Supporting Information

Polyfunctional Imidazolium Aryloxide Betaine / Lewis Acid Catalysts as Tool for the Asymmetric Synthesis of Disfavored Diastereomers

Felix Willig,[#] Johannes Lang,^{*#} Andreas C. Hans,[#] Mark R. Ringenberg,[§] Daniel Pfeffer,[#] Wolfgang Frey,[#] and René Peters^{*#}

* Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
[§] Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

Email: rene.peters@oc.uni-stuttgart.de

Table of Contents

General Remarks	. 8		
General Procedures	10		
General Procedure for the Imidazolium Synthesis (GP1)	10		
General Procedure for the Synthesis of Trifluoromethylsulfonamides (GP2)	10		
General procedure for the Imine-Synthesis (GP3)	11		
General Procedure for the Complexation (GP4)	11		
General Procedure for the Activation of the Complexes (GP5)	12		
General Procedure for the Catalytic Reaction under Standard Conditions (GP6-standard)	12		
General Procedure for Catalytic Reaction under Neat Conditions (GP6-neat)	13		
General Procedure for the Catalytic Reaction with External Base (GP6-control)	14		
General Procedure for the Catalytic Reaction with $lpha,eta$ -Substituted Nitroolefins (GP7)	15		
Synthesis of Sulfonamides	16		
N-((1R,2R)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9a)	16		
N-((15,25)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9b)	16		
ynthesis of the Imidazols			
(R)-2-(Imidazol-1-yl)-2'-hydroxy-1,1'-binaphthyl (6)	17		
2-(1H-Imidazol-1-yl)ethan-1-ol (15)	17		
2-(2-Methyl-1H-imidazol-1-yl)ethan-1-ol (16)	18		
1-(2-Methoxyphenyl)-1H-imidazole (17)	18		
2-(1H-Imidazol-1-yl)phenol (18)	19		
2'-Methoxy-[1,1'-biphenyl]-2-amine (19)2	20		
1-(2'-Methoxy-[1,1'-biphenyl]-2-yl)-1H-imidazole (20)	20		
2'-(1H-Imidazol-1-yl)-[1,1'-biphenyl]-2-ol (21)	21		
Synthesis of the Aldehydes			
(<i>R</i>)-3-(5-(<i>tert</i> -Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3 ium chloride (8)	- 22		

3-(5-(<i>tert</i> -Butyl)-3-formyl-2-hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (22)
3-(5-(<i>tert</i> -Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (23) 23
3-(5-(<i>tert</i> -Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride (24)
(R)-5-(<i>tert</i> -Butyl)-2-hydroxy-3-(((2'-hydroxy-[1,1'-binaphthalen]-2-yl)oxy)methyl)benzaldehyde (25) . 24
3-(5-(<i>tert</i> -Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (26)
3-(5-(<i>tert</i> -Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (27) 26
Synthesis of Imine-Ligands
3-(5-(<i>tert</i> -Butyl)-3-((<i>E</i>)-(((1 <i>R</i> ,2 <i>R</i>)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-((<i>R</i>)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1a)
3-(5-(<i>tert</i> -Butyl)-3-((<i>E</i>)-(((1 <i>S</i> ,2 <i>S</i>)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)-methyl)-2- hydroxybenzyl)-1-((<i>R</i>)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1b)
N-((1R,2R)-2-(((E)-3,5-Di- <i>tert</i> -butyl-2-hydroxybenzylidene)amino)-1,2-diphenylethyl)-1,1,1- trifluoromethanesulfonamide (L2)
3-(5-(<i>tert</i> -Butyl)-3-((<i>E</i>)-(((1 <i>R</i> ,2 <i>R</i>)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (L3)
3-(5-(<i>tert</i> -Butyl)-3-((<i>E</i>)-(((1 <i>R</i> ,2 <i>R</i>)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (L4)
3-(5-(<i>tert</i> -Butyl)-3-((<i>E</i>)-(((1 <i>R</i> ,2 <i>R</i>)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride (L5)
N-((1R,2R)-2-(((E)-5-(tert-butyl)-2-hydroxy-3-(((2'-hydroxy-[(R)-1,1'-binaphthalen]-2- yl)oxy)methyl)benzylidene)amino)-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (L6)
3-(5-(<i>tert</i> -Butyl)-3-((<i>E</i>)-(((1 <i>R</i> ,2 <i>R</i>)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (L7)
3-(5-(<i>tert</i> -Butyl)-3-((<i>E</i>)-(((1 <i>R,2R</i>)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2- hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (L8)
Synthesis of the Complexes
Cu(II)-Phenoxyimine-Complex (<i>S,S</i>)(<i>R</i>) (C1b-Cu)

	Activated Cu(II)-Phenoxyimine-Complex (S,S)(R) (C1b-Cu*)	36
	Cu(II)-Phenoxyimine-Complex (R,R)(R) (C1a-Cu)	37
	Ni(II)-Phenoxyimine-Complex (<i>S,S</i>)(<i>R</i>) (C1b-Ni)	37
	Ni(II)-Phenoxyimine-Complex (<i>R,R</i>)(<i>R</i>) (C1a-Ni)	38
	Control Systems	39
	Cu(II)-Phenoxyimine-Complex (<i>R,R</i>) (C2)	39
	Cu(II)-Phenoxyimine-Complex (<i>R,R</i>) (C3)	39
	Cu(II)-Phenoxyimine-Complex (<i>R,R</i>) (C4)	40
	Cu(II)-Phenoxyimine-Complex (<i>R,R</i>) (C5)	40
	Cu(II)-Phenoxyimine-Complex (<i>R,R</i>)(<i>R</i>) (C6)	41
	Cu(II)-Phenoxyimine-Complex (<i>R,R</i>) (C7)	42
	Cu(II)-Phenoxyimine-Complex (<i>R,R</i>) (C8)	42
С	atalytic Products	43
	Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3aA)	43
	Ethyl (S)-1-((S)-1-(4-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aB)	44
	Ethyl (S)-1-((S)-1-(3-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aC)	45
	Ethyl (S)-1-((R)-1-(2-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aD)	46
	Ethyl (S)-1-((S)-1-(4-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aE)	46
	Ethyl (S)-1-((S)-1-(3-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aF)	47
	Ethyl (S)-1-((R)-1-(2-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aG)	48
	Ethyl (S)-1-((S)-2-Nitro-1-(4-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aH)	49
	Ethyl (S)-1-((S)-2-Nitro-1-(3-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3al)	50
	Ethyl (S)-1-((S)-2-Nitro-1-(2-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aJ)	50
	Ethyl (S)-1-((S)-2-Nitro-1-(p-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aK)	51
	Ethyl (S)-1-((S)-2-Nitro-1-(m-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aL)	52
	Ethyl (S)-1-((S)-2-Nitro-1-(o-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aM)	53

Ethyl (S)-1-((S)-1-(4-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aN)
Ethyl (S)-1-((S)-1-(3-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aO)
Ethyl (S)-1-((S)-1-(2-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aP)
Ethyl (S)-1-((S)-1-(Benzo[d][1,3]dioxol-5-yl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aQ) 55
Ethyl (S)-1-((S)-1-(Furan-2-yl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aR)
Ethyl (S)-1-((S)-2-Nitro-1-(thiophen-2-yl)ethyl)-2-oxocyclopentane-1-carboxylate (3aS)
Ethyl (S)-1-((S,E)-1-Nitro-4-phenylbut-3-en-2-yl)-2-oxocyclopentane-1-carboxylate (3aT)
Ethyl (S)-1-((S)-3-Methyl-1-nitrobutan-2-yl)-2-oxocyclopentane-1-carboxylate (3aU)
Ethyl (S)-1-((S)-1-Cyclohexyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aV)
Ethyl (S)-1-((S)-1-Cyclopropyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aW)
Ethyl (S)-1-((S)-4-Methyl-1-nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aX)
Ethyl (S)-1-((S)-1-Nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aY)61
Ethyl (S)-1-((S)-1-(Benzyloxy)-3-nitro-1-oxopropan-2-yl)-2-oxocyclopentane-1-carboxylate (3aZ) 61
Ethyl (1S)-1-((1S,2R)-2-Nitro-1-phenylpropyl)-2-oxocyclopentane-1-carboxylate (3aA-Me)
Ethyl (1S)-1-((1S,2R)-1-(4-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aB-Me). 63
Ethyl (1S)-1-((1S,2R)-1-(3-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aC-Me). 63
Ethyl (1S)-1-((1S,2R)-1-(4-Chlorophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aE-Me) 64
Ethyl (1S)-1-((1S,2R)-1-(3-Nitroophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3al-Me) 65
Ethyl (1S)-1-((1S,2R)-2-nitro-1-p-tolylpropyl)-2-oxocyclopentane-1-carboxylate (3aK-Me)
Methyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3bA)
Isopropyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3cA)
Ethyl (S)-2-((S)-2-Nitro-1-phenylethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3dA)
Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclohexane-1-carboxylate (3eA)
Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocycloheptane-1-carboxylate (3fA)
Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclooctane-1-carboxylate (3gA)
Methyl (25,35)-2-Acetyl-2-methyl-4-nitro-3-phenylbutanoate (3hA)

