, S)=45.2 \mathrm{~min}$.
$\mathbf{C}_{16} \mathbf{H}_{18} \mathbf{N}_{2} \mathbf{O}_{7}$. MW: $350.33 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=18.3\left(\mathrm{c}=0.16 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right): \delta=8.20-$ $8.14(m, 1 H, A r H), 8.11(t, 1 H, J=1.9 \mathrm{~Hz}, \mathrm{ArH}), 7.60-7.49(m, 2 H, A r H), 5.28(d d, 1 H, J=14.0,11.3 \mathrm{~Hz}$, $\left.\mathrm{CHHNO})_{2}\right), 4.80\left(d d, 1 \mathrm{H}, \mathrm{J}=13.8,3.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.35(d d, 1 \mathrm{H}, \mathrm{J}=11.2,3.3 \mathrm{~Hz}, \mathrm{CHAr}), 4.30-4.13(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.57-2.34 ($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.11-1.81 ($m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.72-1.56 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.27\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) : $\delta=214.2,170.2,148.6,138.2,135.1,130.2$, 124.5, 123.6, 76.5, 62.8, 62.7, 46.7, 39.0, 33.1, 19.6, 14.1. IR (solid): $\tilde{v}=3091,2980,1723,1553,1529$, 1467, 1446, 1378, 1349, 1317, 1279, 1228, 1149, 1108, 1015, 909, 859, 811, 737, $693 \mathrm{~cm}^{-1}$. HRMS (EI) m/z: calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+} 350.1114$, measured 350.1107 .

Ethyl (S)-1-((S)-2-Nitro-1-(2-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aJ)

3aJ

The product 3aJ was synthesized as described in GP6-standard. 3aJ was isolated in diastereomerically pure form as a white solid ($\left.68.0 \mathrm{mg}, 0.194 \mathrm{mmol}, 97 \%, d r_{(S, S+R, R):(R, S+S, R)}=99: 1, e e_{(S, S)}=99 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=101.9 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=37.4 \mathrm{~min}$.
$\mathbf{C}_{16} \mathbf{H}_{18} \mathbf{N}_{2} \mathbf{O}_{7} . \mathbf{M W}: 350.33 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=85-86 \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=-135.3\left(\mathrm{c}=0.25 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{M H z}$, CDCl_{3}): $\delta=7.89-7.83(m, 1 \mathrm{H}, \mathrm{ArH}$), 7.60-7.52 ($m, 1 \mathrm{H}, \mathrm{ArH}$), 7.50-7.41 ($m, 1 \mathrm{H}, \mathrm{ArH}$), 5.37 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.4$, $10.8 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $5.02(d d, 1 \mathrm{H}, \mathrm{J}=10.9,3.3 \mathrm{~Hz}, \mathrm{CHAr}), 4.89\left(d d, 1 \mathrm{H}, \mathrm{J}=14.4,3.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.35-4.14$ ($m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.60-2.42 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.16-1.72 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.27(t, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.6,170.8,151.6,133.3,131.5,129.3,128.6,125.4,77.1,62.7$, 62.6, 40.0, 39.5, 34.2, 19.9, 14.1. IR (solid): $\tilde{v}=2982,1725,1609,1554,1527,1447,1377,1356,1318$, 1276, 1229, 1148, 1014, 855, 788, $711 \mathrm{~cm}^{-1}$. HRMS (EI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+} 350.1114$, measured 350.1103.

CCDC 1872224 contains the supplementary crystallographic data for compound 3aJ. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-2-Nitro-1-(p-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aK)

3aK

The product 3aK was synthesized as described in GP6-standard. 3aK was isolated as a white solid (59.1 mg , $\left.0.185 \mathrm{mmol}, 92 \%, d r_{(S, S+R, R):(R, S+5, R)}=93: 7, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3aK was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel AS-H, n-hexane/iPrOH ($95 / 5$), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(S, S)=37.9 \mathrm{~min}, t(R, S)=17.0 \mathrm{~min}$.
$\mathrm{C}_{17} \mathrm{H}_{21} \mathbf{N O}_{5} . \mathrm{MW}: 319.36 \mathrm{~g} / \mathrm{mol} . \mathbf{M P}=107-108{ }^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=43.1\left(\mathrm{c}=0.21 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, CDCl_{3}): $\delta=7.15-7.02(m, 4 \mathrm{H}, \mathrm{ArH}), 5.26\left(d d, 1 \mathrm{H}, \mathrm{J}=13.5,11.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.81(d d, 1 \mathrm{H}, \mathrm{J}=13.5,3.7 \mathrm{~Hz}$, CHHNO_{2}), 4.32-4.10 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CHAr}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.48-2.24 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right.$), 2.06$1.90\left(m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.89-1.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.51-1.36\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.27(t, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.8,171.3,138.4,132.5,129.8,129.2,77.2,62.4$, 62.3, 47.1, 39.7, 33.8, 21.2, 19.8, 14.2. IR (solid): $\tilde{v}=2980,2924,1724,1552,1516,1446,1378,1275$,

1226, 1147, 1120, 1107, $1019822 \mathrm{~cm}^{-1}$. HRMS (EI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5}\right]^{+} 319.1420$, measured 319.1416.

CCDC 1872235 contains the supplementary crystallographic data for compound 3aK. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-2-Nitro-1-(m-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aL)

3aL

The product 3aL was synthesized as described in GP6-standard. 3aL was isolated as a colorless oil (62.0 mg , $\left.0.194 \mathrm{mmol}, 97 \%, d r_{(S, S+R, R):(R, S+5, R)}=96: 4, \quad e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3aL was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, detection at $214 \mathrm{~nm}, t(S, S)=16.6 \mathrm{~min}, t(R, S)=12.7 \mathrm{~min}$.
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} . \mathrm{MW}: 319.36 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=38.4\left(\mathrm{c}=0.24 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(t$, $1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArH}$), 7.08 ($d, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArH}$), 6.99-6.95 (m, 2H, ArH), 5.26 (dd, $1 \mathrm{H}, J=13.6,11.4 \mathrm{~Hz}$, CHHNO_{2}), $4.80\left(d d, 1 \mathrm{H}, \mathrm{J}=13.6,3.8 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.28-4.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHAr}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.46-2.37(m, 1 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.33-2.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.03-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, $), 1.86-1.75$ ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.48-1.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentaen }}$), $1.27\left(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right): \delta=215.8,171.3,138.8,135.6,130.2,129.3,129.0,126.1,77.2,62.4,62.3,47.4,39.7,33.7,21.6$, 19.8, 14.3. IR (solid): $\tilde{v}=2979,1726,1554,1446,1378,1226,1147,1112,1019,708 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{5}\right]^{+} 342.1312$, measured 342.1306 .

Ethyl (S)-1-((S)-2-Nitro-1-(o-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aM)

3aM

The product 3aM was synthesized as described in GP6-standard. 3aM was isolated as a colorless oil ($\left.54.1 \mathrm{mg}, 0.169 \mathrm{mmol}, 85 \%, d r_{(S, S+R, R):(R, S+S, R)}=96: 4, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3aM was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=17.6 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=15.6 \mathrm{~min}$.
$\mathbf{C}_{17} \mathbf{H}_{21} \mathbf{N O}_{5} . \mathrm{MW}: 319.36 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=60.1$ (c $=0.24 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right): \delta=7.20-$ $7.05(m, 4 \mathrm{H}, \mathrm{ArH}), 5.32\left(d d, 1 \mathrm{H}, J=13.8,10.9 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.87\left(d d, 1 \mathrm{H}, J=13.8,3.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.63$ (dd, 1H, J = 10.9, 3.5 Hz, CHAr),4.34-4.13 (m, 2H, OCH CH_{3}), 2.49-2.25 (m, 2H, CH cyclopentane), $2.42(s, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.02-1.74\left(m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.66-1.55\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.27\left(t, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=216.2,171.6,138.6,134.7,131.3,128.2,127.0,126.4,77.4,62.6,62.4,41.3$, 39.7, 33.0, 20.3, 20.0, 14.2. IR (solid): $\tilde{v}=2978,1725,1552,1465,1446,1378,1275,1228,1146,1123$, 1084, 1030, 1014, 751, $727 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{5}\right]^{+} 342.1312$, measured 342.1310 .

Ethyl (S)-1-((S)-1-(4-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aN)

3aN

The product 3aN was synthesized as described in GP6-standard. 3aN was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated $160.4 \mathrm{mg}, 0.192 \mathrm{mmol}, 90 \%$, $\left.d r_{(S, S+R, R):(R, S+S, R)}=93: 7, e e_{(S, S)}=99 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel $2 x O D-H$ in series, n-hexane $/ \mathrm{iPrOH}(85 / 15), 0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $213 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=102.4 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=$ 72.6 min .
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6} . \mathrm{MW}: 335.36 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=46.5\left(\mathrm{c}=0.12 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21-$ $7.06(m, 2 H, A r H), 6.84-6.77(m, 2 H, A r H), 5.23\left(d d, 1 H, J=13.2,11.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.79(d d, 1 \mathrm{H}, \mathrm{J}=13.3$, $3.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.30-4.08 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CHAr), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.47-2.23 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.05-1.71 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.51-1.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.25\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=215.8,171.3,159.6,130.4,127.3,114.5,77.2,62.4,62.3,55.3,46.8,39.7,33.7,19.7$, 14.1. IR (solid): $\tilde{v}=2961,1726,1612,1554,1515,1349,1253,1230,1182,1148,1120,1033,838,732 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (EI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{O}_{6}\right]^{+} 335.1369$, measured 335.1368.

Ethyl (S)-1-((S)-1-(3-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aO)

3 aO

The product 3aO was synthesized as described in GP6-standard. 3aO was isolated as a colorless oil ($\left.63.8 \mathrm{mg}, 0.190 \mathrm{mmol}, 95 \%, d r_{(S, S+R, R):(R, S+5, R)}=96: 4, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance $3 a 0$ was obtained by trituration of the mixture of diastereomers with a solvent mixture of n hexane/diethyleteher (10/1)for analytic purposes. The ee values were determined by chiral column HPLC: Chiracel AS-H, n-hexane/iPrOH ($80 / 20$), $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(\mathrm{~s}, 5)=133.3 \mathrm{~min}$, $t(\mathrm{R}, \mathrm{S})=14.0 \mathrm{~min}$.
$\mathrm{C}_{17} \mathbf{H}_{21} \mathbf{N O}_{6} . \mathrm{MW}: 335.36 \mathrm{~g} / \mathrm{mol} .\left[\alpha_{\boldsymbol{D}}^{20}\right]=33.1\left(\mathrm{c}=0.28 \mathrm{~g} / \mathrm{dl}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right): \delta=7.21(t$, $1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz} \mathrm{ArH}), 6.81(d d, 1 \mathrm{H}, \mathrm{J}=8.2,4.2 \mathrm{~Hz} \mathrm{ArH}), 6.76(d, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz} \mathrm{ArH}), 6.72(t, 1 \mathrm{H}, \mathrm{J}=1.9 \mathrm{~Hz} \mathrm{ArH})$, $5.26\left(d d, 1 \mathrm{H}, \mathrm{J}=13.4,11.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.82\left(d d, 1 \mathrm{H}, \mathrm{J}=13.5,3.5 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.29-4.13\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and CHAr), $3.77\left(s, 3 H, \mathrm{OCH}_{3}\right), 2.47-2.37\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 2.34-2.26 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.06-1.94 (m , $2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.87-1.77 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.51-1.42 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.27(t, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.7,171.2,160.0,137.2,130.2,121.3,115.5,113.7,77.1,62.4$, 62.3, 55.4, 47.4, 39.7, 33.8, 19.8, 14.2. IR (solid): $\tilde{v}=2979,1226,1553,1466,1446,1378,1317,1275$, 1229, 1147, 1123, 1031, 1014, 751, $727 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{6}\right]^{+} 358.1261$, measured 358.1262 .

Ethyl (S)-1-((S)-1-(2-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aP)

3aP

The product 3aP was synthesized as described in GP6-standard within 72 h reaction time. 3aP was isolated as a white solid ($52.9 \mathrm{mg}, 0.158 \mathrm{mmol}, 79 \%, d r_{(S, S+R, R):(R, S+5, R)}=95: 5, e e_{(S, S)}=99 \%$). Diastereomerically pure substance 3aP was obtained by trituration of the mixture of diastereomers with a solvent mixture of n hexane/diethyleteher (10/1) for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH ($95 / 5$), $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(S, S)=45.0 \mathrm{~min}, t(R, S)$ $=34.3 \mathrm{~min}$.
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6} . \mathrm{MW}: 335.36 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=85-86^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=52.0\left(\mathrm{c}=0.27 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.26(d t, 1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{ArH}), 7.13(d d, 1 \mathrm{H}, J=7.5,1.6 \mathrm{~Hz}, \mathrm{ArH}$), $6.93-6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.25$ ($d d, 1 \mathrm{H}, \mathrm{J}=13.4,11.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.91\left(d d, 1 \mathrm{H}, J=13.4,3.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right.$), $4.73(d d, 1 \mathrm{H}, J=11.0,3.3 \mathrm{~Hz}$, CHAr),4.31-4.14 ($m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.82\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.46-2.24\left(m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 2.09-1.72 ($\mathrm{m}, 3 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 1.49-1.34 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.26\left(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=215.4,171.8,158.0,129.7,124.3,121.2,111.3,76.5,62.2,61.6,55.3,39.4,33.7,20.0,14.1$. IR (solid): $\tilde{v}=$ 2967, 2841, 1724, 1551, 1494, 1463, 1440, 1378, 1289, 1275, 1246, 1226, 1147, 1123, 1025, $757 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{6}\right]^{+} 358.1261$, measured 358.1272.

Ethyl (S)-1-((S)-1-(Benzo[d][1,3]dioxol-5-yl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aQ)

3 aQ

The product 3aQ was synthesized as described in GP6-standard within 72 h reaction time. 3aQ was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated (65.3 mg , $\left.0.187 \mathrm{mmol}, 94 \%, d r_{(S, S+R, R)}(\mathbb{R}, S+5, R)=95: 5, e e_{(S, S)}=99 \%\right)$. The ee values were determined by chiral column

HPLC: Chiracel AS-H, n-hexane $/ i \operatorname{PrOH}(70 / 30), 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=73.3 \mathrm{~min}, t(R, S)$ $=19.3 \mathrm{~min}$.
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{7} . \mathrm{MW}: 349.34 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=39.7\left(\mathrm{c}=0.19 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.79-$ $6.61(m, 3 \mathrm{H}, \mathrm{ArH}), 5.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.20\left(d d, 1 \mathrm{H}, \mathrm{J}=13.3,11.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.76(d d, 1 \mathrm{H}, \mathrm{J}=13.3$, $3.5 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.30-4.06 ($m, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CHAr), 2.49-2.24 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.09-1.74 ($\mathrm{m}, 3 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 1.60-1.46 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.26\left(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=215.7,171.1,148.2,147.7,129.1,123.0,109.2,108.7,101.4,77.2,62.5,62.3,47.2,39.6,33.6,19.7,14.1$. IR (solid): $\tilde{v}=2979,2898,2780,1722,1552,1504,1489,1445,1377,1244,1225,1150,1107,1036,933$, $905,816,730 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{7}\right]^{+} 372.1054$, measured 372.1037.

Ethyl (S)-1-((S)-1-(Furan-2-yl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aR)

$3 a R$

The product 3aR was synthesized as described in GP6-standard. 3aR was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated ($52.9 \mathrm{mg}, 0.179 \mathrm{mmol}, 89 \%$, $\left.d r_{(S, S+R, R):(R, S+5, R)}=90: 10, e e_{(S, S)}=99 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane $/ i \operatorname{PrOH}(91 / 9), 0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=25.1 \mathrm{~min}, t(R, S)=13.5 \mathrm{~min}$.
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6} . \mathrm{MW}: 295.29 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=71.7\left(\mathrm{c}=0.12 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.31(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=1.5, \mathrm{ArH}$), 6.30-6.26 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}$), 6.24-6.20 ($m, 1 \mathrm{H}, \mathrm{ArH}$) 5.10 (dd, $1 \mathrm{H}, \mathrm{J}=13.4,11.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.77\left(d d, 1 \mathrm{H}, \mathrm{J}=13.5,3.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.32(d d, 1 \mathrm{H}, \mathrm{J}=11.0,3.2 \mathrm{~Hz}, \mathrm{CHAr}), 4.27-4.11\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 2.49-2.28 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.25-2.10 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.06-1.80 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.48-1.33 $\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.25\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=214.5,171.0,149.4$, 143.0, 110.9, 110.4, 75.7, 62.4, 60.8, 41.4, 39.2, 34.2, 19.7, 14.1. IR (solid): $\tilde{v}=3127,2979,1726,1555$, 1505, 1467, 1447, 1403, 1377, 1317, 1230, 1147, 1111, 1074, 1015, 917, 822, $744 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{6}\right]^{+} 318.0948$, measured 318.0951 .

Ethyl (S)-1-((S)-2-Nitro-1-(thiophen-2-yl)ethyl)-2-oxocyclopentane-1-carboxylate (3aS)

3aS

The product 3aS was synthesized as described in GP6-standard. 3aS was isolated as a white solid (60.1 mg , $\left.0.193 \mathrm{mmol}, 97 \%, d r_{(S, S+R, R):(R, S+S, R)}=96: 4, e e_{(S, S)}=98 \%\right)$. Diastereomerically pure substance $3 a S$ was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=26.8 \mathrm{~min}, t(R, S)=16.5 \mathrm{~min}$.
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S} . \mathrm{MW}: 311.35 \mathrm{~g} / \mathrm{mol} . \mathbf{M P}=76-77^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=30.3\left(\mathrm{c}=015 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.22(d, 1 \mathrm{H}, \mathrm{J}=4.9, \mathrm{ArH}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.22\left(d d, 1 \mathrm{H}, \mathrm{J}=13.3,10.8 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.78$ (dd, $1 \mathrm{H}, \mathrm{J}=13.3,3.4 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.52(d d, 1 \mathrm{H}, \mathrm{J}=10.9,3.3 \mathrm{~Hz}, \mathrm{CHAr}), 4.31-4.16\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.51-$ 2.42 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.38-2.32 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.17-2.04 ($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.95-1.84 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 1.65-1.56 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.28\left(t, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=215.3,170.9,137.9,128.4,127.3,126.1,78.3,62.7,62.5,42.9,39.5,33.8,19.7,14.2$. IR (solid): $\tilde{v}=$ 3115, 2962, 2921, 2853, 1741, 1724, 1556, 1549, 1437, 1378, 1322, 1248, 1234, 1188, 1144, 1113, 1013, 999, 854, $714 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{5} \mathrm{~S}^{+}\right.$334.0720, measured 334.0706.

Ethyl (S)-1-((S,E)-1-Nitro-4-phenylbut-3-en-2-yl)-2-oxocyclopentane-1-carboxylate (3aT)

3aT

The product 3aT was synthesized as described in GP6-standard. 3aT was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated ($56.6 \mathrm{mg}, 0.171 \mathrm{mmol}, 85 \%$, $\left.d r_{(S, S+R, R):(R, S+S, R)}=91: 9, e e_{(S, S)}=97 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel $2 \times O D-H$ in series, n-hexane/ $/ \mathrm{PrOH}(85 / 15), 0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $213 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=92.2 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=$ 66.1 min .
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} . \mathrm{MW}: 331.37 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=20.4\left(\mathrm{c}=0.10 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-$ $7.18(m, 5 \mathrm{H}, \mathrm{ArH}), 6.52(d, J=15.7, \mathrm{PhCH}=\mathrm{CHC}), 5.78(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.8,10.1 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CHCH}), 4.88(d d, 1 \mathrm{H}$, $\left.J=12.5,11.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.53\left(d d, 1 \mathrm{H}, \mathrm{J}=12.5,3.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.24-4.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.64(d t$, $1 \mathrm{H}, \mathrm{J}=10.2,3.1 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CHCH}), 2.51-2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.18-2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 1.95-1.87 $\left(m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.23\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=214.3,170.7,137.2$, 135.8, 128.7, 126.7, 122.7, 76.7, 62.3, 61.7, 45.9, 39.1, 33.4, 19.8, 14.1. IR (solid): $\tilde{v}=3061,3027,2978$, 2923, 1745, 1722, 1551, 1448, 1378, 1316, 1224, 1151, 1112, 1031, 971, 915, 748, $694 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{5}\right]^{+} 354.1312$, measured 354.1306.

Ethyl (S)-1-((S)-3-Methyl-1-nitrobutan-2-yl)-2-oxocyclopentane-1-carboxylate (3aU)

$3 a U$

The product 3aU was synthesized as described in GP6-standard within72 h reaction time. 3aU was isolated as a colorless oil ($\left.49.8 \mathrm{mg}, 0.184 \mathrm{mmol}, 92 \%, d r_{(S, S+R, R):(R, S+S, R)}=98: 2, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance $\mathbf{3 a U}$ was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel AS-H, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=13.0 \mathrm{~min}, t(R, S)=15.3 \mathrm{~min}$.
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}$. MW: $271.31 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-2.9\left(\mathrm{c}=0.25 \mathrm{~g} / \mathrm{dll}^{20} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.50$ (dd, 1H, J = 13.7, $6.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.42 (dd, 1H, J = 13.7, $5.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.25-4.09 ($m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.18-3.10 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHiPr}$), 2.62-2.35 ($\mathrm{m}, 2 \mathrm{H}$, AlkylH), 2.30-2.14 ($\mathrm{m}, 1 \mathrm{H}$, AlkylH), 2.10-1.84 ($\mathrm{m}, 4 \mathrm{H}$, AlkylH), $1.25\left(t, 3 H, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.97\left(d, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.82\left(d, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.4,170.0,73.8,64.0,62.3,45.3,37.7,31.2,28.3,22.4,19.5,17.8,14.1 . \operatorname{IR}$ (solid): $\tilde{v}=2967,1751,1719,1553,1467,1384,1365,1221,1179,1154,1126,1095,1025,857 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NNaO}_{5}\right]^{+}$294.1312, measured 294.1301.

Ethyl (S)-1-((S)-1-Cyclohexyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aV)

$3 a v$

The product 3aV was synthesized as described in GP6-neat within 72 h reaction time. Diastereomerically pure 3 aV was isolated as a colorless oil ($56.1 \mathrm{mg}, 0.180 \mathrm{mmol}, 90 \%, d r_{(S, S+R, R):(, R+5, R)}=97: 3, e e_{(S, S)}=99 \%$). The ee values were determined by chiral column HPLC: Chiracel AS-H, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(s, S)=13.9 \mathrm{~min}, t(R, S)=15.4 \mathrm{~min}$.
$\mathbf{C}_{16} \mathrm{H}_{25} \mathbf{N O}_{5} . \mathrm{MW}: 311.38 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-9.2\left(\mathrm{c}=0.21 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.57$ ($d d, 1 \mathrm{H}, \mathrm{J}=13.7,6.8 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.38\left(d d, 1 \mathrm{H}, \mathrm{J}=13.7,4.7 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right.$), 4.26-4.09 ($m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.13-3.06 ($m, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{NO}_{2}$), 2.60-2.35 ($m, 2 \mathrm{H}$, AlkylH), 2.29-2.14 ($m, 1 \mathrm{H}$, AlkylH), 2.06-1.84 ($m, 3 \mathrm{H}$, AlkylH), 1.77-1.66 ($m, 2 \mathrm{H}$, AlkylH), 1.66-1.53 ($m, 3 \mathrm{H}$, AlkylH), 1.53-1.43 ($m, 1 \mathrm{H}$, AlkylH), 1.25 ($t, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.21-0.86 ($\mathrm{m}, 5 \mathrm{H}$, AlkylH). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.6,170.2,74.4,63.9,62.2$, $45.3,38.9,37.7,32.6,31.4,28.5,26.9,26.5,26.0,19.5,14.1$. IR (solid): $\tilde{v}=2927,2854,1750,1719,1552$, 1448, 1373, 1220, 1176, 1153, 1140, 1111, $1016 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{5}\right]^{+}$ 334.1625, measured 334.1629.

Ethyl (S)-1-((S)-1-Cyclopropyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aW)

3aW

The product 3aW was synthesized as described in GP6-neat within 72 h reaction time. 3aW was isolated as a colorless oil and mixture of diastereomeres, which could not be separated ($51.6 \mathrm{mg}, 0.192 \mathrm{mmol}, 96 \%$, $\left.d r_{(S, S+R, R):(R, S S, R)}=88: 12, e e_{(S, S)}=98 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (97/3), $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(s, S)=45.4 \mathrm{~min}, t(R, S)=40.2 \mathrm{~min}$.
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{5}$. MW: $269.30 \mathrm{~g} / \mathrm{mol} .\left[\alpha_{D}^{20}\right]=-0.06\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.72$ ($d d, 1 \mathrm{H}, \mathrm{J}=12.5,8.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.50\left(d d, 1 \mathrm{H}, \mathrm{J}=12.7,3.9 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right.$), 4.27-4.12 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.56-2.27 ($m, 4 \mathrm{H}$, AlkylH), 2.26-1.86 ($m, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{NO}_{2}$), 1.89-1.65 ($m, 2 \mathrm{H}$, AlkylH), $1.26(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$,
$\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.74-0.43(m, 3 \mathrm{H}, \mathrm{AlkylH}), 0.35-0.17(m, 1 \mathrm{H}, \mathrm{AlkylH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=213.9,170.3$, 78.2, 64.0, 62.2, 45.0, 38.6, 31.6, 19.6, 14.1, 11.9, 5.7, 2.4. IR (solid): $\tilde{v}=2981,2923,2258,1748,1723$, 1552., 1464, 1434, 1380, 1298, 1225, 1160, 1112, 1030, $910,728,648 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5}\right]^{+}$270.1336, measured 270.1323.

Ethyl (S)-1-((S)-4-Methyl-1-nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aX)

 3 aX

The product 3aX was synthesized as described in GP6-neat within 72 h reaction time. 3aX was isolated as a colorless oil ($\left.49.0 \mathrm{mg}, 0.172 \mathrm{mmol}, 86 \%, d r_{(S, S+R, R):(R, S+S, R)}=90: 10, e e_{(S, S)}=99 \%\right)$. The purification of the diastereomerical mixture via preparative TLC (petroleum ether/ethyl acetate, 10/1) led to 5% impurity of minor diastereomer and was used for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel $2 \times 0 D-H$ in series, n-hexane $/ \mathrm{iPrOH}(90 / 10), 0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at 214 nm , $t(S, S)=46.8 \mathrm{~min}, t(R, S)=42.2 \mathrm{~min}$.
$\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5}$. $\mathrm{MW}: 285.34 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-2.6\left(\mathrm{c}=0.11 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.57$ (dd, $1 \mathrm{H}, J=13.2,5.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.39\left(d d, 1 \mathrm{H}, J=13.3,5.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.18\left(q, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.02-2.97 ($m, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{NO}_{2}$), 2.50-2.41 ($\mathrm{m}, 2 \mathrm{H}$, AlkylH $)$, 2.28-2.21 ($m, 1 \mathrm{H}$, AlkylH), 2.05-1.89 ($\mathrm{m}, 3 \mathrm{H}$, AlkylH), 1.58-1.52 ($m, 1 \mathrm{H}$, AlkylH), 1.35-1.29 ($m, 1 \mathrm{H}$, AlkylH), 1.29-1.24 ($m, 1 \mathrm{H}$, AlkylH), 1.26 ($t, 3 \mathrm{H}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.90\left(d d, 6 \mathrm{H}, \mathrm{J}=11.7,6.4 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=213.6,170.4$, $77.5,63.5,62.2,39.0,38.4,38.3,31.6,25.8,23.8,21.3,19.4,14.1$. IR (solid): $\tilde{v}=2959,2872,1749,1719$, 1551, 1468, 1381, 1368, 1221, 1157, 1131, 1106, $1020 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NNaO}_{5}\right]^{+}$ 308.1468 , measured 308.1467.

Ethyl (S)-1-((S)-1-Nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aY)

3aY

The product 3aY was synthesized as described in GP6-neat within 72 h reaction time. 3aY was isolated as a colorless oil ($52.1 \mathrm{mg}, 0.192 \mathrm{mmol}, 96 \%, d r_{(S, S+R, R):(R, S+S, R)}=87: 13, e e_{(S, S)}=98 \%$). Diastereomerically pure substance 3aY was obtained by purification of diastereomerical mixture via preparative TLC (petroleum ether/ethyl acetate, 10/1) for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH ($97 / 3$), $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=47.5 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})$ $=40.7 \mathrm{~min}$.
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5} . \mathrm{MW}: 271.31 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-8.2\left(\mathrm{c}=0.23 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.53$ (dd, 1H, J = 13.3, 4.6 Hz, CHHNO2), $4.46\left(d d, 1 \mathrm{H}, \mathrm{J}=13.3,6.5 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.19\left(q, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 2.96-2.90 ($m, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{NO}_{2}$), 2.51-2.43 ($\mathrm{m}, 2 \mathrm{H}$, AlkylH), 2.28-2.21 ($m, 1 \mathrm{H}$, AlkylH), 2.04-1.91 ($\mathrm{m}, 3 \mathrm{H}$, AlkylH), 1.60-1.53 ($m, 1 \mathrm{H}$, AlkylH), 1.42-1.34 ($m, 1 \mathrm{H}$, AlkylH), 1.33-1.24 ($m, 2 \mathrm{H}$, AlkylH), $1.26(t, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $0.90\left(t, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.7,170.5,77.3$, 63.3, 62.1, 40.2, 38.3, 32.0, 31.9, 20.7, 19.4, 14.1. IR (solid): $\tilde{v}=2963,2875,1749,1720,1552,1466,1381$, 1223, 1175, 1157, 1126, 1028, $822 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NNaO}_{5}\right]^{+}$294.1312, measured 294.1301.

Ethyl (S)-1-((S)-1-(Benzyloxy)-3-nitro-1-oxopropan-2-yl)-2-oxocyclopentane-1-carboxylate (3aZ)

3aZ

The product 3aZ was synthesized as described in GP6-standard within 48 h reaction time. 3aZ was isolated as a colorless oil as mixture of diastereomers, which could not be separated ($40.8 \mathrm{mg}, 0.112 \mathrm{mmol}, 56 \%$, $\left.d r_{(S, S+R, R):(R, S S, R)}=74: 26, e e_{(S, S)}=96 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (95/5), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=44.6 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=37.8 \mathrm{~min}$.
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{7} . \mathrm{MW}: 363.37 \mathrm{~g} / \mathrm{mol} .\left[\alpha_{D}^{20}\right]=2.0\left(\mathrm{c}=0.13 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta=7.41-$ $7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.15(d, 2 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{OCH} 2 \mathrm{Ar}), 4.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.4,9.9 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.59(d d, 1 \mathrm{H}$, $\left.J=14.5,3.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.20-4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.01\left(d d, 1 \mathrm{H}, \mathrm{J}=10.0,3.2 \mathrm{~Hz}, \mathrm{CHCO}_{2} \mathrm{Bn}\right), 2.51-2.37$ $\left(m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.26-1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.20\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=212.4,170.1,169.4,134.7,128.8,128.7,128.6,73.5,68.0,62.6,60.0,46.5,38.1,32.3,19.4$, 13.9. IR (solid): $\tilde{v}=2963,2924,1725,1557,1455,1378,1221,1153,1110,949,915,751,698 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{7}\right]^{+}$386.1210, measured 386.1211.

Ethyl (1S)-1-((1S,2R)-2-Nitro-1-phenylpropyl)-2-oxocyclopentane-1-carboxylate (3aA-Me)

3aA-Me
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}$

The product 3aA-Me was synthesized as described in GP7 within 120 h reaction time. 3aA-Me was isolated as a white solid as mixture of diastereomers ($57.9 \mathrm{mg}, 0.181 \mathrm{mmol}, 91 \%, d r_{(S, S, R+R, R, S): D 2: D 3: D 4}=94: 3: 2: 1$, $\left.e e_{(S, S, R)}=>99 \%\right)$. Diastereomerically pure substance 3aA-Me was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee and $d r$ values were determined by chiral column HPLC of the crude reaction mixture: Chiracel IB, n-heptane/iPrOH (98/2), $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $210 \mathrm{~nm}, t(S, S, R)=69.1 \mathrm{~min}, t(R, R, S)=67.3 \mathrm{~min}$.
$\mathbf{C}_{17} \mathbf{H}_{21} \mathbf{N O}_{5} . \mathrm{MW}: 319.36 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=96-97^{\circ} \mathrm{C} .\left[\alpha_{D}^{20}\right]=-12.0\left(\mathrm{c}=0.13 \mathrm{~g} / \mathrm{dll}^{\mathbf{2 0}} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, CDCl_{3}): $\delta=7.34-7.26(m, 3 \mathrm{H}, \mathrm{ArH}), 7.16-7.13(m, 2 \mathrm{H}, \mathrm{ArH}), 5.35-5.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 4.06(d, 1 \mathrm{H}$, $J=10.1 \mathrm{~Hz}, \mathrm{CHAr}), 4.00-3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.66-2.59\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.43-2.14(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 2.01-1.74 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.20\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 1.10(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.2,168.4,136.2,129.5,128.9,128.2,82.5,64.9,62.1,52.5$, 37.4, 30.4, 19.5, 19.1, 13.7. IR (solid): $\tilde{v}=2983,1753,1728,1553,1454,1388,1361,1225,1123,705$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{5}\right]^{+} 342.1312$, measured 342.1310.

CCDC 1908072 contains the supplementary crystallographic data for compound $\mathbf{3 a A - M e}$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (1S)-1-((1S,2R)-1-(4-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aB-Me)

3aB-Me
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}$

The product 3aB-Me was synthesized as described in GP7 within 120 h reaction time. 3aB-Me was isolated as a white solid as mixture of diastereomers ($73.4 \mathrm{mg}, 0.184 \mathrm{mmol}, 92 \%, d r_{(S, S, R+R, R, S): D 2: D 3: 04}=94: 3: 2: 1$, $\left.e e_{(S, S, R)}=>99 \%\right)$. Diastereomerically pure substance 3aB-Me was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee and $d r$ values were determined by chiral column HPLC of the crude reaction mixture: Chiracel IB, n-heptane/ $\mathrm{iPrOH}\left(98 / 2\right.$), $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $210 \mathrm{~nm}, t(S, S, R)=60.9 \mathrm{~min}, t(R, R, S)=56.9 \mathrm{~min}$.
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{5} . \mathrm{MW}: 398.25 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=93-94{ }^{\circ}{ }^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-11.3\left(\mathrm{c}=0.21 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.47-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.30-5.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 4.05(d, 1 \mathrm{H}$, $J=9.7 \mathrm{~Hz}, \mathrm{CHAr}), 4.00-3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.62-2.55\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.43-2.13(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 2.03-1.76 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 1.12(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=211.9,168.3,135.3,132.1,131.1,122.3,82.2,64.7,62.3,51.9$, 37.3, 30.5, 19.5, 19.0, 13.7. IR (solid): $\tilde{v}=2981,1753,1727,1553,1490,1451,1407,1389,1360,1225$, 1124, 1011, 838. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNNaO}_{5}\right]^{+} 420.0417$, measured 420.0415 .

Ethyl (1S)-1-((1S,2R)-1-(3-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aC-Me)

3aC-Me
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}$

The product 3aC-Me was synthesized as described in GP7 within 120 h reaction time. 3aC-Me was isolated as a white solid as mixture of diastereomers $\left(68.2 \mathrm{mg}, 0.171 \mathrm{mmol}, 86 \%, d r_{(S, S, R+R, R, S): D 2: 03: D 4}=97: 2: 1: 0.2\right.$, $\left.e e_{(S, S, R)}=99 \%\right)$. Diastereomerically pure substance 3 aC-Me was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee and $d r$ values were determined by chiral
column HPLC of the crude reaction mixture: Chiracel ADH, n-heptane/iPrOH (97/3), $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $210 \mathrm{~nm}, t(S, S, R)=61.1 \mathrm{~min}, t(R, R, S)=57.9 \mathrm{~min}$.
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{5} . \mathrm{MW}: 398.25 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=117-118{ }^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-16.0\left(\mathrm{c}=0.13 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \quad \mathrm{NMR}$ ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.41(m, 1 \mathrm{H}, \mathrm{ArH}), 7.33(t, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{ArH}), 7.19(t, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.10-$ $7.08(m, 1 \mathrm{H}, \mathrm{ArH}), 5.28-5.18\left(m, 1 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 4.04(d, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{CHAr}), 4.02-3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 2.66-2.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.44-2.15 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.03-1.76 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.22 ($\mathrm{d}, 3 \mathrm{H}$, $J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}$), $1.12\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=211.6,168.1,138.6$, 132.7, 131.4, 130.5, 127.8, 122.9, 82.2, 64.9, 62.3, 52.0, 37.2, 30.1, 19.5, 16.0, 13.7. IR (solid): $\tilde{v}=2981$, $1753,1725,1552,1475,1450,1387,1360,1223,1193,1175,1153,1121,1093,1021,866,792,705$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNNaO}_{5}\right]^{+} 420.0417$, measured 420.0421.

Ethyl (1S)-1-((1S,2R)-1-(4-Chlorophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aE-Me)

3aE-Me
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}$

The product 3aE-Me was synthesized as described in GP7 within 120 h reaction time. 3aE-Me was isolated as a white solid as mixture of diastereomers $169.9 \mathrm{mg}, 0.198 \mathrm{mmol}$, 99%, $\left.d r_{(S, S, R+R, R, S):(S, S, S+R, R, R): D 3: D 4}=94: 3: 3: 0.4, \quad e e_{(S, S, R)}=>99 \%\right)$. Diastereomerically pure substance 3aE-Me was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee and $d r$ values were determined by chiral column HPLC of the crude reaction mixture: Chiracel IB, n heptane $/ \mathrm{iPrOH}(95 / 5), 0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $210 \mathrm{~nm}, t(S, S, R)=31.8 \mathrm{~min}, t(R, R, S)=30.7 \mathrm{~min}$.
$\mathbf{C}_{17} \mathbf{H}_{20} \mathrm{CINO}_{5} . \mathrm{MW}: 353.80 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=83-84{ }^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=-18.3\left(\mathrm{c}=0.13 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{M H z}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.32-7.28(m, 2 \mathrm{H}, \mathrm{ArH}), 7.12-7.08(m, 2 \mathrm{H}, \mathrm{ArH}), 5.31-5.21\left(m, 1 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 4.06(d, 1 \mathrm{H}$, $J=9.7 \mathrm{~Hz}, \mathrm{CHAr}), 4.00-3.84\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.64-2.56\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.43-2.14(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$), 2.03-1.76 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right.$), $1.13(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=211.9,168.3,134.8,134.2,130.8,129.2,82.3,64.8,62.3,51.8$, 37.3, 30.5, 19.5, 19.0, 13.7. IR (solid): $\tilde{v}=2982,1753,1727,1553,1493,1451,1389,1360,1225,1193$, 1152, 1124, 1094, $1015 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClNNaO}_{5}\right]^{+} 376.0922$, measured 376.0921.