Dimethyl (R)-2-(2-Nitro-1-phenylethyl)malonate (3iA)72
Ethyl (S)-1-Methyl-3-((S)-2-nitro-1-phenylethyl)-2-oxopyrrolidine-3-carboxylate (3jA)72
Ethyl (S)-1-Methyl-3-((S)-2-nitro-1-phenylethyl)-2,5-dioxopyrrolidine-3-carboxylate (3kA)
Ethyl (1S,2S,3S,4R)-3-Nitro-6-oxo-2-phenylbicyclo[2.2.2]octane-1-carboxylate (4-D2)
Confirming the Configurational Outcome with 2D-NMR Experiments of Compound 4-D2
Upscaling Experiment for the Synthesis of Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1- carboxylate 3aA
Catalyst Recycling:
Derivatisation of the Catalytic Product 3aA 80
Ethyl (1 <i>S</i> ,2 <i>R</i>)-2-hydroxy-1-((S)-2-nitro-1-phenylethyl)cyclopentane-1-carboxylate (10)
Ethyl (1 <i>S</i> ,2 <i>R</i>)-2-hydroxy-1-((S)-2-nitro-1-phenylethyl)cyclopentane-1-carboxylate (11)
(4 <i>S</i> ,5 <i>S</i> ,6 <i>R</i>)-6-hydroxy-4-phenyl-2-azaspiro[4.4]nonan-1-one (15)
Ethyl (3 <i>S</i> ,3aS)-3-phenyl-2,4,5,6-tetrahydrocyclopenta[b]pyrrole-3a(3H)-carboxylate (12)
(3 <i>S</i> ,3aS)-3a-(Ethoxycarbonyl)-3-phenyl-2,3,3a,4,5,6-hexahydro-1l4-cyclopenta[b]pyrrol-1-olate (13). 83
6a-ethyl 2,3-dimethyl (3aR,6aS,7S)-7-Phenyl-5,6,7,8-tetrahydrocyclopenta[2,3]pyrrolo[1,2-b][1,2] oxazole-2,3,6a(4 <i>H</i>)-tricarboxylate (14)84
Confirming the Configurational Outcome with 2D-NOESY-NMR Experiments of Compound 14 85
Kinetic Experiments
Kinetic Experiments – Initial Rate Kinetic Analysis
Determining the Partial Reaction Order for the Catalyst C1b-Cu*
Determining the Partial Reaction Order for the Ketoester 1a
Determining the Partial Reaction Order for the Nitroolefin 2A
Kinetic Experiments – Probing Catalyst Robustness and Product Influence
Raw Data and Calculated Concentrations for the "Same-Excess"- and "Product Addition"- Experiments
Kinetic Experiments – Determination of reaction orders using variable time normalization graphical
analysis (VTNA)

Raw Data, Calculated Concentrations and Processed Data for the VTNA.	100
Investigation of Possible Non-Linear-Effects	106
Beer's Law Plot	107
Titration Experiments in the UV-Vis	108
Titration Experiments in the EPR	109
Epimerization Experiment of Third Stereocenter with Base	112
Control Experiments Regarding the Formation of the Third Stereocenter	113
Computational Methods	115
NMR-Data	122
HPLC-Data	198
References	242

General Remarks

All air and moisture sensitive reactions were performed in oven-dried glassware (150 °C and heated to 630 °C for several min under high vacuum) and under a positive pressure of nitrogen (ca. 0.2 bar). Liquids were added via syringe, solids were added neat against a nitrogen flow. Solvents were removed using a rotary evaporator (40 °C water bath). Non-volatile compounds were dried in vacuo at 0.03 mbar and freeze-dried using liquid nitrogen. Technical grade solvents (dichloromethane, petroleum ether, diethyl ether, tetrahydrofuran and toluene) were distilled before use. Anhydrous solvents (acetonitrile, tetrahydrofuran, toluene, dichloromethane) were dried in a solvent purification system (MBraun MB SPS-800). Purchased chemicals were used without further purification. For catalytic enantioselective reactions were carried out in a parallel synthesizer (Heidolph Synthesis 1, shaking at 450 rpm) in some cases and are annotated. Ni(acac)₂ was dried in a Kugelrohr distilliation apparatus under reduced pressure (0.01 mbar) at 100 °C for 1 h. The aldehyde **7** was synthesized according to the literature of Nayak et al.¹ Trans- β nitrostyrene **2A**, trans-3-methoxy- β -nitrosytrene **2O**, trans-2-methoxy- β -nitrostyrene **2P**, trans-4methoxy- β -nitrostyrene **2N**, 3,4-methylenedioxy- β -nitrosytrene **2Q** were purchased from commercial suppliers (Sigma-Aldrich, Fluorochem) and were used without further purification. 1-Nitro-4phenylbutadiene **2T** was synthesized according to a procedure of Lautens et al.,² benzyl (E)- β -nitroacrylate **2Z** was synthesized according to the literature,³ (*E*)-(2-nitrovinyl)cyclopropane **2W** was synthesized according to literature⁴ and all other nitroolefins were synthesized according to literature known procedures.^{5,6} Ethyl 2-oxocyclopentanecarboxylate **1a**, methyl 2-oxocyclopentanecarboxylate **1b**, dimethyl malonate 1i and ethyl 2-oxocyclohexanecarboxylate 1e were purchased from commercial suppliers (Sigma-Aldrich, Alfa Aesar). According to the literature the ketoesters, isopropyl 2-1h,⁸ oxocyclohexanecarboxylate 1c,⁷ 2-methylacetoacetate 2methyl ethyl oxocycloheptanecarboxylate 1f,⁹ ethyl 2-oxocyclooctanecarboxylate 1g,⁹ ethyl 1-oxo-2,3-dihydro-1Hindene-2-carboxylate **1d**,¹⁰ ethyl 1-methyl-2-oxopyrrolidine-3-carboxylate **1j**¹¹, ethyl 1-methyl-2,5dioxopyrrolidine-3-carboxylate 1k¹² and ethyl 2-oxocyclohex-3-ene-1-carboxylate 1l¹³ were synthesized. The α , β -disubstituted nitroolefins **3A-Me**, **3B-Me**, **3C-Me**, **3E-Me**, **3I-Me** and **3K-Me** were synthesized according to the Literature.¹⁴ Yields refer to purified compounds. Except as indicated otherwise, reactions were magnetically stirred and monitored by NMR-spectroscopy or thin layer-chromatography (TLC) using silica gel plates (silica gel 60 F₂₅₄). Visualization occurred by fluorescence quenching under UV light and/or by staining with KMnO₄/NaOH. Purification by flash-chromatography was performed on silica gel 60 (40-63 μm particle size), using a forced flow of eluent at 0.2-0.4 bar overpressure. NMR spectra were recorded at room temperature on spectrometers (*Bruker Avance*) operating at 700, 500, 400 or 300 MHz (¹H), 176,

S8

125, 100 or 75 MHz (¹³C) and 376 *MHz* (¹⁹F). Chemical shifts δ are referred in terms of ppm, coupling constants *J* are given in Hz. The following abbreviations classify the multiplicity: *s* = singlet, *d* = doublet, *t* = triplet, *q* = quartet, *quint* = quintet, *sept* = septet, *m* = multiplet (denotes a complex pattern), *dd* = doublet of doublets, *dt* = doublet of triplets, *td* = triplet of doublets and *br* = broad signal. Infrared spectra were recorded by the IR service of the University of Stuttgart on an FT-IR spectrometer (*Bruker Alpha FT-IR*) with an ATR unit and the signals are given by wavenumbers (cm⁻¹). Optical rotation was measured on a polarimeter operating at the sodium D line with a 100 mm path cell length. Melting points were measured using a melting point apparatus (*Büchi 535*) in open glass capillaries and are uncorrected. Mass spectra (*Finnigan MAT95* for EI- or CI-measurements, *Bruker Daltonics micrOTOF-Q* for ESI-measurements) were obtained from the MS service of the University of Stuttgart. Ionization methods are stated in parentheses. The UV-Vis spectra were recorded with a Lambda 365-Spectrometer (PerkinElmer). EPR spectra in the X band were recorded with a Bruker System EMX at 108 K in THF. Enantiomeric excesses (*ee*) were determined by high performance liquid chromatography (HPLC) using an *Elite LaChrom* System with *HITACHI*-modules and chiral stationary phase HPLC columns (*Daicel Chiralpak ODH, ADH, ASH*). Single crystal X-ray analysis was performed by Dr. Wolfgang Frey (University of Stuttgart).

General Procedures

General Procedure for the Imidazolium Synthesis (GP1)

To a solution of the corresponding imidazole **Im** (1.0 equiv) in dichloromethane or acetonitrile (c = 0.2 to 0.1 mol/L) was added the chloromethylated aldehyde **7** (1.0 equiv) and the reaction mixture was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure, the residue redissolved in a small amount of dichloromethane (10 mL/mmol) and the solution was added to a stirred solution of diethylether (80-100 ml/mmol) to cause precipitation. The precipitate was filtered, washed with diethylether and the resulting solid was dried *in vacuo*.