CCDC 1908073 contains the supplementary crystallographic data for compound $3 \mathrm{aE}-\mathrm{Me}$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (1S)-1-((1S, 2R)-1-(3-Nitroophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3al-Me)

3al-Me
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}$

The product 3al-Me was synthesized as described in GP7 within 120 h reaction time. 3al-Me was isolated as a white solid as mixture of diastereomers $\left(64.4 \mathrm{mg}, 0.177 \mathrm{mmol}, 88 \%, d r_{(S, S, R+R, R, S): D 2: D 3: D 4}=92: 5: 2: 1\right.$, $\left.e e_{(S, S, R)}=>99 \%\right)$. Diastereomerically pure substance 3al-Me was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee and $d r$ values were determined by chiral column HPLC of the crude reaction mixture: Chiracel ADH , n-heptane $/ \mathrm{iPrOH}(95 / 5), 0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $210 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S}, \mathrm{R})=58.7 \mathrm{~min}, t(\mathrm{R}, \mathrm{R}, \mathrm{S})=70.5 \mathrm{~min}$.
$\mathbf{C}_{17} \mathbf{H}_{\mathbf{2 0}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}} . \mathrm{MW}: 364.35 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=98-99^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=-33.1\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.19-8.16(m, 1 \mathrm{H}, \mathrm{ArH}), 8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.56-7.52(m, 2 \mathrm{H}, \mathrm{ArH}), 5.30-5.21\left(m, 1 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right)$, $4.25(d, 1 H, J=9.5 \mathrm{~Hz}, \mathrm{CHAr}), 4.02-3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.71-2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 2.47-2.18(m, $3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.11-1.81 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.23\left(d, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 1.11(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=211.1,167.9,148.4,138.5,135.6,130.0,124.3,123.3,82.0,65.0$, 62.5, 51.9, 37.0, 29.9, 19.4, 19.0, 13.7. IR (solid): $\tilde{v}=3090,2983,1752,1724,1553,1528,1449,1389$, 1348, 1224, 1175, 1120, 1020, 911, 869, 811. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{7}\right]^{+} 387.1163$, measured 387.1163.

Ethyl (1S)-1-((1S,2R)-2-nitro-1-p-tolylpropyl)-2-oxocyclopentane-1-carboxylate (3aK-Me)

 3aK-Me
 $\mathrm{E}=\mathrm{CO}_{2} \mathrm{Et}$

The product 3aK-Me was synthesized as described in GP7 within 120 h reaction time. ЗaK-Me was isolated as a white solid as mixture of diastereomers $\left(49.4 \mathrm{mg}, 0.148 \mathrm{mmol}, 74 \%, d r_{(S, S, R+R, R, S}: 02: 03: 04=93: 4: 2: 0.1\right.$, $\left.e e_{(S, S, R)}=>98 \%\right)$. Diastereomerically pure substance ЗaK-Me was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee and $d r$ values were determined by chiral column and reversed phase HPLC of the crude reaction mixture: Chiracel IB, n-heptane/iPrOH (98/2), $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $210 \mathrm{~nm}, t(S, S, R)=63.7 \mathrm{~min}, t(R, R, S)=58.8 \mathrm{~min}$.
$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5} . \mathrm{MW}: 333.38 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=96-97^{\circ} \mathrm{C} .\left[\alpha_{D}^{20}\right]=-8.2\left(\mathrm{c}=0.14 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.11-7.07(m, 2 \mathrm{H}, \mathrm{ArH}), 7.03-7.00(m, 2 \mathrm{H}, \mathrm{ArH}), 5.34-5.24\left(m, 1 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 4.03-3.82(m, 3 \mathrm{H}$, CHAr and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 2.63-2.55 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.41-2.14 ($m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.31 ($s, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$), 1.99-1.75 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.19\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CHCH}_{3} \mathrm{NO}_{2}\right), 1.12\left(t, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.4,168.6,137.9,133.1,129.6,129.3,82.6,64.9,62.1,52.2,37.5,30.5,21.0$, 19.5, 19.1, 13.7. IR (solid): $\tilde{v}=2980,1750,1725,1547,1515,1446,1403,1387,1359,1220,1187,1153$, 1126, 1108, 1022, 870, 832, 812. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{5}\right]^{+} 356.1468$, measured 356.1464.

Methyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3bA)

3bA

The product 3bA was synthesized as described in GP6-standard. 3bA was isolated as colorless oil (53.8 mg , $\left.0.185 \mathrm{mmol}, 92 \%, d r_{(S, S+R, R):(R, S+S, R)}=95: 5, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3 bA was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee
values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/ $\mathrm{iPrOH}(90 / 10), 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(s, S)=23.3 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=16.2 \mathrm{~min}$.
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5} . \mathrm{MW}: 291.30 \mathrm{~g} / \mathrm{mol} .\left[\alpha_{D}^{20}\right]=29.2\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dll}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-$ $7.27(m, 3 H, \operatorname{ArH}), 7.21-7.14(m, 2 H, \operatorname{ArH}), 5.26\left(d d, 1 \mathrm{H}, \mathrm{J}=13.5,11.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.83(d d, 1 \mathrm{H}, \mathrm{J}=13.5$, $3.7 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.20(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.1,3.6 \mathrm{~Hz}, \mathrm{CHPh}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.48-2.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 2.06-1.92 ($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.87-1.74 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.47-1.36 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane) }}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.5,171.6,135.6,129.3,129.2,128.6,77.0,62.4,53.2,47.5,39.7,33.6,19.7$. IR (solid): $\tilde{v}=2957,2923,1726,1550,1433,1378,1229,1147,1111,703 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NNaO}_{5}\right]^{+} 314.0999$, measured 314.1011.

Isopropyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3cA)

3cA

The product 3cA was synthesized as described in GP6-standard. 3cA was isolated as white solid (58.8 mg , $\left.0.184 \mathrm{mmol}, 92 \%, d r_{(S, S+R, R):(R, S+S, R)}=97: 3, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance $3 c A$ was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (95/5), $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(S, S)=19.6 \mathrm{~min}, t(R, S)=18.3 \mathrm{~min}$.
$\mathbf{C}_{17} \mathbf{H}_{21} \mathbf{N O}_{5} . \mathrm{MW}: 319.36 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=84-85^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=16.2\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl_{3}): $\delta=7.34-7.27(m, 3 \mathrm{H}, \mathrm{ArH}), 7.22-7.16(m, 2 \mathrm{H}, \mathrm{ArH}), 5.30\left(d d, 1 \mathrm{H}, \mathrm{J}=13.3,11.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 5.07$ (sept, $\left.1 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.83\left(d d, 1 \mathrm{H}, J=13.5,3.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.18(d d, 1 \mathrm{H}, J=11.0,3.3 \mathrm{~Hz}$, CHPh), 2.45-2.34 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.33-2.24 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.04-1.89 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.87$1.74\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, $1.48-1.37\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.25\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.6,170.8,135.8,129.4,129.1,128.5,77.2,70.3,62.5,47.4,39.6,33.7,21.7,21.6$, 19.7. IR (solid): $\tilde{v}=3.034,2981,1742,1720,1553,1455,1377,1231,1148,1100,907,729,702 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{5}\right]^{+} 342.1312$, measured 342.1312.

CCDC 1872236 contains the supplementary crystallographic data for compound 3cA. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-2-((S)-2-Nitro-1-phenylethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3dA)

3dA

The product 3dA was synthesized as described in GP6-standard. 3dA was isolated as colorless oil (63.1 mg, $\left.0.179 \mathrm{mmol}, 89 \%, d r_{(S, S+R, R):(R, S+S, R)}=93: 7, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3dA was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (80/20), $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, detection at $220 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=29.3 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=11.8 \mathrm{~min}$.
$\mathbf{C}_{20} \mathbf{H}_{19} \mathbf{N O}_{5} . \mathrm{MW}: 353.37 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=90-91^{\circ} \mathrm{C} .\left[\alpha_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=24.0\left(\mathrm{c}=0.12 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.75(d, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.49(d t, J=7.5,1.3 \mathrm{~Hz}, \mathrm{ArH}), 7.34(t, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.23(d$, $\left.1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.17-7.09(m, 5 \mathrm{H}, \mathrm{ArH}), 5.19(d d, 1 \mathrm{H}, \mathrm{J}=13.5,11.0 \mathrm{~Hz}, \mathrm{CHHNO})_{2}\right), 5.06(d d, 1 \mathrm{H}, \mathrm{J}=13.5$, $3.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.48(d d, 1 \mathrm{H}, \mathrm{J}=11.0,3.5 \mathrm{~Hz}, \mathrm{CHPh}), 4.15\left(q, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.49(d, 1 \mathrm{H}$, $\left.J=17.6 \mathrm{~Hz}, \mathrm{CH}_{\text {cyclopentane }}\right), 3.16\left(d, 1 \mathrm{H}, J=17.6 \mathrm{~Hz}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.16\left(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.2,170.7,152.5,136.3,135.8,135.0,129.1,128.7,128.4,128.0,126.1,124.5$, 77.3, 62.4, 61.9, 47.6, 36.7. IR (solid): $\tilde{v}=3063,3034,2982,2926,1731,1704,1605,1551,1378,1240$, 1213, 1182, 1009, 909, 754, 730, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{5}\right]^{+} 376.1155$, measured 376.1151.

CCDC 1872229 contains the supplementary crystallographic data for compound 3dA. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclohexane-1-carboxylate (3eA)

3eA

The product 3eA was synthesized as described in GP6-neat at $0^{\circ} \mathrm{C}$ within 72 h reaction time. 3eA was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated (61.6 mg , $\left.0.193 \mathrm{mmol}, 96 \%, d r_{(S, S+R, R):(R, S+5, R)}=80: 20, e e_{(S, S)}=97 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel AS-H, n-hexane/iPrOH ($95 / 5$), $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(S, S)=71.3 \mathrm{~min}, t(R, S)$ $=33.5 \mathrm{~min}$.
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} . \mathrm{MW}: 319.36 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=-40.9\left(\mathrm{c}=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Major Diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.21(m, 5 \mathrm{H}, \mathrm{ArH}), 5.16\left(d d, 1 \mathrm{H}, \mathrm{J}=13.6,11.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.76(d d, 1 \mathrm{H}$, $J=13.6,3.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.25-4.08 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and CHPh), 2.53-2.39 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 1.99-1.92 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 1.79-1.69 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 1.65-1.59 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 1.54-1.43 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CH}_{\text {cyclohexane }}$), 1.41-1.34 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), $1.24\left(t, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta$ $=206.7,170.4,135.9,129.7,128.8,128.3,77.4,64.4,62.3,48.0,41.5,33.5,26.3,22.3,14.1$. Minor Diastereomer : ${ }^{23}{ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.06(\mathrm{dd}$, $1 \mathrm{H}, J=13.2,3.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.79\left(d d, 1 \mathrm{H}, J=13.2,11.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.25-4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00$ ($d d, 1 \mathrm{H}, J=11.3,3.1 \mathrm{~Hz}, \mathrm{CHPh}$), 2.55-2.39 ($m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 2.13-2.06 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 2.05-1.99 (m, $1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 1.72-1.64 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), 1.64-1.60 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), $1.54-1.43$ ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclohexane }}$), $1.25\left(t, 3 H, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.2,169.8,135.5,129.6,128.8,128.6$, 77.7, 63.1, 62.1, 47.9, 37.2, 33.5, 28.8, 22.5, 14.1. IR (solid): $\tilde{v}=3032,2944,2870,1709,1552,1435,1378$, 1235, 1203, 1095, 1019, $703 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}\right]^{+} 320.1492$, measured 320.1485.

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocycloheptane-1-carboxylate (3fA)

3fA

The product 3fA was synthesized as described in GP6-standard. 3fA was isolated as colorless oil (63.7 mg , $\left.0.191 \mathrm{mmol}, 96 \%, d r_{(S, S+R, R):(R, S+S, R)}=91: 9, e e_{(S, S)}=99 \%\right)$. Diastereomerically pure substance 3fA was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (95/5), $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(S, S)=20.3 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=11.6 \mathrm{~min}$.
$\mathbf{C}_{18} \mathbf{H}_{23} \mathbf{N O}_{5} . \mathrm{MW}: 333.38 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=85-86{ }^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=10.9$ (c $=0.15 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.34-7.27(m, 3 \mathrm{H}, \mathrm{ArH}), 7.22-7.16(m, 2 \mathrm{H}, \mathrm{ArH}), 5.14\left(d d, 1 \mathrm{H}, \mathrm{J}=13.6,11.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.81$ $\left(d d, 1 \mathrm{H}, J=13.6,3.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.33-4.17\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.06(d d, 1 \mathrm{H}, \mathrm{J}=11.0,3.0 \mathrm{~Hz}, \mathrm{CHPh}), 2.59-$ $2.48\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cycloheptane }}\right), 2.18-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cycloheptane }}\right), 1.86-1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cycloheptane }}\right), 1.71-1.57(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{\text {cycloheptane }}\right)$, 1.52-1.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cycloheptane }}$), 1.35-1.23 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cycloheptane }}$), $1.30(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=210.6,171.8,135.2,129.5,128.8,128.4,78.2,65.6,62.1,50.9$, 45.3, 34.2, 30.2, 25.1, 24.3, 14.1. IR (solid): $\tilde{v}=3032,2934,2862,1698,1551,1454,1378,1226,1152$, 1021, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{5}\right]^{+}$334.1649, measured 334.1636.

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclooctane-1-carboxylate (3gA)

$3 g A$

The product 3gA was synthesized as described in GP6-standard using 0.1 mL THF (instead of 0.4 mL) at $0^{\circ} \mathrm{C}$ within 72 h reaction time. 3 gA was isolated as a colorless oil and as a mixture of diastereomeres, which could not be separated ($\left.37.4 \mathrm{mg}, 0.108 \mathrm{mmol}, 54 \%, d r_{(S, S+R, R):(R, S+S, R)}=69: 31, e e_{(S, S)}=92 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane $/ \operatorname{iPrOH}(95 / 5), 0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=24.4 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=17.7 \mathrm{~min}$.
$\mathbf{C}_{19} \mathbf{H}_{25} \mathrm{NO}_{5}$. MW: $347.41 \mathrm{~g} / \mathrm{mol}$. $\left[\alpha_{\boldsymbol{D}}^{20}\right]=10.2$ ($\mathrm{c}=0.23 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Major Diastereomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30-7.22(m, 5 \mathrm{H}, \mathrm{ArH}), 5.03-4.2\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 4.34-3.95\left(m, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\mathrm{CHPh})$, 2.68-2.11 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclooctane }}$), 2.04-1.93 ($\mathrm{m}, \mathrm{1H}, \mathrm{CH}_{\text {cyclooctane }}$), 1.85-1.54 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{\text {cyclooctane }}$), 1.43$1.69\left(m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclooctane }}\right), 1.18\left(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=211.2,170.6$, 135.9, 129.6, 128.6, 128.3, 77.4, 65.6, 62.0, 47.4, 40.7, 29.8, 28.2 25.7, 25.5, 24.4, 14.0. Minor Diastereomer: ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.30-7.22(m, 3 \mathrm{H}, \mathrm{ArH}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.01(d d, 1 \mathrm{H}$,
$\left.J=13.3,3.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.71\left(d d, 1 \mathrm{H}, \mathrm{J}=13.3,11.3 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.34-3.95\left(m, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and CHPh$)$, 2.68-2.11 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{\text {cyclooctane }}$), 1.85-1.54 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{\text {cyclooctane }}$), 1.43-1.69 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclooctane }}$), $1.31(t, 3 \mathrm{H}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta=210.9,170.7,136.1,129.6,128.8,128.4,78.7,64.6$, 62.1, 46.2, 40.1, 31.8, 27.4, 26.4, 24.9, 22.6, 14.2. IR (solid): $\tilde{v}=2931,2859,1742,1705,1553,1455,1378$, 1281, 1220, 1183, 1093, 1022, $703 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated [$\left.\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}\right]^{+} 370.1625$, measured 370.1627.

Methyl (2S,3S)-2-Acetyl-2-methyl-4-nitro-3-phenylbutanoate (3hA)

3hA

The product 3hA was synthesized as described in GP6-standard using $0.125 \mathrm{~mL} \operatorname{THF}(n \mathbf{2 A})=0.25 \mathrm{mmol}$, $\left.n(1 \mathrm{~h})=0.50 \mathrm{mmol}, n\left(\mathbf{C 1 b}-\mathbf{C u}^{*}\right)=0.0125 \mathrm{mmol}\right)$ within 72 h reaction time. 3 hA was isolated as a white solid ($\left.57.2 \mathrm{mg}, 0.205 \mathrm{mmol}, 80 \%, d r_{(S, S+R, R):(R, S+S, R)}=84: 16, e e_{(S, S)}=75 \%\right)$. Diastereomerically pure substance 3hA was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $214 \mathrm{~nm}, t(S, S)=30.1 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=22.1 \mathrm{~min}$.
$\mathrm{C}_{14} \mathbf{H}_{17} \mathrm{NO}_{5} . \mathrm{MW}: 279.29 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=71-72^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=-17.7\left(\mathrm{c}=0.24 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.33-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 4.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0$, $6.6 \mathrm{~Hz}, \mathrm{CHAr}), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.4$, 171.4, 135.5, 129.3, 128.9, 128.5, 76.9, 62.1, 52.9, 47.4, 27.8, 18.1. IR (solid): $\tilde{v}=3000,2954,1711,1603$, 1552, 1497, 1455, 1434, 1379, 1359, 1307, 1238, 1198, 1118, 1096, 976, 832, $704 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5}\right]^{+}$280.1179, measured 280.1169.

CCDC 1872230 contains the supplementary crystallographic data for compound 3hA. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Dimethyl (R)-2-(2-Nitro-1-phenylethyl)malonate (3iA)

$3 i A$

The product 3iA was synthesized as described in GP6-standard, using 0.1 mL THF (instead of 0.4 mL) within 72 h reaction time. 3 iA was isolated as colorless oil ($32.4 \mathrm{mg}, 0.115 \mathrm{mmol}, 58 \%, e e_{(R)}=80 \%$). The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (70/30), $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $254 \mathrm{~nm}, t(R)=26.5 \mathrm{~min}, t(\mathrm{~s})=24.3 \mathrm{~min}$.
$\mathrm{C}_{13} \mathbf{H}_{15} \mathrm{NO}_{6}$. MW: $281.26 \mathrm{~g} / \mathrm{mol} .\left[\alpha_{D}^{20}\right]=-4.3\left(\mathrm{c}=0.37 \mathrm{~g} / \mathrm{dl}, \mathrm{CHCl}_{3}\right),{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.36-$ $7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.93\left(d d, 1 \mathrm{H}, \mathrm{J}=13.2,5.4 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.86(d d, 1 \mathrm{H}, J=13.2$, $8.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), $4.25(t d, 1 \mathrm{H}, \mathrm{J}=8.6,5.4 \mathrm{~Hz}, \mathrm{CHAr}), 3.86\left(d, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0,167.4,136.2,129.1,128.5,128.0,77.5$, 54.9, 53.1, 52.9, 43.0. IR (solid): $\tilde{v}=3033,2956,1731,1551,1434,1379,1290,1256,1236,1196,1152$, 1018, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{6}\right]^{+}$304.0792, measured 304.0793.

The absolute configuration of (-)- was determined to be (R)-isomer by comparing the specific optical rotation with literature value. ${ }^{24}$ [lit. for the (S)-enantiomere ($93 \% e e$): $\left[\alpha_{D}^{20}\right]=+4.40(\mathrm{c}=1.02 \mathrm{~g} / \mathrm{dL}$, $\left.\mathrm{CHCl}_{3}\right)$]

Ethyl (S)-1-Methyl-3-((S)-2-nitro-1-phenylethyl)-2-oxopyrrolidine-3-carboxylate (3jA)

3jA

The product 3 jA was synthesized as described in GP6-standard using 0.1 mL THF (instead of 0.4 mL) at $-30^{\circ} \mathrm{C}$ within 72 h reaction time. 3 jA was isolated as colorless oil and as a mixture of diastereomeres, which could not be separated $\left(45.4 \mathrm{mg}, 0.142 \mathrm{mmol}, 71 \%, d r_{(S, S+R, R):(R, S+S, R)}=84: 16, e e_{(S, S)}=91 \%\right)$. The $e e$ values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (90/10), $0.5 \mathrm{~mL}^{\mathrm{min}}{ }^{-}$ ${ }^{1}$, detection at $214 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=57.7 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})=49.5 \mathrm{~min}$.
$\mathrm{C}_{16} \mathrm{H}_{20} \mathbf{N}_{2} \mathrm{O}_{5}$. MW: $320.35 \mathrm{~g} / \mathrm{mol}$. $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=62.4\left(\mathrm{c}=0.16 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Major Diastereomer: ${ }^{1} \mathrm{H} \mathbf{N M R}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.29\left(d d, 1 \mathrm{H}, \mathrm{J}=13.7,11.0 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right.$), $5.02(d d, 1 \mathrm{H}$, $\left.J=13.7,3.4 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right)$, 4.34-4.15 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CHCH}_{2} \mathrm{NO}_{2}$), 3.15-3.05 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{AlkylH}$), $2.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.32-2.17(\mathrm{~m}, 2 \mathrm{H}$, AlkylH$), 2.07-1.96\left(m, 1 \mathrm{H}\right.$, AlkylH), $1.29\left(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5,170.9,135.5,129.3,128.9,128.6,77.4,62.4,58.0,47.4,46.8,30.2$, 28.6, 14.2. Minor Diastereomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, $5.51(d d, 1 \mathrm{H}$, $\left.J=13.6,3.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 5.11\left(d d, 1 \mathrm{H}, \mathrm{J}=13.6,11.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.34-4.15\left(m, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.11\left(d d, 1 H, J=11.1,3.6 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{NO}_{2}\right.$), 3.35-3.25 ($\mathrm{m}, 1 \mathrm{H}$, AlkylH), 3.30-2.91 ($m, 1 \mathrm{H}$, AlkylH), 2.75 ($s, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right)$, 2.46-2.36 ($m, 1 \mathrm{H}$, AlkylH), 2.07-1.96 ($m, 1 \mathrm{H}$, AlkylH), $1.30\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3,170.0,135.9,129.1,128.9,128.4,77.4,62.4,58.2,47.4,46.7,30.4,27.0,14.17$. IR (solid): $\tilde{v}=3032,2983,2935,2887,1730,1686,1551,1498,1455,1433,1404,1379,1307,1270,1230$, 1197, 1099, $705 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5}\right]^{+} 343.1264$, measured 343.1248 .

Ethyl (S)-1-Methyl-3-((S)-2-nitro-1-phenylethyl)-2,5-dioxopyrrolidine-3-carboxylate (3kA)

3kA

The product 3kA was synthesized as described in GP6-standard using 0.1 mL THF (instead of 0.4 mL). 3kA was isolated as colorless oil and as a mixture of diastereomeres, which could not be separated (63.4 mg , $\left.0.189 \mathrm{mmol}, 95 \%, d r_{(S, S+R, R):(R, S+S, R)}=83: 17, e e_{(S, S)}=98 \%\right)$. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane $/ \mathrm{iPrOH}(80 / 20), 1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S})=55.6 \mathrm{~min}, t(\mathrm{R}, \mathrm{S})$ $=20.6 \mathrm{~min}$.
$\mathbf{C}_{16} \mathbf{H}_{18} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{6}$. MW: $334.33 \mathrm{~g} / \mathrm{mol}$. $\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=60.5$ (c $=0.36 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Major Diastereomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (300 MHz, CDCl_{3}): $\delta=7.34-7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.7,10.6 \mathrm{~Hz}$, $\left.\mathrm{CHHNO}_{2}\right), 5.12\left(d d, 1 \mathrm{H}, \mathrm{J}=13.8,3.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.34-4.15\left(m, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CHCH}_{2} \mathrm{NO}_{2}\right)$, 2.92 ($s, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.86 ($d, J=18.2 \mathrm{~Hz}, \mathrm{COCHH}$), $2.66(d, J=18.2 \mathrm{~Hz}, \mathrm{COCHH}$), $1.29(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.8,173.4,169.1,133.7,129.6,129.4,128.9,76.8,63.4,56.7$, 46.8, 38.4, 25.4, 14.0. Minor Diastereomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=7.34-7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.25-$ $7.20(m, 2 H, A r H), 5.19\left(d d, 1 H, J=13.4,4.1 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 5.12\left(d d, 1 \mathrm{H}, \mathrm{J}=13.4,10.5 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.42$ ($d d, 1 \mathrm{H}, J=10.5,4.1 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{NO}_{2}$), 4.34-4.15 ($m, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$) $3.19(d, J=18.1 \mathrm{~Hz}, \mathrm{COCHH}$), $2.66(d, J=18.1 \mathrm{~Hz}, \mathrm{COCHH}), 2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.33\left(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C ~ N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=173.8,173.6,170.5,133.7,129.4,129.2,128.7,76.0,63.6,58.1,46.3,35.7,25.4,14.2 . \operatorname{IR}($ solid $): \tilde{v}=$ $2984,1785,1736,1699,1553,1497,1435,1379,1341,1284,1245,1187,1128,1076,1011,913,732,704$ cm^{-1}. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6}\right]^{+} 357.1057$, measured 357.1050.

Ethyl (1S,2S,3S,4R)-3-Nitro-6-oxo-2-phenylbicyclo[2.2.2]octane-1-carboxylate (4-D2)

4-D2

The product 4-D2 was synthesized as described in GP6-standard using 0.1 mL THF (instead of 0.4 mL) at $22^{\circ} \mathrm{C}$. After completing 71 h of reaction time, tetra-n-butylammonium fluoride ($60 \mu \mathrm{~L}, 0.3$ equiv, 1 M in

THF) was added and the reaction mixture was stirred an additional hour at room temperature. The work up was proceeded as described in GP6 Standard and 4-D2 was isolated as colorless oil (59.6 mg , $\left.0.189 \mathrm{mmol}, 92 \%, d r_{(S, S, S, R+R, R, R, S):(R, S, S, S S, R, R, R)}=93: 7, e e_{(S, S, S, R)}=97 \%\right)$. Diastereomerically pure substance 4-D2 was obtained by purification via preparative TLC (petroleum ether/ethyl acetate, 8/1) for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH $(95 / 5), 0.7 \mathrm{~mL} \mathrm{~min}^{-1}$, detection at $220 \mathrm{~nm}, t(\mathrm{~S}, \mathrm{~S}, \mathrm{~S}, \mathrm{R})=46.1 \mathrm{~min}, t_{(\mathrm{R}, \mathrm{R}, \mathrm{R})}=43.7 \mathrm{~min}$.
 $7.26(m, 5 \mathrm{H}, \mathrm{ArH}), 5.04-4.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHNO}_{2}\right), 5.04-4.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHNO}_{2}\right)$, 4.49-4.45 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHPh}$), 4.13$3.90\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.05\left(\right.$ sext, $\left.1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHCHNO}_{2}\right), 2.70(d t, 1 \mathrm{H}, \mathrm{J}=19.5,2.4 \mathrm{~Hz}, \mathrm{COCHHCH})$, 2.50-2.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{COCHHCH}$ and $(\mathrm{C})_{3} \mathrm{CHHCH}_{2}$), 2.20-1.94 ($\mathrm{m}, 3 \mathrm{H},(\mathrm{C})_{3} \mathrm{CHHCH}_{2} \mathrm{CH}$), $1.11(t, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta=205.7,168.7,136.5,129.2,129.0,128.5,90.3,61.4,59.2,44.4$, 38.3, 34.8, 23.8, 20.1, 14.0. IR (solid): $\tilde{v}=2977,1726,1550,1497,1471,1455,1406,1368,1306,1267$, 1242, 1171, 1076, 1047, $705 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}\right]^{+} 340.1155$, measured 340.1164.

Confirming the Configurational Outcome with 2D-NMR Experiments of Compound 4-D2.

To confirm the structure of the major diastereomer of compound 4-D2, several NMR-Experiments were performed (COSY, HSQC, HMBC and NOESY) and the different 2D-NMR spectra are shown in the next chapters.

4-D2

COSY-Experiment

HSQC-Experiment

HMBC-Experiment

NOESY-Experiment

Upscaling Experiment for the Synthesis of Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1carboxylate 3aA

The product 3aA-D2 was synthesized as described in GP6 neat. Using 1.27 mL 1a ($1.34 \mathrm{~g}, 8.60 \mathrm{mmol}$, 2.0 equiv), 0.64 g 2 A ($4.30 \mathrm{mmol}, 1.0$ equiv) and 19.7 mg of the catalyst C1b-Cu* ($0.0215 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$) for 165 h at $-20^{\circ} \mathrm{C}$. The product 3aA-D2 was isolated as a white solid ($1.20 \mathrm{~g}, 3.904 \mathrm{mmol}, 91 \%, d r=95: 5$, $e e=99 \%)$. The analytical data are in agreement with the published data in this supporting information.

Catalyst Recycling:

The catalytic reaction was performed as described in GP6-standard. Upon filtration of the reaction mixture the catalyst C1b-Cu* turned green on the silica and stuck on the top end of the silica pad (see pictures left), while isolating the crude product with a solvent mixture of petroleum ether/ethyl acetate ($1 / 1,5$ to 10 mL). The residual solvent was then completely pressed through the silica pad (to dryness) to allow for a solvent exchange. Then the silica pad was rinsed using a solvent mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF} / \mathrm{NEt}_{3}(66 / 33 / 1)$. By that the catalyst turned brown again and the activated catalyst was collected using approximately 10 mL of the solvent mixture (see pictures right). The solvent was removed under reduced pressure, the resulting brown solid was dried in high vacuo and the activated catalyst could be used without further purification in the next catalytic transformation. For that purpose the reisolated catalyst $\mathbf{C 1 b}-\mathbf{C u *}$ was dissolved in THF (0.05 mL) and transferred to a reaction vessel. Additional THF (0.05 mL) was used to allow for a complete catalyst transfer. Afterwards the substrates were added as described in GP6-standard.

Derivatisation of the Catalytic Product 3aA

Ethyl (1S,2R)-2-hydroxy-1-((S)-2-nitro-1-phenylethyl)cyclopentane-1-carboxylate (10)

3aA ($71.5 \mathrm{mg}, 0.234 \mathrm{mmol}, 1.0$ equiv, $\left.d r_{(S, S+R, R):(R, S+5, R)}=90: 10, e e_{(S, S)}=99 \%\right)$ was dissolved in a solvent mixture of ethanol/dichloromethane ($1.0 \mathrm{~mL} / 0.5 \mathrm{~mL}$) and cooled to $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere. NaBH_{4} ($35.4 \mathrm{mg}, 0.937 \mathrm{mmol}, 4.0$ equiv) was added in portions to the reaction mixture at $-78^{\circ} \mathrm{C}$ which was then slowly warmed to room temperature overnight. Afterwards saturated aqueous ammonium chloride (5 mL) was added and the crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic fraction was washed with water (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified via column chromatography on silica gel (petroleum ether/ethyl acetate, $5 / 1$ to $2 / 1$) to yield the pure product $\mathbf{1 0}$ as a colorless solid and as a mixture of diastereomers, which could not be separated ($52.9 \mathrm{mg}, 0.172 \mathrm{mmol}, d r=90: 10,74 \%$).
$\mathrm{C}_{16} \mathrm{H}_{21} \mathbf{N O}_{5} . \mathrm{MW}: 307.35 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=139-140^{\circ} \mathrm{C} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=31.8\left(\mathrm{c}=0.28 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}(\mathbf{3 0 0} \mathrm{MHz}$, CDCl_{3}): $\delta=7.33-7.27$ ($m, 3 \mathrm{H}, \mathrm{ArH}$), 7.25-7.21 ($m, 2 \mathrm{H}, \mathrm{ArH}$), 5.06 ($d d, 1 \mathrm{H}, \mathrm{J}=13.2,11.6 \mathrm{~Hz}, \mathrm{CHHNO}_{2}$), 4.83 (dd, $\left.1 \mathrm{H}, \mathrm{J}=13.2,4.2 \mathrm{~Hz}, \mathrm{CHHNO}_{2}\right), 4.28-4.21(m, 2 \mathrm{H}, \mathrm{CHOH}$ and CHPh$), 4.16-3.97\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.34-$ 2.26 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.05-1.87 ($m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.66-1.52 ($m, 3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$ and CHOH), $1.17(t$, $3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.0,137.3,128.7,128.3,128.0,78.5,75.1,62.7$, 61.2, 45.9, 33.8, 32.2, 21.1, 14.0. IR (solid): $\tilde{v}=3500,3034,2978,2934,2877,1707,1555,1543,1443$, 1378, 1316, 1217, 1189, 1084, 1070, 1013, $701 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5}\right]^{-} 306.1336$, measured 306.1340 .

CCDC 1872237 contains the supplementary crystallographic data for compound $\mathbf{1 0}$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (1S,2R)-2-hydroxy-1-((S)-2-nitro-1-phenylethyl)cyclopentane-1-carboxylate (11)

The reaction was performed in analogy to a literature procedure. ${ }^{25} \mathbf{1 0}$ ($24.7 \mathrm{mg}, 0.0804 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$ under nitrogen atmosphere and $\mathrm{NiCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$ ($19.12 \mathrm{mg}, 0.0804 \mathrm{mmol}$, 1.0 equiv) was added. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and NaBH_{4} ($30.42 \mathrm{mg}, 0.8042 \mathrm{mmol}$, 10 equiv) was added in several portions. The reaction mixture was slowly warmed to room temperature overnight. Afterwards, a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution (5 mL) was added and the aqueous phase was extracted using dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic fraction was dried over MgSO_{4} and the solvents were removed under reduced pressure to yield the product 11 ($18.2 \mathrm{mg}, 0.0656 \mathrm{mmol}, 82 \%$) as a colorless solid. Product 11 slowly cyclizes to the corresponding spiro-compound by storage for longer time, whereby also decomposition was observed.
$\mathbf{C}_{16} \mathbf{H}_{23} \mathbf{N O}_{5}$. MW: $277.36 \mathrm{~g} / \mathrm{mol} . \mathrm{MP}=127-128^{\circ} \mathrm{C} .\left[\alpha_{D}^{20}\right]=29.8\left(\mathrm{c}=0.25 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.28-7.12(m, 5 \mathrm{H}, \mathrm{ArH}), 4.30-4.25(m, 1 \mathrm{H}, \mathrm{CHPh}), 3.97-3.85\left(m, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ 3.34-3.29 ($m, 1 \mathrm{H}$, CHOH), 3.25-3.09 ($m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.55 ($b r, 3 \mathrm{H}, \mathrm{NH}_{2}$ and OH) 2.33-2-26 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.98-1.70 (m, $3 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.62-1.56 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.08\left(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$). ${ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=175.1,141.4,128.7,128.3,126.9,77.3,63.5,60.5,51.4,43.3,33.4,28.5,20.9,14.0 . \operatorname{IR}$ (solid): $\tilde{v}=3296,3030,2923,2872,2853,2244,1684,1454,1375,1261,1089,1064,1025,908 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}\right]^{-} 300.1570$, measured 300.1556 .

CCDC 1908074 contains the supplementary crystallographic data for compound 11. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

(4S,5S,6R)-6-hydroxy-4-phenyl-2-azaspiro[4.4]nonan-1-one (15)

11 ($30.7 \mathrm{mg}, 0.111 \mathrm{mmol}, 1.0$ equiv) was dissolved in methanol ($60 \mu \mathrm{~L}$), cooled to $0^{\circ} \mathrm{C}$ and 10% aqueous KOH solution ($71 \mu \mathrm{~L}, 0.111 \mathrm{mmol}, 1.0$ equiv) was added dropwise. The reaction mixture was slowly warmed to room temperature overnight. After removing the solvent under reduced pressure, the residue was dissolved in dichloromethane (1.5 mL) and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (0.2 mL). The organic layer was separated, washed with brine (1 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to yield the product $15(23.8 \mathrm{mg}, 0.103 \mathrm{mmol}, 93 \%)$ as a colorless oil.
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$. MW: $231.29 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{20}\right]=-101.7\left(\mathrm{c}=0.21 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-$ 7.19 ($m, 5 \mathrm{H}, \mathrm{ArH}$), 6.57 (b, 1H, NHCO)4.10-4.06 ($m, 1 \mathrm{H}, \mathrm{CHPh}$), 3.74-3.68 (dd, $1 \mathrm{H}, \mathrm{J}=7.0,10.0 \mathrm{~Hz}, \mathrm{CHOH}$), 3.33-3.29 ($m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.26-2.12 ($m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 2.09-1.94 ($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.89-1.62 (m, $3 \mathrm{H}, \mathrm{OH}$ and $\mathrm{CH}_{\text {cyclopentane }}$), 1.51-1.40 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$). ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=181.3,142.3$, 129.2, 127.7, 127.5, 77.3, 75.9, 50.9, 47.6, 35.6, 33.5, 21.4. IR (solid): $\tilde{v}=3266,3029,2948,2875,2244$, 1680, 1494, 1485, 1454, 1433, 1370, 1263, 1083, 1063, 1025, $909 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}$254.1451, measured 254.1166.