General Procedure for the Synthesis of Trifluoromethylsulfonamides (GP2)

The 1,2-diphenylethane-1,2-diamine **DA** (1.0 equiv) was dissolved in anhydrous dichloromethane (c = 0.10-0.15 mol/L) and cooled to -78 °C under N₂-atmosphere. Afterwards trifluoromethanesulfonic anhydride (1.0 equiv, 1 M in dichloromethane) was added *via* a syringe pump (1 mL/h). The reaction mixture was stirred for 1 h at -78 °C and was warmed to room temperature overnight. The reaction was quenched by adding water (2 mL/mmol) and triethylamine (1.1 equiv). The layers were separated, the aqueous layer was extracted with dichloromethane (2x10 mL/mmol), dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography with CH₂Cl₂/MeOH as eluent (30/1 \rightarrow 15/1, R_f(10/1) = 0.2) and was isolated as a white solid.

General procedure for the Imine-Synthesis (GP3)

A mixture of the corresponding aldehyde Ald (1.0 equiv) and the corresponding amine **9** (1.0 equiv) was dissolved in anhydrous dichloromethane (c = 0.02-0.05 mol/L) under nitrogen atmosphere. To the reaction mixture was added molecular sieves (4Å) and the mixture was stirred for 12 h at ambient temperature. The molecular sieves were removed *via* filtration through a pad of celite[®], they were washed with dichloromethane and the solvent of the solution was removed under reduced pressure. The residue was dissolved again in dichloromethane (1 to 2 mL/mmol) and the product was precipitated by adding this solution to a stirred solution of diethylether (150 mL/g crude product). The solid was filtered off, washed with diethylether (50 mL/g crude product) and dried *in vacuo* to yield a yellow solid, which was used in the following steps without further purification.

General Procedure for the Complexation (GP4)

The ligand L (1.0 equiv) was dissolved in anhydrous acetonitrile (c = 0.02-0.05 mol/L) and the corresponding metal source (1.0 equiv) was added in one portion to the stirred solution under nitrogen atmosphere at room temperature. The reaction mixture was heated to 60 °C and stirred for 12-14 h. Afterwards the solution was filtered over a small pad of celite[®], the filter cake was washed with dichlormethane (20 mL/mmol) and the solvent was removed under reduced pressure. The residue was dissolved in a small amount of dichloromethane and the product was precipitated by adding this solution to pentane (100 mL/g crude product). The solid was filtered off, washed with pentane (20 mL/g crude product) and dried *in vacuo*.

General Procedure for the Activation of the Complexes (GP5)

The complexes **C1-Cu** were dissolved in a solvent mixture of THF/ CH_2Cl_2/NEt_3 (33/66/1, 1 mL/50 mg complex) and the solution was filtered over to a small silica pad (5 cm, Ø 2.5 cm) in a glass frit. The activated complex was eluted by the THF/ CH_2Cl_2/NEt_3 mixture (33/66/1, 30 to 50 mL/50 mg complex). The volatiles were removed under reduced pressure and the product **C1-Cu*** was dried under high vacuum for 1 hour. The activated catalyst could be used without further purification in the catalytic Michael additions.

In a synthesizer tube was added a solution of the corresponding nitroolefin **2** (0.20 mmol, 1.0 equiv) in THF (0.1 mL) at -20 °C under a nitrogen atmosphere. The activated catalyst **C1-Cu*** (9.32 mg, 0.01 mmol, 5 mol%) was added as a stock solution (0.1 mL) in THF and the reactions mixture was shaken for 5 min (450 rpm). The corresponding Michael-donor **1** (0.22 mmol, 1.1 equiv) was added plus additional solvent (0.2 mL) to avoid loss of material at the glass wall. The reaction mixture was shaken at -20 °C for the appropriate time using a parallel synthesizer system (*Heidolph Synthesis 1*, shaking at 450 rpm). Afterwards the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1,

1-2 mL), filtered through a small pad of silica to separate the catalyst from the reaction mixture and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure the crude product was purified *via* column chromatography with petroleum ether/ethyl acetate as eluent ($10/1 \rightarrow 5/1$) to yield the pure product.

General Procedure for Catalytic Reaction under Neat Conditions (GP6-neat)

The corresponding nitroolefin **2** (0.2 mmol, 1.0 equiv) and the activated catalyst **C1-Cu*** (9.32 mg, 0.01 mmol, 5 mol%) were added to the liquid Michael-Donor **1** (0.4 mmol, 2.0 equiv) in a catalysis vial fitted with a magnetic stir bar at the corresponding temperature under nitrogen atmosphere. The reaction mixture was stirred at the corresponding temperature for the given time in a catalysis tube. Afterwards the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1, 1-2 mL), filtered through a small pad of silica to remove the catalyst from the reaction mixture and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure the crude product was purified *via* column chromatography with petroleum ether/ethyl acetate as eluent ($10/1 \rightarrow 5/1$) to yield the pure product.

General Procedure for the Catalytic Reaction with External Base (GP6-control)

The corresponding catalyst **C3-C9** (5 mol%) and the corresponding base (2.5 mol%) was added to a catalysis tube with CH_2Cl_2 (0.05 mL) at room temperature. Afterwards the *trans*- β -nitrostyrene **2A** (7.46 mg, 0.050 mmol, 1.0 equiv) and the β -ketoester **1a** (8.59 mg, 0.055 mmol, 1.1 equiv) were added as separate stock solutions in CH_2Cl_2 (each 0.1 mL) and the reaction mixture was stirred 24 h at room temperature. Then the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1, 1 mL), filtered through a small pad of silica and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure, the crude product was purified *via* preparative TLC (petroleum ether/ethyl acetate, 5/1).

General Procedure for the Catalytic Reaction with α , β -Substituted Nitroolefins (GP7)

The activated catalyst **C1b-Cu*** (9.32 mg, 0.01 mmol, 5 mol%) was added as a stock solution (0.1 mL) in anhydrous THF to a catalysis tube fitted with a magnetic stirring bar under nitrogen atmosphere. Afterwards the corresponding nitroolefin **2-Me** (0.20 mmol, 1.0 equiv) was added and the reaction mixture was cooled to 0 °C. The corresponding Michael-donor **1** (0.40 mmol, 2.0 equiv) was added plus additional solvent (0.1 mL) to avoid loss of material at the glass wall and the reaction mixture was stirred at 0 °C for the appropriate time. Afterwards the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1, 1-2 mL), filtered through a small pad of silica to separate the catalyst from the reaction mixture and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure the crude product was purified *via* column chromatography with petroleum ether/ethyl acetate as eluent ($10/1 \rightarrow 5/1$) to yield the pure product (possible impurities of remaining **1** can be removed using high vacuum at 100 °C in a Kugelrohr apparatus for 1 h).

Synthesis of Sulfonamides

N-((1R,2R)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9a)

9a was prepared according to **GP2**, using (1*R*,2*R*)-1,2-diphenylethylenediamine (0.178 g, 0.838 mmol, 1.0 equiv) and trifluoromethanesulfonic anhydride (0.838 mL, 0.670 g, 0.838 mmol, 1 M in dichloromethane) in anhydrous dichloromethane (8 mL). The reaction was quenched with water (2 mL) and triethylamine (0.128 mL, 0.093 g, 1.1 equiv). After purification *via* column chromatography, the product **9a** was isolated as a white solid (0.226 g, 0.656 mmol, 78%)

C₁₅**H**₁₅**F**₃**N**₂**O**₂**S. MW**: 344.35 g/mol. ¹**H NMR (300 MHz, CDCl**₃): δ = 7.44-7.28 (*m*, 10H, Ar*H*), 4.71 (*d*, 1H, *J* = 3.0 Hz, CHNHTf), 4.41 (*d*, 1H, *J* = 3.0 Hz, CHNH₂), 3.05 (*br*, 3H, NH₂ and NHTf). The analytical data of **9a** is in agreement with the literature.¹⁵

N-((15,25)-2-Amino-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (9b)

9b was prepared according to **GP2**, using (1*S*,2*S*)-1,2-diphenylethylenediamine (0.504 g, 2.37 mmol, 1.0 equiv) and trifluoromethanesulfonic anhydride (2.37 mL, 0.670 g, 2.37 mmol, 1 M in dichloromethane) in anhydrous dichloromethane (25 mL). The reaction was quenched with water (5 mL) and triethylamine (0.36 mL, 0.264 g, 1.1 equiv). After purification *via* column chromatography, the product **9b** was isolated as a white solid (0.623 g, 1.81 mmol, 76%).

C₁₅**H**₁₅**F**₃**N**₂**O**₂**S. MW**: 344.35 g/mol.¹**H NMR (300 MHz, CDCl**₃): δ = 7.44-7.28 (*m*, 10H, Ar*H*), 4.71 (*d*, 1H, *J* = 3.0 Hz, CHNHTf), 4.41 (*d*, 1H, *J* = 3.0 Hz, CHNH₂), 3.07 (*br*, 3H, NH₂ and NHTf). The analytical data of **9b** is in agreement with the literature. ¹⁶

Synthesis of the Imidazols

(R)-2-(Imidazol-1-yl)-2'-hydroxy-1,1'-binaphthyl (6)

Imidazole derivative **6** was synthesized according to procedure by *Crabtree et al.*¹⁷ (*R*)-2,2- Diamino-1,1'binaphthyl **5** (0.807 g, 2,84 mmol, 1.0 equiv) was added to 20 mL of demineralized water, followed by two drops of concentrated H₃PO₄ and the reaction mixture was stirred for 5 min at room temperature. Afterwards 40% aqueous glyoxal solution (1.62 mL, 2.058 g, 14.18 mmol, 5.0 equiv), paraformaldehyde (0.426 g, 14.18 mmol, 5 equiv) and dioxane (20 mL) were added. The reaction mixture was heated to 80 °C, ammonium chloride (0.759 g, 14.2 mmol, 5.0 equiv) was added and refluxing was continued for 5 h. After cooling to room temperature, the mixture was treated with 20 mL of saturated K₂CO₃-solution and the product was extracted with dichloromethane (3x20 mL). The combined organic fractions were dried over MgSO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography on silica gel (acetone/MeOH, 10/1) to yield the pure product **6** as a slightly yellow solid (0.529 g, 1.57 mmol, 55%).

C₂₃**H**₁₆**N**₂**O. MW**: 336.39 g/mol. ¹**H NMR (300 MHz, CDCl**₃): δ = 11.46 (*br*, 1H, O*H*), 8,06 (*d*, 1H, *J* = 8.5 Hz, Ar*H*), 7.99 (*d*, 1H, *J* = 8.1 Hz, Ar*H*), 7.87-7.79 (*m*, 2H, NC*H*N and Ar*H*), 7.60-7.49 (*m*, 3H, Ar*H*), 7.45-7.33 (*m*, 2H, Ar*H*), 7.32-7.24 (*m*, 1H, Ar*H*), 7.22-7.14 (*m*, 1H, Ar*H*), 6.89 (*d*, 1H, *J* = 8.0 Hz, Ar*H*), 6.86 (*m*, 1H, C*H*N), 6.83 (*m*, 1H, C*H*N), 6.74 (*d*, *J* = 8.58 Hz, 1H, Ar*H*).

The analytical data of **6** is in agreement with the literature.¹⁷

2-(1H-Imidazol-1-yl)ethan-1-ol (15)

Imidazole (0.60 g, 8.81 mmol, 1.0 equiv) was added to a solution of NaOEt (1.44 g, 21.15 mmol, 2.4 equiv) in absolute ethanol (10 mL) and heated for 30 min to reflux. Subsequently, 2-chloroethanol (1.18 mL, 1.42 g, 17.63 mmol, 2.0 equiv) was added dropwise to the reaction mixture and refluxing was continued for 12 h. The resulting suspension was filtered and the solvent was removed under reduced pressure to

yield a sticky oil. The crude product was purified *via* column chromatography on silica (EE/MeOH 10/1 to 5/1) to yield product **15** as slightly yellow oil (0.298 g, 2.64 mmol, 30%).

C₅**H**₈**N**₂**O. MW:** 112.13 g/mol. ¹**H NMR (400 MHz, CDCl**₃): δ = 7.33 (*s*, 1H, NCHN), 6.92-6.84 (*m*, 2H, NCHCHN), 4.38 (*br*, 1H, OH), 4.02 (*t*, 2H, *J* = 5.3 Hz, CH₂), 3.85 ((*t*, 2H, *J* = 5.3 Hz, CH₂).

The analytical data of **15** is in agreement with the literature.¹⁸

2-(2-Methyl-1H-imidazol-1-yl)ethan-1-ol (16)

2-Methyl-1H-imidazole (0.852 g, 10.37 mmol, 1.0 equiv), dissolved in anhydrous DMF (2 mL), was added dropwise to a suspension of NaH (0.453 g, 10.37 mmol, 1.0 eq) in anhydrous DMF (10 mL). The mixture was stirred for 60 min at 90 °C, then cooled to 0 °C. 2-chloroethanol (0.696 mL, 0.835 g, 10.37 mmol, 1.0 equiv), dissolved in anhydrous DMF (2 mL), was added dropwise and the mixture was heated again to 90 °C for 12 h. The resulting suspension was filtered, the filter cake was washed with 10 mL ethanol and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography on silica (EE/MeOH 15/1 to 5/1). The isolated material still contained 5% starting material as an impurity which was removed *via* Kugelrohr distillation (100 °C, 3.5x10⁻¹ mbar). The analytically pure product **16** (0.943 g, 8.42 mmol, 81%) was isolated as a slightly yellow solid.

C₆**H**₁₀**N**₂**O. MW**: 126.16 g/mol. **MP** = 80-81 °C. ¹**H NMR (400 MHz, CD**₃**OD)**: δ = 7.01 (*d*, 1H, *J* = 1.5 Hz, NC*H*), 6.80 (*d*, 1H, *J* = 1.5 Hz, NC*H*), 4.01 (*t*, 2H, *J* = 5.2 Hz, CH₂N), 3.78 (*t*, 2H, *J* = 5.2 Hz, CH₂OH), 2.37 (*s*, 3H, CH₃). ¹³**C NMR (100 MHz, CD**₃**OD)**: δ = 146.3, 126.7, 121.1, 62.4, 12.6. **IR (solid)**: $\tilde{\nu}$ = 3127, 3106, 2963, 2932, 2828, 1530, 1501, 1425, 1352, 1291, 1073, 761, 682 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₆H₁₁N₂O]⁺ 127.0866, measured 127.0858.

1-(2-Methoxyphenyl)-1H-imidazole (17)

OMe

An aqueous solution of formaldehyde (2.11 mL, 28.4 mmol, 1.0 equiv, 37% in water) and an aqueous solution of glyoxal (3.25 mL, 28.4 mmol, 1.0 equiv, 40% in water) were dissolved in acetic acid (10 mL) and the resulting solution was heated to 70 °C. *o*-Anisidine (3.20 mL, 28.4 mmol, 1.0 equiv), ammonium acetate (2.19 g, 28.4 mmol, 1.0 equiv) and acetic acid (10 mL) were suspended in a beaker and added to the reaction. The beaker was rinsed with a mixture of water (1 mL) and acetic acid (3 mL) transferring all material to the reaction mixture, which was stirred at 70 °C overnight. The mixture was cooled to room temperature and was poured in a saturated aqueous NaHCO₃ (200 mL). A small amount of potassium hydroxide was added to raise the pH over 8 and the suspension was extracted with THF (3x100 mL), the combined organic layers were washed with brine and dried over MgSO₄, and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography on silica (CH₂Cl₂/MeOH 60/1 to 40/1) to yield **17** as a brownish oil (2.50 g, 14.35 mmol, 51%).

C₁₀**H**₁₀**N**₂**O. MW:** 174.20 g/mol. ¹**H NMR (300 MHz, CDCl**₃): δ = 7.78 (*t*, 1H, *J* = 1.1 Hz, NCHN), 7.39-7.31 (*m*, 1H, Ar*H*), 7.28 (*dd*, 1H, *J* = 7.8 Hz, 1.6 Hz, Ar*H*), 7.20 (*t*, 1H, *J* = 1.1 Hz, NC*H*), 7.16 (*t*, 1H, *J* = 1.1 Hz, NC*H*), 7.07-7.00 (*m*, 2H, Ar*H*), 3.84 (*s*, 3H, OCH₃).

The analytical data of 17 is in agreement with the literature.¹⁹

2-(1H-Imidazol-1-yl)phenol (18)

To 1-(2-methoxyphenyl)-1H-imidazole **17** (2.50 g, 14.35 mmol, 1.0 equiv) was added 47% aqueous hydrobromic acid (16.7 mL, 24.71 g, 143.51 mmol, 10.0 equiv) and the mixture was refluxed for 48 h under N₂-atmosphere. After 24 h additional 47% aqueous hydrobromic acid (16.7 mL, 24.71 g, 143.51 mmol, 10 equiv) was added. Afterwards the reaction mixture was neutralized by adding saturated aqueous NaHCO₃ (300 mL), the product precipitated as a beige solid and was collected by filtration. The crude product was purified *via* Soxhlet extraction using chloroform (100 mL) as solvent. The pure product precipitated in the still pot, was filtered off, washed with chloroform (50 mL) and dried *in vacuo*. The product **18** was isolated as a greyish solid (0.851 g, 5.31 mmol, 37%).

C₉H₈N₂**O. MW**: 160.17 g/mol. ¹**H NMR (300 MHz, DMSO)**: δ = 10.24 (*s*, 1H, OH), 7.92 (*t*, 1H, *J* = 1.1 Hz, NCHN), 7.44 (*t*, 1H, *J* = 1.1 Hz, NCH), 7.32 (*dd*, 1H, *J* = 7.9 Hz, 1.6 Hz, ArH), 7.25-7.18 (*m*, 1H, ArH), 7.08-7.02 (*m*, 2H, ArH and NCH), 6.94-6.87 (*m*, 1H, ArH).