Ethyl (3S,3aS)-3-phenyl-2,4,5,6-tetrahydrocyclopenta[b]pyrrole-3a(3H)-carboxylate (12)

3aA ($67.8 \mathrm{mg}, 0.222 \mathrm{mmol}, 1.0$ equiv, $\left.d r_{(S, S+R, R):(R, S+S, R)}=94: 6, e e_{(S, S)}=99 \%\right)$ was dissolved in a solvent mixture of methanol/dichloromethane ($0.4 \mathrm{~mL} / 0.4 \mathrm{~mL}$) and cooled to $0^{\circ} \mathrm{C}$. Zinc powder (145.1 mg , $2.220 \mathrm{mmol}, 10$ equiv), followed by glacial acetic acid ($0.38 \mathrm{ml}, 6.662 \mathrm{mmol}, 30$ equiv) were added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$. After 30 minutes the ice bath was removed and stirring was continued 4.5 h at room temperature. The reaction mixture was filtrated and the residue was washed with dichloromethane $(2 \mathrm{~mL})$. After evaporating the solvents, the reaction mixture was redissolved in dichloromethane (5 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The water phase was extracted twice with
dichloromethane (5 mL) and the combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent under reduced pressure, the crude product was purified via column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 40 / 1\right.$ to $\left.20 / 1\right)$ to yield the pure product 12 as a yellowish oil and as a mixture of diastereomers, which could not be separated ($30.1 \mathrm{mg}, 0.117 \mathrm{mmol}, \mathrm{dr}=94: 6,53 \%$).
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2} . \mathrm{MW}: 257.33 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=-50.0\left(\mathrm{c}=0.19 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32-$ $7.21(m, 3 H, \operatorname{ArH}), 7.09-704(m, 2 H, \operatorname{ArH}), 4.66-4.53(m, 1 \mathrm{H}, \mathrm{CHPh}), 4.44(d, 1 \mathrm{H}, \mathrm{J}=14.9 \mathrm{~Hz}, \mathrm{CHHNC}), 4.25$ $\left(q, 2 H, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.85(d, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{CHHNC}), 2.55-2.39\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 2.32-2.1.99 (m , $2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), 1.88-1.74($m, 2 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}$), $1.30\left(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.99-0.0 .86(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\text {cyclopentane }}\right) .{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta=185.6,173.1,140.9,128.7,128.1,127.1,72.6,61.5,52.4,33.6$, 27.7, 25.8, 25.6, 14.3. IR (solid): $\tilde{v}=3028,2955,2873,1719,1673,1494,1449,1298,1226,1174,1144$, 1129, 1055, 1026, 766, $701 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}\right]^{+}$258.1489, measured 258.1478.
(3S,3aS)-3a-(Ethoxycarbonyl)-3-phenyl-2,3,3a,4,5,6-hexahydro-1|4-cyclopenta[b]pyrrol-1-olate (13)

3aA (207.0 mg, 0.678 mmol , 1.0 equiv, $\left.d r_{(S, S+R, R):(R, S+S, R)}=94: 6, e e_{(S, S)}=99 \%\right)$ was dissolved in THF (3 mL) and a solution of ammonium chloride ($36.3 \mathrm{mg}, 0.678 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added. Afterwards zinc powder ($443.25 \mathrm{mg}, 6.780 \mathrm{mmol}, 10$ equiv) was added in portions and the reaction mixture was stirred for 3 h at room temperature. The reaction mixture was filtrated and the residue was washed with THF (2 mL). After evaporating the solvents, the reaction mixture was redissolved in chloroform (5 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The water phase was extracted twice with chloroform (5 mL) and the combined organic fractions were dried over MgSO_{4}. After removing the solvent under reduced pressure, the crude product was purified via column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 40 / 1\right.$ to $\left.20 / 1\right)$ to yield the pure product 13 as colorless oil ($115.2 \mathrm{mg}, 0.422 \mathrm{mmol}, 62 \%$) and the side product 12 was isolated as yellowish oil ($48.9 \mathrm{mg}, 0.190 \mathrm{mmol}, 28 \%$).
$\mathbf{C}_{16} \mathbf{H}_{19} \mathbf{N O}_{3} . \mathrm{MW}: 273.33 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=28.4\left(\mathrm{c}=0.29 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{7 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right): \delta=7.36(t$, $2 H, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.30(t, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.14(d, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{ArH}), 5.06-5.01(m, 1 \mathrm{H}, \mathrm{CHPh}), 4.29$ $\left(q, 2 H, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.25(d, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}, \mathrm{CHHNO}), 3.99(d, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CHHNO}), 2.63-2.56$
$\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 2.47-2.41 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, 2.13-2.05(m,1H, $\left.\mathrm{CH}_{\text {cyclopentane }}\right)$, 1.97-1.91 ($\mathrm{m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\text {cyclopentane }}\right), 1.80-1.75\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.34\left(t, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.01-0.95(m, 1 \mathrm{H}$, $\mathrm{CH}_{\text {cyclopentane }}$). ${ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}): $\delta=172.9,152.6,139.0,129.3,128.0,127.6,73.3,67.4,62.3,46.7$, 29.8, 26.7, 22.9, 14.4. IR (solid): $\tilde{v}=3416,3030,2975,1722,1637,1497,1458,1352,1285,1252,1229$, 1207, 1142, 1019, 756, $703 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calculated $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}\right]^{+}$274.1438, measured 274.1434.

6a-ethyl 2,3-dimethyl (3aR,6aS,7S)-7-Phenyl-5,6,7,8-tetrahydrocyclopenta[2,3]pyrrolo[1,2-b][1,2] oxazole-2,3,6a(4H)-tricarboxylate (14)

13
62\%
1.05 equiv

14

13 ($40.2 \mathrm{mg}, 0.147 \mathrm{mmol}, 1.0$ equiv) was dissolved in toluene (0.5 mL), dimethyl acetylenedicarboxylate ($19.0 \mu \mathrm{~L}, 21.95 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.05$ equiv) was added and the reaction mixture was stirred overnight at $100^{\circ} \mathrm{C}$. After evaporating all volatiles under reduced pressure, the crude product was purified via column chromatography on silica gel (petroleum ether/ethyl acetate, $5 / 1$ to $2 / 1$) to yield the pure product 14 as yellowish oil ($26.8 \mathrm{mg}, 0.0645 \mathrm{mmol}, 43 \%$).
$\mathbf{C}_{22} \mathbf{H}_{25} \mathrm{NO}_{7} . \mathrm{MW}: 415.44 \mathrm{~g} / \mathrm{mol} .\left[\boldsymbol{\alpha}_{\boldsymbol{D}}^{\mathbf{2 0}}\right]=106.5\left(\mathrm{c}=0.27 \mathrm{~g} / \mathrm{dl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.33-$ 7-14 ($m, 5 \mathrm{H}, \mathrm{ArH}$), 4.39-4.17 ($m, 3 \mathrm{H}, \mathrm{CHPh}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.93-3.73 ($m, 1 \mathrm{H}, \mathrm{CHHNO}$), 3.84 ($s, 3 \mathrm{H}, \mathrm{OCH}_{3}$) $3.81\left(s, 3 H, \mathrm{OCH}_{3}\right), 3.62-3.48(m, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CHHNO}), 2.45-2.33\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 2.47-2.41(m, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\text {cyclopentane }}\right), 2.17-1.84\left(m, 4 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.78-1.62\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right), 1.47-1.39\left(m, 1 \mathrm{H}, \mathrm{CH}_{\text {cyclopentane }}\right)$, $1.32\left(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,161.5,159.7,137.3,128.5,128.32$, 128.29, 127.9, 127.1, 72.6, 68.7, 61.8, 52.43, 52.29, 52.1, 47.3, 39.0, 30.3, 24.0, 14.1. IR (solid): $\tilde{v}=3061$, 2954, 2852, 1719, 1631, 1437, 1312, 1280, 1238, 1205, 1149, 1096, 1034, 762, $702 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{7}\right]^{+} 416.1704$, measured 416.1708.

Confirming the Configurational Outcome with 2D-NOESY-NMR Experiments of Compound 14.
To confirm the structure of the major diastereomer of compound 14, a NOESY NMR-Experiment was performed and is shown in the following 2D-NMR spectra.

Kinetic Experiments

Kinetic Experiments - Initial Rate Kinetic Analysis

Determining the Partial Reaction Order for the Catalyst C1b-Cu*

For varying initial concentrations of the activated $\mathrm{Cu}(I I)$-catalyst C1b-Cu* ($5.1 \mathrm{~mol} \%-1.0 \mathrm{~mol} \%$): To a NMR sample tube were added a solution of catalyst C1b-Cu* ($0.00254 \mathrm{mmol}, 0.00200 \mathrm{mmol}, 0.00151 \mathrm{mmol}$, $0.00103 \mathrm{mmol}, 0.000503 \mathrm{mmol}$), 1,2-diphenylethane (internal standard, 0.05 mmol), ketoester 1a ($8.15 \mu \mathrm{l}, \quad 8.59 \mathrm{mg}, \quad 0.055 \mathrm{mmol}, 1.1$ equiv), nitroolefin $2 \mathrm{~A}(7.46 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv) in tetrahydrofuran- $\mathrm{d} 8(0.5 \mathrm{~mL})$. The reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature to monitor the yield / time dependence of 3aA-D2.

Concentration of 3aA-D2 in mol/L versus time in the reactions with different catalyst loadings are summarized in Table S1 and are plotted in Figure S1. The partial reaction order for the catalyst C1b-Cu*was determined in Figure S2 as $0.93^{\text {(ref.26) }}$ using the differential method. ${ }^{27,28,29}$

Table S1: Varying initial concentrations of the activated Cu(II)-catalyst C1b-Cu* (5.1 mol\%-1.0 mol\%)

Entry	$[$ [C1b-Cu* in $\mathrm{mol} / \mathrm{L}$	$d[3 a \mathrm{~A}-\mathrm{D} 2] / d t$ in $\mathrm{mol} / \mathrm{L} \mathrm{min}$	$\ln \left(\left[\mathbf{C 1 b}-\mathbf{C u}^{*}\right]\right)$	$\ln (\mathrm{d}[\mathbf{3 a A}] / \mathrm{dt})$
1	0,005074	$1,48399 \mathrm{E}-04$	$-5,28$	$-8,82$
2	0,004002	$1,38750 \mathrm{E}-04$	$-5,52$	$-8,88$
3	0,003020	$1,02244 \mathrm{E}-04$	$-5,80$	$-9,19$
4	0,002056	$6,62626 \mathrm{E}-05$	$-6,19$	$-9,62$
5	0,001006	$3,57237 \mathrm{E}-05$	$-6,90$	$-10,24$

Figure S1: Plots of the Yields of 3aA -D2 in mol/L versus time with different catalyst loadings.

Figure S2: Plot for determining the partial reaction order of the catalyst C1b-Cu* (c in mol/L).

Determining the Partial Reaction Order for the Ketoester 1a

For varying initial concentrations of the ketoester 1a (1.7 equiv - 0.3 equiv): To a NMR sample tube were added a solution of catalyst C1b-Cu* (1.16 mg, $0.00125 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$), 1,2-diphenylethane (internal standard, 0.05 mmol), ketoester 1a $(0.0839 \mathrm{mmol}, ~ 0.0642 \mathrm{mmol}, ~ 0.0456 \mathrm{mmol}, ~ 0.0348 \mathrm{mmol}$, $0.0227 \mathrm{mmol}, 0.0163 \mathrm{mmol}$), nitroolefin $2 \mathrm{~A}(7.46 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv) in tetrahydrofuran-d8 $(0.5 \mathrm{~mL})$. The reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature to monitor the yield / time dependence of 3aA-D2.

Concentration of 3aA-D2 in mol$/ \mathrm{L}$ versus time in the reactions for varying initial concentrations of the ketoester 1a are summarized in the Table S2 and are plotted in Figure S3. The partial reaction order for the ketoester 1a was determined in Figure S4 as $0.67^{(r \mathrm{ref.}}{ }^{30)}$ using the differential method. ${ }^{27,} 28,29$

Table S2: Varying initial concentrations of the ketoester 1a (1.7 equiv - 0.3 equiv).

Entry	$[1 \mathrm{a}]$ in $\mathrm{mol} / \mathrm{L}$	$d[3 a \mathrm{~A}-\mathrm{D} 2] / d t$ in $\mathrm{mol} / \mathrm{L}$ min	$\ln ([1 \mathrm{a}])$	$\ln (\mathrm{d}[3 \mathrm{aA}-\mathrm{D} 2] / \mathrm{dt})$
	0,16782	$1,34285 \mathrm{E}-04$	$-1,78$	$-8,92$
2	0,12844	$1,21685 \mathrm{E}-04$	$-2,05$	$-9,01$
3	0,09120	$9,06893 \mathrm{E}-05$	$-2,39$	$-9,31$
4	0,06966	$7,88032 \mathrm{E}-05$	$-2,66$	$-9,45$
5	0,04548	$5,83488 \mathrm{E}-05$	$-3,09$	$-9,75$
6	0,03266	$4,57819 \mathrm{E}-05$	$-3,42$	$-9,99$

Figure S3. Plots of the Yields of 3aA-D2 in mol/L versus time with different equivalents of the ketoester 1a.

Figure S4. Plot for determining the partial reaction order for the ketoester 1a (c in $\mathrm{mol} / \mathrm{L}$).

Determining the Partial Reaction Order for the Nitroolefin 2A

For varying initial concentrations of the nitroolefin 2 A (1.5 equiv -0.5 equiv): To a NMR sample tube were added a solution of catalyst C1b-Cu* ($2.33 \mathrm{mg}, 0.0025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), 1,2-diphenylethane (internal standard, 0.05 mmol$)$, ketoester 1a ($7.41 \mu \mathrm{l}, 7.81 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), nitroolefin 2A (0.0750 mmol , $0.0625 \mathrm{mmol}, 0.0502 \mathrm{mmol}, 0.0371 \mathrm{mmol}, 0.0252 \mathrm{mmol}$) in tetrahydrofuran- $\mathrm{d} 8(0.5 \mathrm{~mL})$. The reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature to monitor the yield / time dependence of 3aA-D2.

Concentration of 3aA-D2 in mol/L versus time in the reactions for varying initial concentrations of the nitroolefin 2A are summarized in the Table S3 and are plotted in Figure S5. The partial reaction order for the nitroolefin 2A was determined in Figure S6 as $0.96{ }^{(r e f .}{ }^{31)}$ using the differential method. ${ }^{27,28,29}$

Table S3: Varying initial concentrations of the nitroolefin 2A (1.5 equiv-0.5 equiv).					
Entry	Equiv.	$[\mathbf{2 A}]$ in mol/L	$d[3 a A-D 2] / d t$ in mol/L min	$\ln ([\mathbf{2 A}])$	$\ln (\mathrm{d}[3 \mathrm{BA}-\mathrm{D} 2] / \mathrm{dt})$
1	1.50	0,149916	$2,51365 \mathrm{E}-04$	$-1,90$	$-8,29$
2	1.25	0,124974	$2,16457 \mathrm{E}-04$	$-2,08$	$-8,44$
3	1.00	0,100302	$1,61663 \mathrm{E}-04$	$-2,30$	$-8,73$
4	0.75	0,074154	$1,33278 \mathrm{E}-04$	$-2,60$	$-8,92$
5	0.50	0,050420	$8,79391 \mathrm{E}-05$	$-2,99$	$-9,34$

Figure S5: Plots of the Yields of 3aA-D2 in mol/L versus time with different equivalents of the nitroolefin 2A.

Figure S6: Plot for determining the partial reaction order for the nitroolefin 2A (c in $\mathrm{mol} / \mathrm{L}$).

Kinetic Experiments - Probing Catalyst Robustness and Product Influence

For probing the catalyst stability/robustness and product influence during the catalytic reaction three kinetic experiments were performed under the "same-excess" conditions of the reactants 1a and 2A in analogy to Blackmond. ${ }^{32,33}$ The different initial concentrations for the reactants $\mathbf{1 a}$ and $\mathbf{2 A}$ and the catalyst for the kinetic experiments are summarized in Table S4.

Table S4: Different initial concentrations of β-ketoester 1a, nitroolefin 2A and product 3aA in "same-excess"-experiments and "product addition" for investigation of possible product inhibition and catalyst stability.

| $\#$ | Experiment | [1a]
 $/ \mathrm{mol} / \mathrm{L}$ | Equiv
 of 1a | [2A]
 $/ \mathrm{mol} / \mathrm{L}$ | Equiv
 of 2A | [C1b-Cu*]
 $/ \mathrm{mol} / \mathrm{L}$ | Equiv.
 of $\mathbf{C 1 b}-\mathrm{Cu}^{*}$ | [3aA]
 $/ \mathrm{mol} / \mathrm{L}$ | Equiv.
 of 3aA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1 | Standard | 0.11 | 1.1 | 0.10 | 1.0 | 0.0025 | 0.025 | 0.00 | 0.0 |
| B2 | Same Excess | 0.06 | 0.6 | 0.05 | 0.5 | 0.0025 | 0.025 | 0.00 | 0.0 |
| B3 | Product Addition | 0.06 | 0.6 | 0.05 | 0.5 | 0.0025 | 0.025 | 0.05 | 0.5 |

The corresponding experiments B1-B3 were performed by adding a solution of the catalyst C1b-Cu*, 1,2diphenylethane (internal standard, 0.05 mmol), ketoester 1a (freshly distilled), and nitroolefin 2A in tetrahydrofuran-d8 (0.5 mL , degassed via "freeze-pump-thaw"-method) to an NMR sample tube under vigorous exclusion of air (Table S4). The reaction mixture was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature to monitor the time dependence of the conversion of $\mathbf{2 A}$.

In Figure S7 the concentration profiles of the "same-excess"- and "product-addition"-experiments are illustrated. The "same excess" experiment B2 starts at the point, where the "standard"-experiment B1 has reached 50\% conversion. In the "standard" reaction B1, the catalyst already promoted ca. 10 turnovers, but in B2 the catalyst is fresh and therefore the catalyst stability can be investigated. To compare the
concentration profiles $\mathbf{B 1}$ and $\mathbf{B 2}$, the curve of $\mathbf{B 2}$ is shifted by adjusting the starting time to the point where B1 reaches the same conversion. Both profiles overlay when the time adjustment is performed (Figure S7, o with \square) thus demonstrating that the catalyst is not affected by several catalyst turnovers and nearly no catalyst deactivation takes place during the catalytic reaction.

Figure S7. Probing catalyst stability and product influence on the catalytic reaction.
In a third experiment $\mathbf{B 3}, 50 \mathrm{~mol}$ \% of product $\mathbf{3 a A}$ was added to the same initial conditions as in reaction B2 to provide an identical concentration of substrates 1a and 2A but also of product 3aA in the timeadjusted point of B1. This experiment enables investigation of the effect of product 3aA on the catalyst's behaviour. Overlaying the concentration profile B3 (Figure S7, Δ with \square) by adjusting the starting time to the point where the concentrations of curve B3 is equal to B1 leads to nearly complete overlay of both profiles. This nearly identical curve progression shows that the product 3aA is not influencing the catalyst in the catalytic reaction.

Raw Data and Calculated Concentrations for the "Same-Excess"- and "Product Addition"-Experiments.
Table S5. Raw data of the "same-excess"-experiments B1-B3, calculated concentration of nitroolefin 2A and time adjustment.