The analytical data of **18** is in agreement with the literature.²⁰

2'-Methoxy-[1,1'-biphenyl]-2-amine (19)

The preparation of **19** was performed as described in the literature.²¹ To a 50 mL round bottom flask was added K_2CO_3 (1.96 g, 14.2 mmol, 2.0 equiv), Pd(PPh₃)₄ (0.164 g, 0.142 mmol, 2 mol%), 2-bromoaniline (0.80 mL, 1.22 g, 0.709 mmol, 1.0 equiv), 2-methoxyphenylboronic acid (1.62 g, 1.06 mmol, 1.5 equiv), demineralized water (2 mL), THF (14 mL), and toluene (3.5 mL). The reaction mixture was stirred for 12 h at 80 °C. Afterwards the reaction mixture was concentrated under reduced pressure and the residue was extracted with ethyl acetate (3x30 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography (petroleum ether/ethyl acetate, 5/1 to 3/1) to yield the product **19** as a white solid (0.784 g, 3.93 mmol, 56%).

C₁₃**H**₁₃**NO. MW**: 199.25 g/mol. ¹**H NMR (400 MHz, CDCl**₃): δ = 7.36 (*m*, 1H, Ar*H*), 7.27 (*d*, 1H, *J* = 8.3 Hz, Ar*H*), 7.18 (*t*, 1H, *J* = 7.8 Hz, Ar*H*), 7.11 (*d*, 1H, *J* = 7.5 Hz, Ar*H*), 7.05 (*t*, 1H, *J* = 7.4 Hz, Ar*H*), 7.01 (*d*, 1H, *J* = 8.2 Hz, Ar*H*), 6.84 (*t*, 1H, *J* = 7.5 Hz, Ar*H*), 6.78 (*d*, 1H, *J* = 8.0 Hz, Ar*H*), 3.81 7.01 (*s*, 3H, ArOCH₃), 3.68 (*s*, 2H, Ar-NH₂).

The analytical data of 14 is in agreement with the literature.²¹

1-(2'-Methoxy-[1,1'-biphenyl]-2-yl)-1H-imidazole (20)

Amine **19** (559 mg, 2.80 mmol, 1.0 equiv) was dissolved in methanol (5.0 mL) in a 50 mL round-bottomed flask, then glyoxal (322 mL, 407 mg, 2.80 mmol, 1.0 equiv, 40% in water) was added and the reaction

mixture was stirred for 2 h at room temperature. Afterwards ammonium chloride (300 mg, 5.61 mmol, 2.0 equiv) followed by paraformaldehyde (417 mL, 455 mg, 5.61 mmol, 2.0 equiv, 37% in water) were added and the reaction mixture was refluxed for one hour. Then phosphoric acid (3.78 mL, 646 mg, 0.561 mmol, 2.0 equiv 85% in water) was added and refluxing was continued for 12 h. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was basicified with 40% aqueous potassium hydroxide. The aqueous mixture was extracted with CH_2Cl_2 (3x30 mL), the combined organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography ($CH_2Cl_2/MeOH$, 30/1 to 20/1) and the product **20** was isolated as yellowish oil (0.139 g, 0.555 mmol, 20%).

C₁₆**H**₁₄**N**₂**O. MW**: 250.30 g/mol. ¹**H NMR (400 MHz, CDCl**₃): δ = 7.49-7.41 (*m*, 3H, Ar*H*), 7.40-7.34 (*m*, 2H, NC*H*N and Ar*H*), 7.31-7.27 (*m*, 1H, Ar*H*), 7.17 (*dd*, 1H, *J* = 7.5, 1.7 Hz, Ar*H*), 6.97 (*t*, 1H, *J* = 7.5 Hz, Ar*H*), 6.92 (*s*, 1H, NC*H*CHN), 6.80-6.76 (*m*, 2H, NCHC*H*N and Ar*H*), 3.49 (*s*, 3H, ArOC*H*₃). ¹³**C NMR (100 MHz, CDCl**₃): δ = 156.5, 137.4, 136.6, 134.5, 132.2, 130.9, 129.8, 128.69, 128.67, 128.2, 127.1, 125.4, 120.9., 120.1, 110.7, 55.3. **IR (solid)**: $\tilde{\nu}$ = 3394, 3115, 3067, 2927, 2836, 2156, 1596, 1508, 1461, 1434, 1296, 1275, 1245, 1118, 1059, 1025, 757 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₁₅N₂O]⁺ 251.1179, measured 251.1185.

2'-(1H-Imidazol-1-yl)-[1,1'-biphenyl]-2-ol (21)

Imidazole **20** (139 mg, 0.543 mg, 1.0 equiv) and hydrobromic acid (1.0 mL, 1.50 g, 16.0 equiv, 47% in water) were refluxed for 48 h. The reaction mixture was neutralized with saturated aqueous NaHCO₃-solution (5 mL) and the aqueous suspension was extracted with CH_2Cl_2 (3x5 mL). After drying over MgSO₄, the solvent was removed under reduced pressure to yield the pure product **21** as a slightly brown solid (126 mg, 0.533 mmol, 98%).

C₁₅**H**₁₂**N**₂**O. MW**: 236.27 g/mol. **MP** = 190-191 °C. ¹**H NMR (500 MHz, CDCl₃)**: δ = 10.63 (br, 1H, ArO*H*), 7.61 (*s*, 1H, NC*H*N), 7.52-7.46 (*m*, 3H, Ar*H*), 7.36 (*d*, 1H, *J* = 7.8 Hz, Ar*H*), 7.18-712 (*m*, 2H, Ar*H*), 6.88-6.81 (*m*, 3H, NC*H*CHN and Ar*H*), 6.69 (*s*, 1H, NC*H*CHN). ¹³**C NMR (100 MHz, CDCl₃)**: δ = 155.3, 137.5, 136.4, 135.9, 132.1, 130.7, 129.7, 128.9, 128.5, 126.9, 125.8, 125.7, 120.7, 119.4, 116.2. **IR (solid)**: $\tilde{\nu}$ = 3061, 2926, 2854, 2692, 2590, 1730, 1594, 1506, 1444, 1400, 1290, 1240, 1107, 1063, 755, 733 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₅H₁₃N₂O]⁺ 237.1022, measured 237.1011.

Synthesis of the Aldehydes

(*R*)-3-(5-(*tert*-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3ium chloride (8)

Aldehyde **8** was prepared according to **GP1**, using 3-(chloromethyl)-5-(*tert*-butyl)-2-hydroxybenzaldehyde **7** (0.318 g, 1.41 mmol, 1.0 equiv) and (*R*)-2-(imidazol-1-yl)-2'-hydroxy-1,1'-binaphthyl **6** (0.473 g, 1.41 mmol, 1.0 equiv) in dichloromethane (10 mL). The imidazolium salt **8** was isolated as a beige solid (0.789 g, 1.40 mmol, >99%).

C₃₅**H**₃₁**CIN**₂**O**₃. **MW**: 563.09 g/mol. **MP** = 194-195 °C. $[\alpha_D^{20}] = 14.9$ (c = 0.12 g/dl, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃): δ = 11.06 (*s*, 1H, ArO*H*), 10.13 (*b*, 1H, ArO*H*), 9.86 (*s*, 1H, CHO), 9.64 (*s*, 1H, NC*H*N), 8.21 (*d*, 1H, *J* = 2.2 Hz, Ar*H*), 8.03 (*d*, 1H, *J* = 8.2 Hz, Ar*H*), 7.95 (*d*, 1H, *J* = 8.3 Hz, Ar*H*), 7.71 (*t*, 1H, *J* = 3.2 Hz, Ar*H*), 7.59-7.51 (*m*, 3H, Ar*H*), 7.41-7.32 (*m*, 2H, Ar*H*), 7.19 (*t*, 1H, *J* = 7.1 Hz, Ar*H*), 7.13-7.07 (*m*, 1H, Ar*H*), 7.12 (*s*, 1H, NC*H*CHN), 6.80 (*s*, 1H, NCHCHN), 6.75 (*d*, 1H, *J* = 8.4 Hz, Ar*H*), 5.56 (*d*, 1H, *J* = 14.0 Hz, ArC*H*H), 5.47 (*d*, 1H, *J* = 14.0 Hz, ArC*H*H), 1.33 (*s*, 9H, C(C*H*₃)₃). ¹³C NMR (176 MHz, CDCl₃): δ = 196.6, 157.4, 153.8, 144.2, 137.7, 137.1, 134.1, 133.5, 133.2, 132.5, 1311.4, 131.3, 130.8, 130.2, 128.5, 128.45, 128.38, 128.1, 127.8, 126.9, 123.4, 123.2, 122.7, 122.4, 121.9, 121.4, 120.4, 120.3, 113.6, 47.9, 34.6, 31.4. IR (solid): $\tilde{\nu}$ = 3053, 2958, 2869, 1651, 1622, 1507, 1478, 1433, 1344, 1274, 1207, 1099, 817, 748, 723, 627 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₃₅H₃₁N₂O₃]⁺ 527.2329, measured 527.2332.

3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (22)

Aldehyde **22** was prepared according to **GP1**, using 3-(chloromethyl)-5-(*tert*-butyl)-2hydroxybenzaldehyde **7** (0.626 g, 2.76 mmol, 1.0 equiv) and 1-methylimidazole (0.228 g, 2.76 mmol, 1.0 equiv) in acetonitrile (10 mL). The imidazolium salt **22** was isolated as a beige solid (0.663 g, 2.15 mmol, 78%).

C₁₆**H**₂₁**CIN**₂**O**₂**. MW**: 308.81 g/mol. ¹**H NMR (300 MHz, CDCl**₃): δ = 11.45 (br, 1H, OH), 11.24 (s, 1H, NCHN), 9.91 (s, 1H, CHO), 8.38 (d, 1H, *J* = 2.5 Hz, ArH), 7.61 (d, 1H, *J* = 2.5 Hz, ArH), 7.53 (s, 1H, CHN), 7.07 (s, 1H, CHN), 5.69 (s, 2H, CH₂), 4.01 (s, 3H, CH₃), 1.37 (s, 9H, C(CH₃)₃).

The analytical data of **17** is in agreement with the literature.²²

3-(5-(tert-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (23)

Aldehyde **23** was prepared according to **GP1**, using 3-(chloromethyl)-5-(*tert*-butyl)-2hydroxybenzaldehyde **7** (0.307 g, 1.35 mmol, 1.0 equiv) and 2-(1H-imidazol-1-yl)ethan-1-ol **15** (0.152 g, 1.35 mmol, 1.0 equiv) in acetonitrile (5 mL). The crude product was dissolved in acetone (1 mL) and precipitated in diethylether (30 mL). The product **23** was isolated as a beige solid (0.355 g, 1.04 mmol, 77%).

C₁₇H₂₃ClN₂O₃. MW: 338.83 g/mol. MP = 207-208 °C. ¹H NMR (400 MHz, MeOD): δ = 9.97 (*s*, 1H, CHO), 9.07 (*s*, 1H, NCHN), 7.91-7.84 (*m*, 2H, ArH), 7.65 (*s*, 1H, NCHCHN), 7.61 (*s*, 1H, NCHCHN), 5.47 (*s*, 2H, ArCH₂), 4.29 (*t*, 2H, *J* = 4.9 Hz, CH₂OH), 3.85 (*t*, 2H, *J* = 4.9 Hz, CH₂CH₂OH), 1.37 (*s*, 9H, C(CH₃)₃). ¹³C NMR (75 MHz,

S23

CDCl₃): δ = 198.9, 158.4, 144.9, 138.1, 136.7, 133.2, 124.1, 123.7, 122.7, 122.1, 61.0, 53.30, 53.28, 35.2, 31.6. **IR (solid)**: $\tilde{\nu}$ = 3130, 3067, 2953, 2861, 1650, 1560, 1469, 1440, 1383, 1270, 1223, 1152, 1063, 1008, 763, 720, 632 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₃N₂O₃]⁺ 303.1703, measured 303.1709

3-(5-(*tert*-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride (24)

Aldehyde **24** was prepared according to **GP1**, using 3-(chloromethyl)-5-(*tert*-butyl)-2hydroxybenzaldehyde **7** (0.243 g, 1.07 mmol, 1.0 equiv) and 2-(2-methyl-1H-imidazol-1-yl)ethan-1-ol **16** (0.135 g, 1.07 mmol, 1.0 equiv) in acetonitrile (5 mL). The imidazolium salt **24** was isolated as yellow oil (0.275 g, 0.78 mmol, 73%).

C₁₈**H**₂₅**ClN**₂**O**₃**. MW**: 352.86 g/mol. ¹**H NMR (300 MHz, CDCl**₃): δ = 11.19 (*br*, 1H, ArO*H*), 9.88 (*s*, 1H, CHO), 7.88 (*d*, 1H, *J* = 2.4 Hz, Ar*H*), 7.58 (*d*, 1H, *J* = 2.4 Hz, Ar*H*), 7.53 (*d*, 1H, *J* = 2.1 Hz, NCHCHN), 7.30 (*d*, 1H, *J* = 2.1 Hz, NCHCHN), 5.36 (*s*, 2H, ArCH₂), 4.29 (*t*, 2H, *J* = 5.0 Hz, CH₂OH), 3.87 (*t*, 2H, *J* = 5.0 Hz, CH₂CH₂OH), 2.85 (*s*, 3H, CCH₃), 1.30 (*s*, 9H, C(CH₃)₃). ¹³**C NMR (75 MHz, CDCl**₃): δ = 196.7, 157.5, 144.8, 143.8, 136.4, 131.3, 122.0, 121.5, 121.2, 120.5, 60.3, 51.5, 47.3, 34.4, 31.3, 11.0. **IR (solid)**: $\tilde{\nu}$ = 3280, 2958, 2870, 1651, 1478, 1426, 1385, 1274, 1219, 1075, 1008, 733, 673 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₈H₂₅N₂O₅]⁺ 317.1860, measured 317.1846.

(R)-5-(tert-Butyl)-2-hydroxy-3-(((2'-hydroxy-[1,1'-binaphthalen]-2-yl)oxy)methyl)benzaldehyde (25)

To a stirred suspension of NaH (0.155 g, 3.56 mmol, 2.0 equiv) in anhydrous THF (2.5 mL) in a Schlenk-flask was added a solution of **(***R***)-BINOL** (0.509 g, 1.78 mmol, 1.0 equiv) dissolved in anhydrous THF (3.0 mL). After stirring the reaction mixture for 30 min, a solution of the aldehyde **7** (0.403 g, 1.78 mmol, 1.0 equiv) in anhydrous THF (3.0 mL) was added dropwise and stirring was continued for 12 h at room temperature. Afterwards the solvent was removed under reduced pressure and the residue was redissolved in CH_2Cl_2 (10 mL). The organic layer was washed with aqueous 1 M HCl (2x5 mL), water (5 mL), dried over Na_2SO_4 and the solvent was removed under reduced pressure. The crude product was purified *via* column chromatography on silica with petroleum ether/ethyl acetate (15/1 to 10/1, $R_f(6/1) = 0.35$) as eluent and the product **25** was isolated as slightly beige foam (0.451 g, 0.95 mmol, 53%).

C₃₂**H**₂₈**O**₄. **MW**: 476.56 g/mol. **MP** = 147-148 °C. $[\alpha_D^{20}] = 4.5$ (c = 0.13 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl**₃): δ = 11.10 (*br*, 1H, O*H*), 9.82 (*s*, 1H, CHO), 8:07 (*d*, 1H, *J* = 9.1 Hz, Ar*H*), 7.95-7.82 (*m*, 3H, Ar*H*), 7.62 (*d*, 1H, *J* = 9.1 Hz, Ar*H*), 7.43-7.26 (*m*, 5H, Ar*H*), 7.25-7.08 (*m*, 4H, Ar*H*), 5.52 (*d*, 1H, *J* = 13.2 Hz, ArC*H*H), 5.16 (*d*, 1H, *J* = 13.2 Hz, ArCH*H*), 4.94 (*s*, 1H, *Naphtyl*O*H*), 1.01 (*s*, 9H, C(C*H*₃)₃). ¹³**C NMR (75 MHz, CDCl**₃): δ = 197.0, 156.2, 154.9, 151.4, 142.8, 134.2, 133.9, 132.9, 131.3, 130.0, 129.8, 129.3, 128.6, 128.34, 128.31, 127.5, 126.7, 125.11, 125.07, 125.0, 124.5, 123.4, 119.4, 117.7, 116.1, 115.2, 114.9, 64.7, 34.1, 31.1. **IR** (**solid**): $\tilde{\nu}$ = 3428, 3056, 2962, 2868, 1651, 1620, 1592, 1463, 1381, 1265, 1215, 1090, 814, 747, 732 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₃₂H₂₈O₄]⁺ 499.1880, measured 499.1872.

3-(5-(*tert*-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (26)

26

Aldehyde **26** was prepared according to **GP1**, using 3-(chloromethyl)-5-(*tert*-butyl)-2hydroxybenzaldehyde **7** (96.2 mg, 0.424 mmol, 1.0 equiv) and 2'-(1H-Imidazol-1-yl)-[1,1'-biphenyl]-2-ol **21** (100.3 mg, 0.424 mmol, 1.0 equiv) in a solvent mixture of acetonitrile (1 mL) and CH_2Cl_2 (3 mL). The imidazolium salt **26** was isolated as a beige solid (0.105 g, 0.227 mmol, 53%). **C**₂₇**H**₂₇**C**IN₂**O**₃**. MW**: 462.97 g/mol. **MP** = 251 °C (decomp.). ¹**H NMR (400 MHz, MeOD)**: δ = 9.99 (*s*, 1H, CHO), 8.84 (*s*, 1H, NCHN), 7.87-7.81 (*m*, 2H, Ar*H*), 7.69-7.57 (*m*, 4H, Ar*H*), 7.63 (*t*, 1H, *J* = 1.7 Hz, NCHCHN), 7.50 (*d*, 1H, *J* = 7.3 Hz, NCHCHN), 7.14 (*d*, *J* = 7.5 Hz, Ar*H*), 7.08 (*t*, *J* = 8.1 Hz, Ar*H*), 6.81 (*t*, *J* = 7.5 Hz, Ar*H*), 6.58 (*d*, *J* = 8.1 Hz, Ar*H*), 5.37 (*s*, 2H, ArCH₂), 1.38 (*s*, 9H, C(CH₃)₃). ¹³**C NMR (100 MHz, MeOD)**: δ = 199.0, 158.3, 155.3, 144.8, 138.3, 136.7, 136.6, 135.5, 133.4, 133.3, 132.0, 131.8, 131.4, 130.1, 126.6, 125.1, 124.6, 123.1, 122.3, 122.1, 121.0, 116.3, 49.3, 35.2, 31.6. **IR (solid)**: $\tilde{\nu}$ = 3064, 2959, 1651, 1481, 1445, 1365, 1273, 1219, 1104, 1073, 834, 758, 632 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₂₇H₂₇N₂O₃]⁺ 427.2016, measured 427.2030.