B1 - Standard		B2-50\%			B3-50\% + 50\% 3aA		
Time /min	[2A] /mol/L	Time /min	Time adjustment /min	[2A] /mol/L	Time /min	Time adjustment /min	[2A] /mol/L
0	0,1000	0	480	0,0500	0	480	0,0500
13	0,0965	39	519	0,0468	10	490	0,0481
41	0,0920	48	528	0,0454	39	519	0,0467
71	0,0878	62	542	0,0443	69	549	0,0451
101	0,0831	92	572	0,0422	115	595	0,0422
143	0,0758	123	603	0,0421	154	634	0,0405
178	0,0716	152	632	0,0407	184	664	0,0395
208	0,0683	183	663	0,0383	214	694	0,0383
240	0,0657	209	689	0,0399	244	724	0,0374
268	0,0632	269	749	0,0368	275	755	0,0366
328	0,0592	329	809	0,0348	301	781	0,0358
388	0,0548	390	870	0,0336	361	841	0,0342
448	0,0512	449	929	0,0320	421	901	0,0324
509	0,0481	509	989	0,0315	481	961	0,0310
568	0,0449	569	1049	0,0298	541	1021	0,0298
628	0,0424	630	1110	0,0268	601	1081	0,0282
688	0,0398	690	1170	0,0257	661	1141	0,0276
748	0,0378	750	1230	0,0244	721	1201	0,0261
808	0,0355	810	1290	0,0241	781	1261	0,0251
868	0,0339	871	1351	0,0251	842	1322	0,0237
928	0,0321	930	1410	0,0237	901	1381	0,0233
989	0,0308	990	1470	0,0226	961	1441	0,0228
1048	0,0288	1051	1531	0,0215	1021	1501	0,0219
1108	0,0279	1111	1591	0,0219	1081	1561	0,0207
1228	0,0258	1170	1650	0,0193	1141	1621	0,0204
1288	0,0243	1230	1710	0,0196	1261	1741	0,0184
1348	0,0234	1290	1770	0,0195	1322	1802	0,0186
1408	0,0226	1351	1831	0,0189	1381	1861	0,0173
1469	0,0217	1410	1890	0,0189	1441	1921	0,0174
1528	0,0209	1470	1950	0,0175	1501	1981	0,0169

1588	0,0198						
1708	0,0185						
1828	0,0172						
1948	0,0163						

Kinetic Experiments - Determination of reaction orders using variable time normalization graphical analysis (VTNA)

The orders of the reaction of all reaction components were determined using the variable time normalization graphical analysis method (VTNA) described by Burés. ${ }^{34,35}$

Four reactions K1-K4 with different initial concentrations of each component, catalyst C1b-Cu*, β ketoester 1a and nitroolefin 2A, were performed and monitored via ${ }^{1} \mathrm{H}$ NMR. The different initial concentrations for the components used in the kinetic experiments are summarized in the Table S6.

\#	Experiment	$\begin{gathered} {[1 \mathbf{a}]} \\ / \mathrm{mol} / \mathrm{L} \end{gathered}$	$\begin{aligned} & \text { Equiv. } \\ & \text { of } \mathbf{1 a} \end{aligned}$	$\begin{gathered} {[2 \mathrm{~A}]} \\ / \mathrm{mol} / \mathrm{L} \end{gathered}$	$\begin{aligned} & \text { Equiv. } \\ & \text { of } 2 \mathrm{~A} \end{aligned}$	[C1b-Cu*] /mol/L	Equiv. of C1b-Cu*
K1	Standard	0.11	1.1	0.10	1.0	0.0050	0.050
K2	Dif. [C1b-Cu*]	0.11	1.1	0.10	1.0	0.0025	0.025
K3	Dif. [1a]	0.15	1.5	0.10	1.0	0.0050	0.050
K4	Dif. [2A]	0.11	1.1	0.15	1.5	0.0050	0.050

The corresponding experiments $\mathbf{K 1} \mathbf{1 - K 4}$ were performed by adding a solution of the catalyst $\mathbf{C 1 b} \mathbf{- C u *}, \mathbf{1 , 2 -}$ diphenylethane (internal standard, 0.05 mmol), ketoester 1a, nitroolefin 2 A in tetrahydrofuran- d 8 $(0.5 \mathrm{~mL})$ to an NMR sample tube as shown in table S6. The reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature to monitor the conversion of $\mathbf{1 a}$ and $\mathbf{2 A}$ and the yield of $\mathbf{3 a A}$ in dependence of time (Figure S8).

Figure S8. Conversion of $1 a$ and 2A and the yield of $3 a A$ in dependence of time.
The reaction progress profiles of all four reactions K1-K4 are plotted in Figure S9 and were investigated using VTNA. ${ }^{34,35,36}$ VTNA makes use of a variable normalization of the time scale for a visual comparison of entire concentration reaction profiles. The normalization of the time axis enables the comparison of the progress reaction profiles of the series of reactions where different initial concentrations of each reaction component were used. For each component variables with different exponents were added to this normalized time axis. The order in each component can be determined visually by systematically changing each exponent of the normalized time axis, with the intention to obtain a linear overlay of all reaction profiles in the plot. The normalized time axis equation used for the investigation of the catalytic reaction is described as:

$$
\begin{gathered}
\sum_{i=1}^{n}\left[C 1 b-C u^{*}\right]^{\alpha}[1 a]^{\beta}[2 A]^{\gamma} \Delta t= \\
\sum_{i=1}^{n}\left(\frac{\left[C 1 b-C u^{*}\right]_{i}+\left[C 1 b-C u^{*}\right]_{i-1}}{2}\right)^{\alpha}\left(\frac{[1 a]_{i}+[1 a]_{i-1}}{2}\right)^{\beta}\left(\frac{[2 A]_{i}+[2 A]_{i-1}}{2}\right)^{\gamma}\left(t_{i}-t_{i-1}\right)
\end{gathered}
$$

The equation can be simplified by substituting the term of the catalyst with $\left[C 1 b-C u^{*}\right]_{0}^{\alpha} t$, because the concentration of active catalyst is constant and no deactivation of the catalyst during the reaction takes place, as shown by the "Same-Excess"-experiments in the previous section (Kinetic Experiments - Probing Catalyst Robustness and Product Influence). The simplified equation can be described as followed, whereby $\left[C 1 b-C u^{*}\right]_{0}$ the initial concentration of the catalyst is.

$$
\sum_{i=1}^{n}\left(\left[C 1 b-C u^{*}\right]_{0}\right)^{\alpha}\left(\frac{[1 a]_{i}+[1 a]_{i-1}}{2}\right)^{\beta}\left(\frac{[2 A]_{i}+[2 A]_{i-1}}{2}\right)^{\gamma}\left(t_{i}-t_{i-1}\right)
$$

In Figure S9 the original reaction progress profiles of the conversion in nitroolefin 2A and the time were plotted. The VTNA cannot be applied on reaction profiles with different starting coordinates (K4, $[2 A]=0.15 \mathrm{~mol} / \mathrm{L})$, therefore the profile of $\mathbf{K 4}$ has to be shifted vertically to the starting point of the other reaction progress profiles ([2A] $=0.10 \mathrm{~mol} / \mathrm{L}$, Figure S9). ${ }^{[35]}$ Application of the normalization to all components displaying a kinetic effect in the reaction should result in a plot with a straight line with the slope equaling the rate constant kobs. The reaction profiles overlay in a straight line (Figure S10), when all $^{\text {S }}$ the driving forces, which change during the catalytic reaction, were raised to orders of 0.90 in $\mathbf{C 1 b} \mathbf{- C u *}$, 0.85 in $\mathbf{1 a}$ and 1.15 in $\mathbf{2 A}$. The slope, $\mathrm{k}_{\text {obs }}$ of the reaction and was found to be $2.9 \mathrm{~L}^{2.9} \mathrm{~mol}^{-2.9} \mathrm{~s}^{-1}$. The plot of this time normalized reaction profiles is shown in Figure S10.

Figure S9. Original reaction progress profile of the conversion of nitroolefin 2A for the four reactions ($\alpha, \beta, \gamma=0$).

Figure S10. Best overlay of all four reaction progress profiles with orders 0.90 in $\mathbf{C 1 b}-\mathrm{Cu}^{*}, 0.85$ in 1 a and 1.15 in $2 A$. Unit of x-axis in $\mathrm{s}(\mathrm{mol} / \mathrm{L})^{2.9}\left(\mathrm{k}_{\text {obs }}=2.9 \mathrm{~L}^{2.9} \mathrm{~mol}^{-2.9} \mathrm{~s}^{-1}\right)$

Modifying any of the orders in the reaction components to other values did not lead to overlaying (nonlinear profiles). In the following Figure S11-S13 the correct orders were systematically modified by ± 0.3 to evaluate the divergences of the corresponding normalized reaction profiles. In all cases (Figure S11-S13), the manipulated profiles of the different initial concentration's diverge from the other profiles with the correct orders.

Evaluation of the order in catalyst [C1b-Cu*]

Figure S11. Divergence of the reaction profiles when the order in [C1b-Cu*] is modified ± 0.3 from 0.90 .

Evaluation of the order in [1a]

Figure S12. Divergence of the reaction profiles when the order in [1a] is modified by ± 0.3 from 0.85 .

Evaluation of the order in [2A]

Figure S13. Divergence of the reaction profiles when the order in [2A] is modified by ± 0.3 from 1.15 .

Raw Data, Calculated Concentrations and Processed Data for the VTNA.

All processed data are given in $\alpha=0.90, \beta=0.85, \gamma=1.15$.

K1, Standard				
Time /min	$[\mathbf{C 1 b} \text {-Cu* }]_{0}$ /mol/L	$[\mathbf{1 a}]^{\mathbf{a}}$ /mol/L	$[\mathbf{2 A}]$ /mol/L	$\sum\left[\mathbf{C 1 b} \mathbf{- C u ^ { * }] ^ { \alpha } [\mathbf { 1 a }] ^ { \beta } [\mathbf { 2 A }] ^ { \gamma } \Delta \boldsymbol { t }}\right.$
0	0,005	0,110	0,100	0,0000
13	0,005	0,108	0,098	0,0010
53	0,005	0,099	0,089	0,0039
73	0,005	0,093	0,083	0,0051
106	0,005	0,088	0,078	0,0069
133	0,005	0,083	0,073	0,0082
163	0,005	0,080	0,070	0,0094
193	0,005	0,076	0,066	0,0106
223	0,005	0,071	0,061	0,0116
253	0,005	0,070	0,060	0,0126
283	0,005	0,067	0,057	0,0134
313	0,005	0,064	0,054	0,0142
343	0,005	0,060	0,050	0,0149
373	0,005	0,059	0,049	0,0155
403	0,005	0,057	0,047	0,0161
433	0,005	0,055	0,045	0,0167
463	0,005	0,054	0,044	0,0172
493	0,005	0,052	0,042	0,0177
523	0,005	0,050	0,040	0,0181
553	0,005	0,049	0,039	0,0185
583	0,005	0,047	0,037	0,0189
613	0,005	0,046	0,036	0,0193
643	0,005	0,046	0,036	0,0196
673	0,005	0,044	0,034	0,0199
703	0,005	0,043	0,033	0,0202
733	0,005	0,042	0,032	0,0205
763	0,005	0,042	0,032	0,0208
793	0,005	0,040	0,030	0,0211
823	0,005	0,039	0,029	0,0213

853	0,005	0,039	0,029	0,0215
883	0,005	0,039	0,029	0,0217
913	0,005	0,038	0,028	0,0220
973	0,005	0,036	0,026	0,0224
1033	0,005	0,036	0,026	0,0227
1093	0,005	0,035	0,025	0,0231
1153	0,005	0,034	0,024	0,0234
1213	0,005	0,032	0,022	0,0237
1273	0,005	0,031	0,021	0,0240
1393	0,005	0,030	0,020	0,0245
1513	0,005	0,029	0,019	0,0250
1633	0,005	0,028	0,018	0,0254
1753	0,005	0,027	0,017	0,0257
1873	0,005	0,026	0,016	0,0261

a) Due to inaccuracy in the integration of the signals of $\mathbf{1 a}$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR},[1 \mathrm{a}]$ was calculated using Blackmond's "excess" method ([1a] = [2a]-[e]). ${ }^{32,33}$
[e] is defined as the difference of concentration of the two reactants, which can be seen as the stoichiometry of the reactants and remains constant during the reaction.

K2, Difference in [C1b-Cu*]				
Time $/$ min	$\begin{aligned} & {\left[\mathrm{C1b}-\mathrm{Cu}^{*}\right]_{0}} \\ & / \mathrm{mol} / \mathrm{L} \end{aligned}$	[1a] ${ }^{\text {a) }}$ /mol/L	[2A] /mol/L	$\sum\left[C 1 b-C u^{*}\right]^{\alpha}[1 a]^{\beta}[2 A]^{\gamma} \Delta t$
0	0,0025	0,110	0,100	0,0000
13	0,0025	0,107	0,097	0,0006
43	0,0025	0,105	0,095	0,0018
73	0,0025	0,100	0,090	0,0029
103	0,0025	0,097	0,087	0,0039
133	0,0025	0,094	0,084	0,0049
163	0,0025	0,090	0,080	0,0058
193	0,0025	0,088	0,078	0,0066
223	0,0025	0,085	0,075	0,0074
253	0,0025	0,082	0,072	0,0081
283	0,0025	0,080	0,070	0,0088
313	0,0025	0,079	0,069	0,0095

343	0,0025	0,076	0,066	0,0101
373	0,0025	0,075	0,065	0,0106
403	0,0025	0,073	0,063	0,0112
433	0,0025	0,071	0,061	0,0117
463	0,0025	0,069	0,059	0,0122
493	0,0025	0,068	0,058	0,0127
523	0,0025	0,067	0,057	0,0131
553	0,0025	0,064	0,054	0,0135
583	0,0025	0,063	0,053	0,0139
613	0,0025	0,061	0,051	0,0143
643	0,0025	0,061	0,051	0,0146
673	0,0025	0,060	0,050	0,0150
703	0,0025	0,059	0,049	0,0153
733	0,0025	0,058	0,048	0,0156
763	0,0025	0,057	0,047	0,0160
793	0,0025	0,056	0,046	0,0163
823	0,0025	0,054	0,044	0,0165
853	0,0025	0,054	0,044	0,0168
883	0,0025	0,054	0,044	0,0171
913	0,0025	0,052	0,042	0,0173
973	0,0025	0,050	0,040	0,0178
1033	0,0025	0,049	0,039	0,0182
1093	0,0025	0,047	0,037	0,0186
1153	0,0025	0,045	0,035	0,0190
1213	0,0025	0,044	0,034	0,0193
1273	0,0025	0,043	0,033	0,0197
1393	0,0025	0,041	0,031	0,0203
1513	0,0025	0,040	0,030	0,0208
1633	0,0025	0,038	0,028	0,0213
1753	0,0025	0,037	0,027	0,0217
1873	0,0025	0,035	0,025	0,0221

a) Due to inaccuracy in the integration of the signals of $\mathbf{1 a}$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR},[1 \mathrm{a}$] was calculated using Blackmond's "excess" method ([1a] = [2a]-[e]). ${ }^{32,33}$ [e] is defined as the difference of concentration of the two reactants, which can be seen as the stoichiometry of the reactants and remains constant during the reaction.

K3, Difference in [1a]				
Time $/$ min	$\begin{aligned} & {\left[\mathrm{C} 1 \mathrm{~b}-\mathrm{Cu}^{*}\right]_{0}} \\ & / \mathrm{mol} / \mathrm{L} \end{aligned}$	$[1 a]^{\mathrm{a})}$ /mol/L	[2A] /mol/L	$\sum\left[C 1 b-C u^{*}\right]^{\alpha}[1 a]^{\beta}[2 A]^{\gamma} \Delta t$
0	0,005	0,150	0,100	0,0000
12	0,005	0,148	0,098	0,0013
42	0,005	0,138	0,088	0,0041
72	0,005	0,130	0,080	0,0065
102	0,005	0,124	0,074	0,0085
132	0,005	0,117	0,067	0,0102
162	0,005	0,113	0,063	0,0117
192	0,005	0,108	0,058	0,0131
222	0,005	0,104	0,054	0,0143
252	0,005	0,101	0,051	0,0153
282	0,005	0,098	0,048	0,0163
312	0,005	0,095	0,045	0,0172
342	0,005	0,092	0,042	0,0180
372	0,005	0,090	0,040	0,0187
402	0,005	0,087	0,037	0,0193
432	0,005	0,085	0,035	0,0199
462	0,005	0,084	0,034	0,0205
492	0,005	0,081	0,031	0,0210
522	0,005	0,080	0,030	0,0214
552	0,005	0,078	0,028	0,0219
582	0,005	0,076	0,026	0,0222
612	0,005	0,076	0,026	0,0226
642	0,005	0,074	0,024	0,0229
672	0,005	0,073	0,023	0,0232
702	0,005	0,072	0,022	0,0235
732	0,005	0,071	0,021	0,0238
762	0,005	0,070	0,020	0,0240
792	0,005	0,069	0,019	0,0243
822	0,005	0,069	0,019	0,0245
852	0,005	0,068	0,018	0,0247
882	0,005	0,067	0,017	0,0249
912	0,005	0,066	0,016	0,0251

972	0,005	0,065	0,015	0,0254
1032	0,005	0,064	0,014	0,0258
1092	0,005	0,063	0,013	0,0260
1152	0,005	0,062	0,012	0,0263
1212	0,005	0,061	0,011	0,0265

a) Due to inaccuracy in the integration of the signals of 1 a in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$, [1a] was calculated using Blackmond's "excess" method ([1a] = [2a]-[e]). ${ }^{32,33}[e]$ is defined as the difference of concentration of the two reactants, which can be seen as the stoichiometry of the reactants and remains constant during the reaction.

K4, Difference in [2A]					
Time /min	$\begin{aligned} & {\left[\mathrm{C1b}-\mathrm{Cu}^{*}\right]_{0}} \\ & / \mathrm{mol} / \mathrm{L} \end{aligned}$	[1a] ${ }^{\text {a) }}$ /mol/L	[2A] /mol/L	[2A] (vertical shifted) $/ \mathrm{mol} / \mathrm{L}$	$\sum\left[C 1 b-C u^{*}\right]^{\alpha}[1 a]^{\beta}[2 A]^{\gamma} \Delta t$
0	0,005	0,110	0,150	0,101	0,0000
12	0,005	0,107	0,147	0,098	0,0016
42	0,005	0,094	0,134	0,085	0,0050
72	0,005	0,084	0,124	0,075	0,0078
102	0,005	0,076	0,116	0,067	0,0101
132	0,005	0,070	0,110	0,061	0,0121
162	0,005	0,064	0,104	0,055	0,0139
192	0,005	0,060	0,100	0,051	0,0154
222	0,005	0,054	0,094	0,045	0,0168
252	0,005	0,052	0,092	0,043	0,0180
282	0,005	0,048	0,088	0,039	0,0191
312	0,005	0,044	0,084	0,035	0,0201
342	0,005	0,041	0,081	0,032	0,0210
372	0,005	0,038	0,078	0,029	0,0217
402	0,005	0,037	0,077	0,028	0,0225
432	0,005	0,034	0,074	0,025	0,0231
462	0,005	0,033	0,073	0,024	0,0238
492	0,005	0,031	0,071	0,022	0,0243
522	0,005	0,029	0,069	0,020	0,0249
552	0,005	0,027	0,067	0,018	0,0253

582	0,005	0,027	0,067	0,018	0,0258
612	0,005	0,025	0,065	0,016	0,0262
642	0,005	0,023	0,063	0,014	0,0266

a) Due to inaccuracy in the integration of the signals of $\mathbf{1 a}$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$, [1a] was calculated using Blackmond's "excess" method ([1a] = [2a]-[e]). ${ }^{32,33}[\mathrm{e}]$ is defined as the difference of concentration of the two reactants, which can be seen as the stoichiometry of the reactants and remains constant during the reaction.