3-(5-(*tert*-Butyl)-3-formyl-2-hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (27)

Aldehyde **27** was prepared according to **GP1**, using 3-(chloromethyl)-5-(*tert*-butyl)-2hydroxybenzaldehyde **7** (0.182 g, 0.803 mmol, 1.0 equiv) and 2-(1H-imidazol-1-yl)phenol **18** (0.129 g, 0.803 mmol, 1.0 equiv) in a solvent mixture of CH_2Cl_2 and methanol (10/1, 1.5 mL). The reaction mixture was washed with aqueous 1 M HCl (2x5 mL), the organic layer was dried over Na_2SO_4 and the solvent was removed under reduced pressure. Afterwards the purification of the crude product was continued as described in **GP1** to yield a beige solid (0.171 g, 0.442 mmol, 73%)

C₂₁**H**₂₃**CIN**₂**O**₃**. MW**: 386.88 g/mol. **MP** = 137 °C (decomp.). ¹**H NMR (300 MHz, CDCI**₃): δ = 11.39 (*br*, 1H, O*H*), 9.90 (*s*, 1H, C*H*O and *s*, 1H, NC*H*N); 8:35 (*d*, 1H, *J* = 2.1 Hz, Ar*H*), 7.76 (*s*, 1H, C*H*N), 7.63-7.54 (*m*, 2H, Ar*H*), 7.41 (*s*, 1H, C*H*N), 7.22 (*d*, 1H, *J* = 8.4 Hz, Ar*H*), 7.12 (*t*, 1H, *J* = 8.0 Hz, Ar*H*), 6.76 (*t*, 1H, *J* = 8.0 Hz, Ar*H*), 5.72 (*s*, 2H, C*H*₂), 1.33 (*s*, 9H, C(C*H*₃)₃). ¹³**C NMR (75 MHz, CDCI**₃): δ = 196.9, 157.6, 150.8, 144.4, 137.5, 136.3, 131.7, 131.3, 124.1, 123.0, 122.4, 121.8, 121.7, 120.4, 119.9, 119.1, 48.0, 34.6, 31.4 **IR (solid)**: $\tilde{\nu}$ = 3057, 2963, 2868, 1655, 1623, 1456, 1509, 1478, 1433, 1345, 1275, 1216, 1099, 819, 729 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₂₁H₂₃N₂O₃]⁺ 351.1703, measured 351.1693.

Synthesis of Imine-Ligands

3-(5-(*tert*-Butyl)-3-((*E*)-(((1*R*,2*R*)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2hydroxybenzyl)-1-((*R*)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1a)

Imine L1a was prepared according to GP3, using aldehyde 8 (44.59 mg, 0.0792 mmol, 1.0 equiv), amine 9a (27.27 mg, 0.0792 mmol, 1.0 equiv) and anhydrous CH_2Cl_2 (4 mL). The product L1a was isolated as a yellow solid (58.1 mg, 0.0653 mmol, 82%).

C₅₀**H**₄₄**ClF**₃**N**₄**O**₄**S. MW**: 889.43 g/mol. **MP** = 224-225 °C. $[\alpha_D^{20}] = 120.8$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR** (400 MHz, **CDCl**₃): δ = 14.08 (*br*, 1H, ArO*H*), 10.58 (*br*, 1H, NHTf), 9.81 (*br*, 1H, ArO*H*), 9.39 (*s*, 1H, NC*H*N), 8.21 (*s*, 1H, CHN), 8.05 (*d*, 1H, *J* = 8.8 Hz, Ar*H*), 7.95 (*d*, 1H, *J* = 8.2 Hz, Ar*H*), 7.87 (*s*, 1H, Ar*H*), 7.65-7.49 (*m*, 5H, Ar*H*), 7.40-7.31 (*m*, 5H, Ar*H*), 7.19-7.04 (*m*, 8H, Ar*H*), 7.01-6.97 (*m*, 2H, Ar*H*), 6.85 (*s*, 1H, NHCCHN), 6.79 (*s*, 1H, NHCCHN), 6.77 (*d*, 1H, *J* = 8.2 Hz, Ar*H*), 5.64 (*d*, 1H, *J* = 13.8 Hz, ArCH*H*), 5.42 (*d*, 1H, *J* = 10.6 Hz, CNCHAr), 5.29 (*d*, 1H, *J* = 13.8 Hz, ArCH*H*), 4.93 (*d*, 1H, *J* = 10.6 Hz, ArCHNHTf), 1.16 (*s*, 9H, C(C*H*₃)₃). ¹⁹**F NMR (376 MHz, CDCl**₃): δ = 78.0. ¹³**C NMR (100 MHz, CDCl**₃): δ = 167.8, 157.1, 153.4, 141.7, 140.4, 139.5, 138.3, 136.8, 134.2, 133.6, 133.2, 132.9, 132.4, 131.6, 130.7, 130.1, 129.5, 129.0, 128.6, 128.4, 128.19, 128.17, 128.08, 128.05, 128.0, 127.8, 127.61, 127.60, 126.9, 123.6, 123.1, 122.62, 122.59, 122.4, 120.8., 119.9, 119.5 (*q*, J = 321.8 Hz, *C*F₃), 118.2, 113.8, 73.6, 65.7, 48.3, 34.2, 31.5.**IR (solid)**: $\tilde{\nu}$ = 3143, 3060, 3032, 2962, 2870, 1628, 1509, 1479, 1371, 1275, 1226, 1193, 1147, 1050, 817, 750, 732, 699 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₅₀H₄₄F₃N₄O₄S]⁺ 853.3030, measured 853.3032. 3-(5-(*tert*-Butyl)-3-((*E*)-(((1*S*,2*S*)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)-methyl)-2hydroxybenzyl)-1-((*R*)-2'-hydroxy-[1,1'-binaphthalen]-2-yl)-1H-imidazol-3-ium chloride (L1b)

Imine **L1b** was prepared according to **GP3**, using aldehyde **8** (239.6 mg, 0.425 mmol, 1.0 equiv), amine **9b** (146.5 mg, 0.425 mmol, 1.0 equiv) and anhydrous CH₂Cl₂ (20 mL). The product **L1b** was isolated as a yellow solid (360.1 mg, 0.405 mmol, 95%).

C₅₀**H**₄₄**CIF**₃**N**₄**O**₄**S**. **MW**: 889.43 g/mol **MP** = 192 °C (decomp.). $[\alpha_D^{20}] = 41.8$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR** (**500 MHz, CDCl**₃): δ = 14.00 (*br*, 1H, ArO*H*), 9.17 (*s*, 1H, NC*H*N), 8.27 (*s*, 1H, C*H*N), 8.01 (*d*, 1H, *J* = 8.7 Hz, Ar*H*), 7.90 (*d*, 1H, *J* = 8.2 Hz, Ar*H*), 7.74-7.63 (*m*, 4H, Ar*H*), 7.54 (*t*, 1H, *J* = 7.2 Hz, Ar*H*), 7.49 (*d*, 1H, *J* = 8.8 Hz, Ar*H*), 7.45-7.31 (*m*, 4H, Ar*H*), 7.22 (*t*, 1H, *J* = 7.2 Hz, Ar*H*), 7.19 (*s*, 1H, NHCCHN), 7.16-7.07 (*m*, 7H, Ar*H*), 7.05-7.01 (*m*, 2H, Ar*H*), 6.92 (*s*, 1H, Ar*H*), 6.76 (*d*, 1H, *J* = 8.4 Hz, Ar*H*), 6.69 (*s*, 1H, NHCCHN), 5.69 (*d*, 1H, *J* = 13.7 Hz, ArCH*H*), 5.32 (*d*, 1H, *J* = 9.8 Hz, CNC*H*Ar), 5.19 (*d*, 1H, *J* = 13.7 Hz, ArCH*H*), 5.32 (*d*, 1H, *J* = 10.0 Hz, ArCHNHTf), 1.08 (*s*, 9H, C(C*H*₃)₃). ¹⁹**F NMR (376 MHz, CDCl**₃): δ = 77.6. ¹³**C NMR (176 MHz, CDCl**₃): δ = 167.5, 157.5, 153.3, 141.5, 138.8, 138.2, 136.2, 134.2, 133.5, 133.2, 132.6, 131.8, 131.6, 131.0, 130.1, 130.0, 129.0, 128.8, 128.7, 128.63, 128.56, 128.4, 128.3, 128.2, 128.14, 128.09, 127.9, 127.7, 127.1, 123.5, 123.4, 122.5, 122.42, 122.37, 120.7, 119.8, 119.6 (*q*, J = 321.5 Hz, CF₃), 118.7, 118.2, 116.9, 113.3, 74.9, 65.8, 49.1, 34.1, 31.4. **IR (solid)**: $\tilde{\nu}$ = 3058, 3031, 2958, 2866, 1626, 1600, 1478, 1434, 1369, 1345, 1225, 1187, 1145, 1048, 937, 816, 749, 698, 598 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₅₀H₄₄F₃N₄O₄S]⁺ 853.3030, measured 853.3008. *N*-((1*R*,2*R*)-2-(((*E*)-3,5-Di-*tert*-butyl-2-hydroxybenzylidene)amino)-1,2-diphenylethyl)-1,1,1trifluoromethanesulfonamide (L2)