Investigation of Possible Non-Linear-Effects

For determining the linear-effect behavior of the reaction, catalytic reactions were performed as described in GP6-standard, on a 0.050 mmol scale $(0.050 \mathrm{mmol}$ trans- β-nitrostyrene 2A, 0.055 mmol ethyl 2oxocyclopentanecarboxylate $\mathbf{1 a}, 5 \mathrm{~mol} \%$ catalyst $\mathbf{C 1 b} \mathbf{- C u *}$). Catalysts $\mathbf{C 1 b}-\mathbf{C u}^{*}$ with 6 different enantiomeric excesses were used (see Table S7), which were prepared by mixing the corresponding amounts of pure enantiomers of the catalysts $\mathbf{C 1 b}-\mathbf{C u *}$.

Figure S14: Linear effect plot of the catalytic reaction with different ee-values of the catalyst C1b-Cu*.

Beer's Law Plot

The UV-Vis measurements for the concentration dependence of the highly colored complex $\mathbf{C 1 b}-\mathbf{C u}^{*}$ ($12.9 \mathrm{mg}, 0.0138 \mathrm{mmol}$) were performed in a cuvette $\left(\mathrm{b}=1.0 \mathrm{~mm}\right.$, Quartz SUPRASIL ${ }^{®}$ from HellmaAnalytics). Initially, the solid was dissolved in THF (0.3 mL) and the stock solution diluted by defined amounts of THF to measure the concentration-absorbance dependence of complex $\mathbf{C 1 b} \mathbf{C u *}$. The measured and calculated data is shown in Table S8. Plotting the absorbance vs. concentration leads to an overall linear curve in the relevant concentrations range of up to $0.05 \mathrm{~mol} / \mathrm{L}$ of the complex $\mathbf{C 1 b} \mathbf{- C u *}$ (Figure S15). The catalytic reactions in THF were performed at a concentration of $0.025 \mathrm{~mol} / \mathrm{L}$ in the linear region of the Beer's law plot in Figure S15. This represents that no aggregation to dimers or oligomers at the concentration of the catalytic reaction takes place and supports the monomeric nature of the active catalyst in the catalyzed reactions.

Figure S15.Beer's law plot of absorbance vs. concentration of the complex C1b-Cu*.
Table S8. Measured and calculated data for the concentration and UV-Vis absorbance dependence of complex C1b-Cu*.

$[$ C1b-Cu* $] / \mathrm{mol} / \mathrm{L}$	Absorb. at 780 nm	Absorb/b/mm mm^{-1}
0,04732	0,05955832	0,59558321
0,03785	0,04878504	0,48785038
0,04506	0,05480639	0,54806389

0,03605	0,04632853	0,46328532
0,03004	0,03918400	0,39184002
0,03948	0,04880679	0,48806787
0,02632	0,03182365	0,31823647
0,01974	0,02392687	0,23926868
0,00966	0,01236153	0,12361533
0,00644	0,00820574	0,08205741

Titration Experiments in the UV-Vis

Catalyst C1b-Cu* ($9.55 \mathrm{mg}, 0.0104 \mathrm{mmol}$, 1 equiv) was dissolved in THF (3 mL) and filled in a cuvette ($\mathrm{d}=10 \mathrm{~mm}$, Quartz SUPRASIL ${ }^{\circledR}$ from HellmaAnalytics). The β-ketoester 1a was added directly to the cuvette and after shaking the cuvette, the UV-Vis spectra was measured of the reaction mixtures at room temperature. In the titration experiment different equivalents ($0,20,50,100,150,200,300$ and 350 equiv) of 1a were used.

Figure S16. UV-Vis spectra of the titration experiment using β-ketoester 1a.

Titration Experiments in the EPR

Catalyst C1b-Cu* ($4.99 \mathrm{mg}, 0.00535 \mathrm{mmol}$, 1 equiv) was dissolved in THF (0.2 mL) and filled in an EPR-tube. The β-ketoester 1a (0,100 and 400 equiv) was added directly to the tube and after shaking for 1 minute at room temperature, the reaction mixture in the tube was frozen in liquid nitrogen. The EPRmeasurement was performed at 108 K .

Spectra were fitted using the "Pepper" model in a least-squares fitting of EPR spectra using EasySpin. ${ }^{37}$

Figure S17. EPR-spectra of C1b-Cu
$L W=8.1970$
$g_{\| I}=2.1303 \mathrm{~A}_{\text {II }}(63,65 \mathrm{Cu})=523.26 \mathrm{MHz}$
$\mathrm{g}_{\underline{1}}=1.9692 \mathrm{~A}_{\underline{1}}(63,65 \mathrm{Cu})=32.63 \mathrm{MHz}$

Figure S18. EPR-spectra of C1b-Cu*
$L W=5.93$

$$
\begin{array}{ll}
g_{\| I}=2.257 & A_{I I}(63,65 \mathrm{Cu})=526.52 \mathrm{MHz} \\
g_{\underline{I}}=2.0592 & A_{\underline{I}}(63,65 \mathrm{Cu})=38.063 \mathrm{MHz}
\end{array}
$$

Figure S19. EPR-spectra of C1b-Cu* +20 equiv nitrolefin 2A
$L W=5.5$
$g_{\|}=2.264 \quad A_{I I}(63,65 C u)=549.97 \mathrm{MHz}$
$\mathrm{g}_{\underline{1}}=2.0504 \mathrm{~A}_{\underline{1}}(63,65 \mathrm{Cu})=41.96 \mathrm{MHz}$

Figure S20. EPR-spectra of C1b-Cu* +100 equiv β-ketoester 1a A suitable fit could not be generated.

Figure S21. EPR-spectra of C1b-Cu* +400 equiv β-ketoester 1a
$L W=1.7$
$\mathrm{g}_{\|}=2.2406 \mathrm{~A}_{\|}(63,65 \mathrm{Cu})=589.93 \mathrm{MHz} 14 \mathrm{~N} 42,29$
$g_{\underline{1}}=2.0432 \mathrm{~A}_{\underline{1}}(63,65 \mathrm{Cu})=46.3445 \mathrm{MHz} 14 \mathrm{~N} 47,34$

Epimerization Experiment of Third Stereocenter with Base

3aE-Me ($10.2 \mathrm{mg}, 0.029 \mathrm{mmol}$, 1.0 equiv) was dissolved in $0.4 \mathrm{~mL} \mathrm{CDCl}_{3}$, added to an NMR-tube and treated with DBU ($6.45 \mu \mathrm{~L}, 6.6 \mathrm{mg}, 0.043 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and then filtrated over silica gel after reaching the equilibria (at 30 minutes reaction time at room temperature). The silica pad was washed with 5.0 ml dichloromethane and the solvent was removed under reduced pressure to yield epimerized epi-3aE-Me ($9.6 \mathrm{mg}, 0.027 \mathrm{mmol}, 94 \%$).

Figure S22. ${ }^{1} \mathrm{H}$-NMR-Spectra of an epimerization experiment of $3 \mathrm{aE}-\mathrm{Me}$ with an equilibrium ratio of $36: 64$ of the diastereomers ($1 S, 1^{\prime} S, 2^{\prime} R$) : $\left(1 S, 1^{\prime} S, 2^{\prime} S\right)$.

Before epimerization

After 30 minutes epimerization

Retention Time	Area	Area \%	Retention Time	Area	Area \%
19.4	54893	0.02	18.9	163329876	64.30
31.4	233275559	99.98	31.7	90665329	35.70

Racemic mixture

Retention Time	Area	Area \%
19.0	6267947	2.25
20.5	6135987	2.20
21.3	92560009	33.19
23.1	109689136	39.34
25.9	16424042	5.89
29.9	23282247	8.35
31.8	24489484	8.78
Column: IB, n 210 nm	n-heptane $/ \mathrm{iPrOH}(95 / 5), 0.5 \mathrm{~mL} / \mathrm{min}$,	

Control Experiments Regarding the Formation of the Third Stereocenter

$\mathbf{C 2}$ ($1.65 \mathrm{mg}, 5.0 \mathrm{~mol} \%$) and sodium acetylacetonate ($0.18 \mathrm{mg}, 2.5 \mathrm{~mol} \%$) was added to a catalysis tube and dissolved in THF (0.05 mL). Afterwards the nitroolefin $\mathbf{2 E}-\mathrm{Me}(9.88 \mathrm{mg}, 0.050 \mathrm{mmol}, 1.0$ equiv), the β ketoester 1a ($8.59 \mathrm{mg}, 8.15 \mu \mathrm{~L}, 0.055 \mathrm{mmol}$, 1.1 equiv) and THF (0.05 ml) were added. The reaction mixture was stirred for 3 days at room temperature. Then the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1, 1 mL), filtered through a small pad of silica and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure the crude product (12%, determined with ${ }^{1} \mathrm{H} N \mathrm{NR}$ with mesitylene as internal standard) was analyzed using HPLC and ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Control experiment

Racemic mixture

Retention Time	Area	Area \%	Retention Time	Area	Area \%
19.4	776461	1.69	19.6	3888410	2.41
20.9	14645991	31.90	21.1	3579281	2.22
22.0	1406762	3.06	22.0	52228352	32.34
23.7	2510058	5.47	23.7	62726132	38.84
25.7	486468	1.06	26.4	9378557	5.81
26.3	1545785	3.37	30.4	14631829	9.06
29.9	23178736	50.49	32.3	15046706	9.32
32.2	1355296	2.95			
Column: IB, n-heptane/iPrOH (95/5), $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$					

Computational Methods

The crystal structure of C6 (Figure 3, see manuscript) served as a starting point to calculate optimized minimum energy structures of C6 and the betaine catalyst in its naphthol form C1b-Cu (Figure 6. see manuscript). Having identified these structures, we explored the reaction mechanism of the catalytic cycle (Scheme 4, see manuscript) by calculating stationary points along the reaction pathway (minima as well as transition state structures; Figures 7, see manuscript). The density functional theory (DFT) calculations were performed at the $B 3 L Y P^{38}$ level of theory using the cc-pVDZ ${ }^{39}$ basis set as implemented in the Gaussian 16 program package ${ }^{40}$. All Structures were preoptimized in the gas phase and confirmed to be either true minima or true transition states structures by frequency calculations (zero or one imaginary frequency, respectively). We searched for the most stable conformers as a function of the binding motifs and torsion angles of the ligand. The structures were reoptimized using the IEF-PCM model ${ }^{41}$ to include the self-consistent reaction field of the solvent (tetrahydrofurane, THF). We extracted and compared relative free Gibbs energies at 250 K . The presented structures are neutral (except $\mathbf{C 1 b} \mathbf{- C u}$, which is a cation) and exhibit a multiplicity of 2 . All calculations were performed in the electronic ground states.

Control System C6:

Figure S23: Optimized structures of C6 by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. $\Delta E G S$ is the relative electronic energy in the ground state at $0 \mathrm{~K} . \Delta \mathrm{GGS}$ is the relative electronic energy corrected for the free energy in the ground state at $\mathbf{2 5 0} \mathrm{K}$. The dotted blue lines indicate hydrogen bonding. Light gray: H ; dark gray: C; dark blue: \mathbf{N}; orange: P; orange: Cu; light blue F; yellow: S.

The most stable structure of C6 (Figure S23, right) exhibits two stabilizing hydrogen bonds: 1) between the naphthol OH and the water ligand on the and 2) between the water ligand and the sulfonyl moiety. A rotation of the binaphthol moiety results in the breaking of one hydrogen bond a destabilization of $6 \mathrm{~kJ} / \mathrm{mol}$ (Figure S23, left).

Precatalyst C1b-Cu

Figure S24: Optimized structures of C1b-Cu by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. $\Delta \mathrm{EGS}$ is the relative electronic energy in the ground state at $0 \mathrm{~K} . \Delta \mathrm{GGS}$ is the relative electronic energy corrected for the free energy in the ground state at $\mathbf{2 5 0} \mathrm{K}$. The dotted blue lines indicate hydrogen bonding. Same color code as in Figure S23.

The most stable structure of C1b-Cu (Figure S24, middle) exhibits two stabilizing hydrogen bonds: 1) between the naphthol OH and the water ligand on the and 2) between the water ligand and the sulfonyl moiety. Similar to C6, a rotation of the binaphthol moiety results in the breaking of one hydrogen bond a destabilization of $14 \mathrm{~kJ} / \mathrm{mol}$ (Figure S24, left). Furthermore, rotating the sulfonyl moiety also destabilizes the complexes ($9 \mathrm{~kJ} / \mathrm{mol}$, Figure S24, left). While the hydrogen bonding is intact, the $\mathrm{H}_{2} \mathrm{O}$ ligand is pulled away from the planar coordination sphere of the copper center.

Intermediate structure II within the catalytic cycle

Figure S25: Optimized structures of II within the catalytic cycle (see Scheme 4): optimized structures by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. $\triangle E G S$ is the relative electronic energy in the ground state at $0 \mathrm{~K} . \Delta \mathrm{GGS}$ is the relative electronic energy corrected for the free energy in the ground state at 300 K. The dotted blue lines indicate hydrogen bonding. Same color code as in Figure S23.

The most stable structure of II (Figure S25, right) exhibits intramolecular hydrogen bonding between the naphthol OH and the coordinated ketoester. Note that the copper center adopts a square pyramidal coordination sphere (coordination number of 5). A rotation of the bidentate ketoester distorts and destabilizes the complex significantly leading to a trigonal bipyramidal coordination sphere ($48 \mathrm{~kJ} / \mathrm{mol}$, Figure S25, left).

TS I(keto) / II

Figure S26: Optimized structures of the intermediate structure TS I(keto) / II within the catalytic cycle (see Scheme 4 of the main manuscript): optimized structures by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. Same color code as in Figure S23. The blue arrow is the displacement vector of the virtual frequency vibration.

Figure S27: Optimized structures of the intermediate structure TS III / III. 1 within the catalytic cycle (see Scheme 4 of the main manuscript): optimized structures by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. Same color code as in Figure S23. The blue arrow is the displacement vector of the virtual frequency vibration.

Figure S28. Optimized minimum and transition state structures of the proposed catalytic cycle (cf. Scheme 4, see manuscript). The structures arise from DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. The dotted blue lines indicate hydrogen bonding. Same color code as in Figure S23. For energetics refer to Figure 7, see manuscript.

NMR-Data

25
 \qquad d.

जन

L5

L7

3aW

M.
\qquad

(

HPLC-Data

3aA, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
15.9	559824	0.230
19.3	2854433	1.172
22.2	230427794	94.643
28.1	9384522	3.854

Racemic:

Retention Time	Area	Area \%
15.4	13609290	21.9
18.5	17762810	28.6
22.0	13598914	21.9
26.5	17055328	27.5

3aB, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
20.5	802534	0.572
28.3	1609933	1.147
32.9	130879317	93.222
42.6	5165311	3.679

Racemic:

Retention Time	Area	Area $\%$
20.2	125904894	29.408
27.6	85391052	19.945
33.1	127005792	29.665
41.4	86892779	20.296

3aC, Column: ASH, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
21.8	3489283	0.676
26.9	11280693	2.185
29.4	4935539	0.956
57.8	496456523	96.182

Racemic:

Retention Time	Area	Area \%
21.9	71926238	26.209
26.8	65805111	23.978
29.7	66039477	24.064
62.8	70667364	25.750

3aD, Column: ODH, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
16.3	2720733	0.629
17.8	39903578	9.232
23.6	389610198	90.139

Racemic:

Retention Time	Area	Area \%
16.5	1356510	37.675
18.1	888076	24.665
25.8	1355926	37.659

3aE, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
16.7	2125923	0.710
21.3	1473526	0.492
26.0	285896436	95.425
34.6	10108656	3.374

Racemic:

Retention Time	Area	Area \%
16.4	29563216	8.491
20.6	144550786	41.516
27.1	29086629	8.354
33.8	144976316	41.639

3aF, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
17.1	1403245	0.534
20.5	805090	0.306
23.1	254975249	97.020
27.2	4935469	1.878

Racemic

Retention Time	Area	Area \%
16.7	14325587	3.715
19.8	170405921	44.191
23.6	14383879	3.730
26.5	170720491	44.273

3aG, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
15.1	1421475	0.475
16.7	7148087	2.388
17.6	12231275	4.086
22.3	278555313	93.051

Racemic:

Retention Time	Area	Area $\%$
14.3	31006198	6.379
15.5	206158507	42.414
16.4	220461047	45.357
21.8	28435541	5.850

3aH, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
57.8	898198	0.860
68.5	1416646	1.356
98.5	96746461	92.596
117.4	5421274	5.189

Racemic:

Retention Time	Area	Area \%
50.5	13215248	23.740
59.3	15073085	27.077
91.4	12068267	21.679
101.1	15190034	27.287

3al, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
45.2	1107792	0.629
53.9	1307038	0.742
59.7	168682761	95.720
69.0	5127635	2.910

Racemic:

Retention Time	Area	Area \%
40.1	36646767	21.248
47.4	48449422	28.091
55.1	37866240	21.955
60.2	49512853	28.707

3aJ, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area \%
32.7	1000035	0.237
37.4	2479248	0.588
40.3	1125962	0.267
101.9	416837520	98.907

Racemic:

Retention Time	Area	Area \%
30.1	26629613	7.283
33.7	151332492	41.388
36.9	31578801	8.637
93.7	156099978	42.692

3aK, Column: ASH, n-hexane/iPrOH (95/5), $0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area \%
17.0	197376	0.099
20.1	446691	0.223
25.0	6642493	3.316
37.9	193047444	96.363

Racemic:

Retention Time	Area	Area \%
18.7	56137823	29.016
22.5	40591137	20.981
24.7	40967862	21.175
34.2	55773130	28.828

3aL, Column: ODH, n-hexane/iPrOH (90/10), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
12.7	1664907	0.516
15.6	1192160	0.369
16.6	309593085	95.891
20.7	10409043	3.224

Racemic:

Retention Time	Area	Area \%
12.9	46737154	29.680
15.8	28504447	18.101
17.7	47181287	29.962
20.9	30884682	19.613

3aM, Column: ODH, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
15.6	524582	0.395
17.6	127020437	95.675
20.4	407083	0.307
26.1	4810230	3.623

Racemic:

3aN, 2xODH-Columns connected in series, n-hexane/iPrOH ($85 / 15$), $0.3 \mathrm{~mL} / \mathrm{min}, 213 \mathrm{~nm}$

Retention Time	Area	Area \%
72.6	1175286	0.681
97.3	1877974	1.088
102.4	161270962	93.411
130.3	8278989	4.795

Racemic:

Retention Time	Area	Area \%
69.3	97889825	30.798
92.9	60494423	19.033
99.4	97820152	30.776
125.6	61637665	19.393

3aO, Column: ASH, n-hexane/iPrOH (80/20), $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area $\%$
14.0	1433421	0.577
17.8	11125941	4.476
47.8	760624	0.306
133.3	235250103	94.641

Racemic:

Retention Time	Area	Area $\%$
14.3	29183194	30.097
17.7	20737927	21.388
47.0	20286679	20.922
142.1	26754656	27.593

3aP, Column: ODH, n-hexane/iPrOH (95/5), $0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area \%
34.3	2941699	0.637
36.9	16782941	3.636
45.0	441308797	95.613

Racemic:

Retention Time	Area	Area \%
30.4	26664725	34.412
32.9	24797161	32.001
41.7	26025719	33.587

3aQ, Column: ASH, n-hexane/iPrOH (70/30), $1.0 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
16.3	2683901	3.682
19.3	360949	0.495
49.7	920038	1.262
73.3	68927526	94.561

Racemic:

3aR, Column: ODH, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
13.5	619226	0.623
15.9	755680	0.761
23.8	8341691	8.399
25.1	89601893	90.217

Racemic:

Retention Time	Area	Area \%
13.5	120434791	26.497
15.9	104278968	22.943
23.5	103929591	22.866
25.0	125874162	27.694

3aS, Column: ODH, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
16.5	2266083	0.814
19.7	860642	0.309
26.8	266830052	95.852
31.6	8420984	3.025

Racemic:

Retention Time	Area	Area $\%$
16.5	28494813	28.682
19.9	21350084	21.490
28.4	28013658	28.197
31.1	21489805	21.631

3aT, Column: 2xODH-Columns connected in series, n-hexane $/$ iPrOH ($85 / 15$), $0.3 \mathrm{~mL} / \mathrm{min}, 213 \mathrm{~nm}$

Retention Time	Area	Area \%
66.1	4257618	1.379
87.8	10002128	3.239
92.2	265377030	85.929
98.3	29197549	9.454

Racemic:

Retention Time	Area	Area \%
66.5	172728948	17.541
88.0	304657581	30.938
91.8	188265952	19.119
96.9	319076021	32.402

3aU, Column: ASH, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
11.6	1568707	0.448
13.0	347178584	99.099
15.3	1586922	0.453

Racemic:

Retention Time	Area	Area $\%$
11.9	36261277	60.814
13.7	11603885	19.461
15.9	11761328	19.725

3aV, Column: ASH, n-hexane/iPrOH (91/9), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
11.0	296899	0.167
12.1	134864	0.076
13.9	176688596	99.234
15.4	931315	0.523

Racemic:

Retention Time	Area	Area \%
11.3	32859087	39.515
12.4	33112210	39.819
14.6	7603102	9.143
15.9	7547649	9.076

3aW, Column: ODH, n-hexane/iPrOH (97/3), $0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area $\%$
36.6	1421139	3.109
40.2	302826	0.662
45.4	39925709	87.333
56.7	4067173	8.896

Racemic:

Retention Time	Area	Area \%
32.8	134769253	39.085
36.2	37121588	10.766
42.7	36542765	10.598
51.7	136373328	39.551

$3 a X, 2 \times O D H$-Columns connected in series, n-hexane $/ \mathrm{iPrOH}(90 / 10), 0.3 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Racemic:

3aY, Column: ODH, n-hexane/iPrOH (97/3), $0.3 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
38.8	1887934	1.719
40.7	1192600	1.086
47.5	103338422	94.075
53.4	3428038	3.121

Racemic:

Retention Time	Area	Area \%
36.5	41404117	41.164
38.3	9062764	9.010
45.8	8686224	8.636
48.7	41429025	41.189

3aZ, Column: ODH, n-hexane/iPrOH (95/5), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
39.7	2361018	2.001
42.9	3524355	2.987
44.6	104688917	88.716
60.7	7429738	6.296

Racemic:

Retention Time	Area	Area $\%$
37.8	8531261	12.602
40.9	25029049	36.971
44.4	8737328	12.906
56.3	25401927	37.522

3aA-Me, Column: IB, n-heptane/iPrOH (98/2), $0.3 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, d r$ (D1:D2:D3:D4): 94:3:2:1

Diasteroemer	Retention Time	Area	Area $\%$
D3	44.7	5158480	1.88
D3	47.8	293326	0.11
D2	49.8	1165160	0.42
D4	52.9	182071	0.07
D2	61.9	7084044	2.58
D4	63.0	1860482	0.68
D1 $\left(1 R 1^{\prime} R 2^{\prime} S\right)$	67.3	720299	0.26
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	69.1	258039188	94.00

Racemic:

Diasteroemer	Retention Time	Area	Area $\%$
D3	43.9	45364393	14.42
D3	46.2	46536697	14.79
D2	48.7	18639923	5.92
D4	51.1	47049378	14.95
D2	60.6	9341157	2.97
D4	61.2	53785410	17.09
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)$	64.6	47403752	15.06
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	69.9	46577975	14.80

3aB-Me, Column: IB, n-heptane/iPrOH (98/2), $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, d r$ (D1:D2:D3:D4): 94:3:2:1

Diastereomer	Retention Time	Area	Area $\%$
D2	31.6	4616552	2.53
D2	34.6	179480	0.10
D4	39.8	603820	0.33
D3	40.6	91902	0.05
D3	42.7	4228622	2.32
D4	46.6	895286	0.49
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)$	56.9	27570	0.02
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	60.9	171937201	94.17

Racemic:

Diastereomer	Retention Time	Area	Area \%
D2	30.8	40544282	17.51
D2	33.3	40839276	8.63
D4	38.4	19134108	9.26
D3	34.0	22280337	9.62
D3	41.9	22319279	9.09
D4	45.4	21054095	12.56
D1 (1R,1'R $\left.2^{\prime} S\right)$	58.2	36096431	15.68
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	63.2	36321463	

3aC-Me, Column: ADH, n-heptane/iPrOH (97/3), $0.3 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$, dr (D1:D2:D3:D4): 97:2:1:0.2

Diastereomer	Retention Time	Area	Area $\%$
D3	39.6	4677800	1.09
D2	43.1	494718	0.12
D4	44.8	561076	0.13
D3	47.7	870391	0.20
D2	50.9	7633546	1.79
D4	55.7	93909	0.02
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)$	57.9	2120124	0.50
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	61.1	410931984	96.15

Racemic:

Diastereomer	Retention Time	Area	Area $\%$
D3	39.4	64124237	6.57
D2	42.9	37625158	8.20
D4	44.6	51554322	10.59
D3	47.4	64268476	7.06
D2	50.7	42857466	7.53
D4	55.3	45705306	23.69
D1 (1R,1'R $\left.2^{\prime} S\right)$	60.9	143770512	25.87

3aE-Me, Column: IB, n-heptane/iPrOH (95/5), $0.3 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$, dr (D1:D2:D3:D4): 94:3:3:0.4

Diastereomer	Retention Time	Area	Area $\%$
D2 $\left(1 S, 1^{\prime} S 2^{\prime} S\right)$	19.8	1779946	2.84
D2 $\left(1 R, 1^{\prime} R, 2^{\prime} R\right)$	21.3	70790	0.11
D3	22.5	229562	0.37
D3	24.1	1582400	2.52
D4	25.2	6154	0.01
D4	26.7	210488	0.34
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)$	30.7	124266	0.20
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	31.8	58711258	93.62

Racemic:

Diastereomer	Retention Time	Area	Area $\%$
D2 $\left(1 S, 1^{\prime} S 2^{\prime} S\right)$	19.6	3888410	2.41
D2 $\left(1 R, 1^{\prime} R, 2^{\prime} R\right)$	21.1	3579281	2.22
D3	22.0	52228352	32.34
D3 + D4	23.7	62726132	38.84
D4	26.4	9378557	5.81
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)$	30.4	14631829	9.06
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	32.3	15046706	9.32

3al-Me, Column: ADH, n-heptane/iPrOH (95/5), $0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, d r$ (D1:D2:D3:D4): 92:5:2:1

Diastereomer	Retention Time	Area	Area $\%$
D4	28.4	1517130	1.05
D4	38.0	389136	0.27
D3	39.8	2264939	1.57
D2	43.6	7017561	4.88
D3	45.0	885332	0.62
D2	51.1	68266	0.05
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	58.7	131375948	91.35
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)$	70.5	305494	0.21

Racemic:

Diastereomer	Retention Time	Area	Area $\%$
D4	27.7	15756445	9.38
D4	36.5	15042786	8.95
D3	38.5	33422375	19.89
D2	42.1	10632508	6.33
D3	43.7	21021615	12.51
D2	49.1	16261459	9.68
D1 (1S,1'S, 2'R)	56.7	27760058	16.52
D1 (1R,1'R 2'S) $^{\prime}$	68.2	28102240	16.73

3aK-Me, Column: ADH, n-heptane/iPrOH (98/2), $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, d r$ (D1:D2:D3:D4): 93:4:2:0.1

Diastereomer	Retention Time	Area	Area $\%$
D2	37.9	2371664	0.82
D3	42.0	676255	0.23
D2	47.1	9629072	3.33
D3	50.3	6036439	2.09
D4	54.6	299967	0.10
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)+$ D4	58.8	2494009	0.86
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	63.7	267755287	92.56

Racemic:

Diastereomer	Retention Time	Area	Area $\%$
D2	37.3	38920184	6.12
D3	41.4	48292313	5.60
D2	46.1	35738361	7.62
D3	49.5	46528172	4.32
D4	53.8	31468096	36.51
D1 $\left(1 R, 1^{\prime} R 2^{\prime} S\right)+$ D4	57.5	232056785	31.88
D1 $\left(1 S, 1^{\prime} S, 2^{\prime} R\right)$	62.5	202675029	

Confirming the dr of ЗaK-Me by reversed phase HPLC: Column (performed by Moritz Sinast, University of Stuttgart, Laschat Group): LiChrosorb ${ }^{\circ}$ RP-18 (150 mm x 4.6 mm), Acetonitril/ $\mathrm{H}_{2} \mathrm{O}$ (40/60), $0.5 \mathrm{~mL} / \mathrm{min}$, 254 nm

Catalytic Reaction:

Mixture of diastereoemers

3bA, Column: ODH, n-hexane/iPrOH (90/10), $1.0 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
16.2	525235	0.595
19.6	722493	0.818
23.3	83413435	94.471
30.2	3634382	4.116

Racemic:

Retention Time	Area	Area $\%$
14.5	26481236	18.183
17.3	46090247	31.647
21.2	26776669	18.386
26.8	46288836	31.784

3cA, Column: ODH, n-hexane/iPrOH (95/5), $0.3 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area \%
18.3	529232	0.464
19.6	110884763	97.294
22.7	519506	0.456
23.4	2035139	1.786

Racemic:

Retention Time	Area	Area \%
16.9	59709582	9.960
18.3	60075770	10.021
21.0	479705940	80.019

3dA, Column: ODH, n-hexane/iPrOH ($80 / 20$), $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area \%
9.8	266400	0.352
11.1	482120	0.638
29.3	74304622	98.302
49.6	534973	0.708

Racemic:

Retention Time	Area	Area $\%$
10.6	3419186	38.670
11.8	1006147	11.379
32.2	982470	11.111
53.3	3434150	38.839

3eA, Column: ASH, n-hexane/iPrOH (95/5), $0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area $\%$
9.8	266400	0.352
11.1	482120	0.638
29.3	74304622	98.302
49.6	534973	0.708

Racemic:

Retention Time	Area	Area $\%$
32.4	7906791	6.860
35.3	49906879	43.298
42.0	49880106	43.275
84.5	7481259	6.491

3fA, Column: ODH, n-hexane/iPrOH (95/5), $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area \%
11.6	948531	0.289
12.6	1229664	0.374
20.3	295890371	90.070
23.3	30443608	9.267

Racemic:

Retention Time	Area	Area \%
11.8	7655415	21.314
12.8	8857724	24.662
21.2	7919225	22.049
23.2	8356322	23.266

3gA, Column: ODH, n-hexane/iPrOH (95/5), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area $\%$
14.2	21649320	28.932
17.7	1981626	2.648
23.3	349818	0.467
24.4	50847546	67.952

Racemic:

Retention Time	Area	Area $\%$
13.5	28063820	78.036
17.3	3823218	10.631
23.9	3888332	10.812

3hA, Column: ODH, n-hexane/iPrOH ($91 / 9$), $0.7 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
21.0	2755638	1.521
22.1	18619044	10.278
30.1	131669829	72.683
63.9	28112032	15.518

Racemic:

Retention Time	Area	Area \%
20.5	58829776	29.825
21.8	32332725	16.392
30.8	35351487	17.922
65.3	61137668	30.995

3iA, Column: ODH, n-hexane/iPrOH (70/30), $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$

Retention Time	Area	Area \%
24.3	13350467	9.898
26.5	121523624	90.102

Racemic:

Retention Time	Area	Area \%
23.9	57323510	49.453
26.6	58592092	50.547

3jA, Column: ODH, n-hexane/iPrOH (90/10), $0.5 \mathrm{~mL} / \mathrm{min}, 214 \mathrm{~nm}$

Retention Time	Area	Area \%
49.5	14630631	3.853
54.1	5098928	1.343
57.7	298929307	78.723
66.7	61061857	16.081

Racemic:

Retention Time	Area	Area \%
50.1	94138173	26.369
54.7	83847562	23.486
60.5	94321912	26.420
68.9	84699156	23.725

3kA, Column: ODH, n-hexane/iPrOH (80/20), $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area $\%$
20.6	596454	1.046
25.0	165302	0.290
28.5	8380907	14.694
55.6	47894271	83.971

Racemic:

Retention Time	Area	Area \%
20.7	26600079	38.309
26.1	7861077	11.321
30.3	7890896	11.364
59.4	27082916	39.005

4-D2, Column: ODH, n-hexane/iPrOH (95/5), $0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Retention Time	Area	Area \%
43.7	1515659	1.605
46.1	87093834	92.210
58.8	4082161	4.322
62.3	1760172	1.864

Racemic

Retention Time	Area	Area \%
44.2	2222275	3.743
48.5	2266339	3.817
58.2	26837210	45.205
62.0	28042536	47.235

References

${ }^{1}$ Bhatt, S.; Nayak, S. K.; Tetrahedron Lett. 2009, 50, 5823-5826.
${ }^{2}$ Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M.; J. Am. Chem. Soc. 2005, 127, 15028-15029.
${ }^{3}$ Masaki, E.; Ikehara, H.; Hara, S.; Yoshida, M.; Org. Biomol. Chem. 2012, 10, 5289-5297.
${ }^{4}$ Bungard, C. J.; Converso, A.; De, L. P.; Hanney, B.; Hartingh, T. J.; Manikowski, J. J.; Manley, P. J.; Meissner, R.; Meng, Z.; Perkins, J. J.; Rudd, M. T.; Shu, Y.; Patent WO 2013066736.
${ }^{5}$ Worrall, D. E.; Org. Synth. 1929, 9, 66.
${ }^{6}$ Noble, A.; Torres, P. R.; Anderson, J. C.; Tetrahedron Lett. 2012, 53, 5707-5710.
${ }^{7}$ Werner, T.; Rößler, U.; Christoffers, J.; Eur. J. Org. Chem. 2000, 701-705.
${ }^{8}$ Arredondo, V.; Hiew, S. C.; Gutman, E. S.; Premachandra, I. D. U. A.; Van Vranken, D. L.; Angew. Chem. Int. Ed. 2017, 56, 4156-4159.
${ }^{9}$ Darses, B.; Michaelides, I. N.; Sladojevich, F.; Ward, J. W.; Rzepa, P. R.; Dixon, D. J.; Org. Lett. 2012, 14, 1684-1687.
${ }^{10}$ Geibel, I.; Christoffers, J.; Eur. J. Org. Chem. 2016, 918-920.
${ }^{11}$ Jakubec, P.; Helliwell, M.; Dixon, D. J.; Org. Lett. 2008, 10, 4267-4270.
${ }^{12}$ Shi, S.; Szostak, M.; Org.Lett. 2015, 17, 5144-5147.
${ }^{13}$ Yahata, K.; Minami, M.; Watanabe, K.; Fujioka, H.; Org. Lett. 2014, 16, 3680-3683.
${ }^{14}$ Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W.; Angew. Chem. Int. Ed. 2013, 52, 4235 -4238.
${ }^{15}$ Xue, D.; Chen, Y.; Cui, X.; Wang, Q.; Zhu, J.; Deng, J.; J. Org. Chem. 2005, 70, 3584-3591.
${ }^{16}$ Martins, J. E. D.; Wills, M.; Tetrahedron 2009, 65, 5782-5786.
${ }^{17}$ Chianese, A. R.; Crabtree, R. H. Organometallics 2005, 24, 4432-4436.
${ }^{18}$ Hong, F.; Xia, Z.; Zhu, D.; Wu, H.; Liu, J.; Zeng, Z. Tetrahedron 2016, 72, 1285-1292.
${ }^{19}$ Aspin, S.; López-Suárez, L.; Larini, P.; Goutierre, A.; Jazzar, R.; Baudoin O.; Org. Lett., 2013, 15, 5056-5059
${ }^{20}$ Pratt, D. A.; Pesavento, R. P.; van der Donk, W. A.; Org. Lett. 2005, 7, 2735-2738.
${ }^{21}$ Qin, X.; Ding, G.; Wang, Z.; Gong, Y.; Gao, F.; Zhang, S.; Luo, Z.; Li, H.; Tetrahedron 2017, 73, 403-410.
${ }^{22}$ Mechler, M.; Latendorf, K.; Frey, W.; Peters, R.; Organometallics 2013, 32, 112-130.
${ }^{23}$ Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L.; Angew. Chem. Int. Ed. 2005, 44, 105-108.
${ }^{24}$ Ji, J.; Barnes, D. M. Zhang, J.; King, S. A.; Wittenberger, S. J.; Morton, H. E., J. Am. Chem. Soc. 1999, 121, 1021510216.
${ }^{25}$ Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y.; J. Am. Chem. Soc. 2005, 127, 119-125.
${ }^{26}$ The reaction order for $\mathbf{C 1 b} \mathbf{- C u *}$ is determined as 0.91 , when the mixture of diastereomers (3aA-D1 and D2) is used for the kinetic analysis.
${ }^{27}$ Eitel, S. H.; Jautze, S.; Frey, W.; Peters, R.; Chem. Sci., 2013, 4, 2218-2233.
${ }^{28}$ Atkins, P. W.; de Paula, J., Atkins' Physical Chemistry, 8th ed., Oxford University Press: Oxford, 2006, 797-798.
${ }^{29}$ Pilling, M. J.; Seakins, P. W., Reaction Kinetics, Oxford University Press: Oxford, 1995; 16-19.
${ }^{30}$ The reaction order for $\mathbf{1 a}$ is determined as 0.67 , when the mixture of diastereomeres (3aA-D1 and D2) is used for the kinetic analysis.
${ }^{31}$ The reaction order for $\mathbf{2 A}$ is determined as 0.96 , when the mixture of diastereomeres (3aA-D1 and D2) is used for the kinetic analysis.
${ }^{32}$ Blackmond, D. G., J. Am. Chem. Soc., 2015, 137, 10852-10866.
${ }^{33}$ Baxter, R. D.; Sale, D.; Engle, K. M.; Yu, J.-Q.; Blackmond, D. G., J. Am. Chem. Soc., 2012, 134, 10, 4600-4606.
${ }^{34}$ Burés, J., Angew. Chem. Int. Ed., 2016, 55, 16084-16087.
${ }^{35}$ Nielsen, C. D.-T., Burés, J., Chem. Sci., 2019, 10, 348-353.
${ }^{36}$ Matviitsuk, A.; Greenhalgh, M. D.; Antúnez, D-J. B.; Slawin, A. M. Z.; Smith, A. D.; Angew. Chem. Int. Ed., 2017, 56, 12282-12287.
${ }^{37}$ Stoll, S.; Schweiger, A.; J. Magn. Reson. 2006, 178, 42-55.
${ }^{38}$ a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200; b) Becke, A. D.; J. Chem. Phys. 1993, 98, 5648.
${ }^{39}$ Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
${ }^{40}$ Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
${ }^{41}$ Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.