Imine **L2** was prepared according to **GP3**, using 3,5-di-*tert*-butyl-2-hydroxybenzaldehyde (42.29 mg, 0.181 mmol, 1.0 equiv), amine **9a** (27.27 mg, 0.181 mmol, 1.0 equiv) and anhydrous CH_2Cl_2 (3 mL). The product **L2** was purified *via* column chromatography (petroleum ether/ethyl acetate 20/1 to 10/1) and was isolated as a slightly yellow solid (64.0 mg, 0.114 mmol, 63%).

C₃₀**H**₃₅**F**₃**N**₂**O**₃**S. MW**: 560.68 g/mol. **MP** = 114-115 °C. $[\alpha_D^{20}] = 18.4$ (c = 0.22 g/dl, CH₂Cl₂). ¹**H NMR** (**300 MHz, CDCl₃**): δ = 12.85 (*br*, 1H, ArO*H*), 8.16 (*s*, 1H, C*H*N), 7.41 (*d*, 1H, *J* = 2.5 Hz, Ar*H*), 7.36-7.22 (*m*, 8H, Ar*H*), 7.13-7.08 (*m*, 2H, Ar*H*), 6.93 (*d*, 1H, *J* = 2.4 Hz, Ar*H*), 5.86 (*br*, 1H, N*H*Tf), 5.04 (*d*, 1H, *J* = 5.0 Hz, CNC*H*Ar), 4.63 (*d*, 1H, *J* = 5.1 Hz, ArC*H*NHTf), 1.47 (*s*, 9H, C(C*H*₃)₃), 1.25 (*s*, 9H, C(C*H*₃)₃). ¹⁹**F NMR (376 MHz, CDCl**₃): δ = 77.5. ¹³**C NMR (176 MHz, CDCl**₃): δ = 169.5, 157.9, 140.8, 138.3, 137.5, 137.1, 129.0, 128.8, 128.5, 128.4, 127.7, 127.0, 126.8, 119.6 (*q*, J = 336.5 Hz, *C*F₃), 117.6, 78.4, 64.8, 35.3, 34.3, 31.5, 29.6. **IR** (**Solid**): $\tilde{\nu}$ = 3270, 2958, 1619, 1596, 1455, 1436, 1371, 1228, 1196, 1141, 1048, 1027, 757, 696 cm⁻¹, **HRMS** (**ESI**) *m/z*: calculated [C₃₀H₃₅F₃N₂O₃SNa]⁺ 583.2213, measured 583.2301.

3-(5-(*tert*-Butyl)-3-((*E*)-(((1*R*,2*R*)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2hydroxybenzyl)-1-methyl-1H-imidazol-3-ium chloride (L3)

Imine L3 was prepared according to GP3, using 3-(5-(tert-butyl)-3-formyl-2-hydroxybenzyl)-1-methyl-1Himidazol-3-ium chloride (31.70 mg, 0.1037 mmol, 1.0 equiv), amine**9a**(35.70 mg, 0.1037 mmol, 1.0 equiv)and anhydrous CH₂Cl₂ (3 mL). The product L3 was isolated as a yellow solid (42.1 mg, 0.0663 mmol, 64%).

C₃₁**H**₃₄**CIF**₃**N**₄**O**₃**S. MW**: 635.14 g/mol. **MP** = 188-189 °C. $[\alpha_D^{20}] = 114$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR** (400 MHz, MeOD): δ = 8.99 (s, 1H, NCHN), 8.60 (s, 1H, CHN), 7.68-7.64 (m, 2H, ArH and NHCCHN), 7.54-7.51 (m, 2H, ArH and NHCCHN), 7.23-7.14 (m, 8H, ArH), 7.12-7.08 (m, 2H, ArH), 5.53 (d, 1H, *J* = 13.9 Hz, ArCHH), 5.38 (d, 1H, *J* = 14.0 Hz, ArCHH), 4.96 (d, 1H, *J* = 9.9 Hz, CNCHAr), 4.62 (d, 1H, *J* = 9.8 Hz, ArCHNHTf), 3.91 (s, 3H, NCH₃). 1.34 (s, 9H, C(CH₃)₃).¹⁹**F NMR** (376 MHz, MeOD): δ = 80.1. ¹³C **NMR** (176 MHz, MeOD): δ = 168.3, 158.3, 143.5, 140.4, 139.3, 132.5, 131.5, 129.6, 129.4, 129.1, 129.0, 128.7, 124.7, 124.6, 123.9, 123.8, 122.1, 120.9 (q, J = 320.6 Hz, CF₃), 120.0, 79.6, 66.6, 36.45, 36.42, 35.1, 31.7. **IR** (Solid): $\tilde{\nu}$ = 2957, 1628, 1455, 1367, 1281, 1225, 1188, 1147, 1049, 955, 758, 699, 598 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₃₁H₃₄F₃N₄O₃S]⁺ 599.2298, measured 599.2281.

3-(5-(*tert*-Butyl)-3-((*E*)-(((1*R*,2*R*)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2hydroxybenzyl)-1-(2-hydroxyethyl)-1H-imidazol-3-ium chloride (L4)

Imine L4 was prepared according to GP3, using aldehyde 23 (31.52 mg, 0.0930 mmol, 1.0 equiv), amine 9a (32.03 mg, 0.0930 mmol, 1.0 equiv) and anhydrous CH_2CI_2 (2.5 mL). The product L4 was isolated as a yellow solid (38.8 mg, 0.0583 mmol, 63%).

C₃₂**H**₃₆**ClF**₃**N**₄**O**₄**S. MW**: 665.17 g/mol. **MP** = 250-251 °C. $[\alpha_D^{20}] = 20.2$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR** (500 MHz, MeOD): δ = 9.08 (*s*, 1H, NCHN), 8.61 (*s*, 1H, CHN), 7.69 (*t*, 1H, *J* = 1.7 Hz, NHCCHN), 7.65 (*d*, 1H, *J* = 2.4 Hz, ArH), 7.62 (*t*, 1H, *J* = 1.7 Hz, NHCCHN), 7.54 (*d*, 1H, *J* = 2.4 Hz, ArH), 7.25-7.15 (*m*, 8H, ArH), 7.13-7.08 (*m*, 2H, ArH), 5.55 (*d*, 1H, *J* = 14.0 Hz, ArCHH), 5.44 (*d*, 1H, *J* = 14.0 Hz, ArCHH), 4.96 (*d*, 1H, *J* = 9.7 Hz, CNCHAr), 4.64 (*d*, 1H, *J* = 10.0 Hz, ArCHNHTf), 4.31-4.27 (*m*, 2H, CH₂CH₂OH), 3.89-3.85 (*m*, 2H, CH₂CH₂OH), 1.36 (*s*, 9H, C(CH₃)₃). ¹⁹F NMR (376 MHz, MeOD): δ = 79.9. ¹³C NMR (100 MHz, MeOD): δ = 168.2, 158.6,

143.4, 140.5, 139.8, 132.5, 131.5, 129.6, 129.3, 129.0, 128.9, 128.9, 128.7, 123.9, 123.9, 123.7, 122.1, 121.4 (q, J = 322.5 Hz, CF₃), 120.0, 79.7, 66.7, 61.1, 53.3, 49.8, 35.0, 31.7. **IR (Solid)**: $\tilde{\nu}$ = 2959, 2666, 1628, 1600, 1469, 1367, 1282, 1224, 1186, 1147, 1047, 1027, 954, 759, 699, 598 cm⁻¹. **HRMS (ESI)** m/z: calculated [C₃₂H₃₆F₃N₄O₄S]⁺ 629.2404, measured 629.2401.

3-(5-(*tert*-Butyl)-3-((*E*)-(((1*R*,2*R*)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2hydroxybenzyl)-1-(2-hydroxyethyl)-2-methyl-1H-imidazol-3-ium chloride (L5)

Imine L5 was prepared according to GP3, using aldehyde 24 (33.03 mg, 0.0975 mmol, 1.0 equiv), amine 9a (34.40 mg, 0.0975 mmol, 1.0 equiv) and anhydrous CH_2Cl_2 (4 mL). The product L5 was isolated as a yellow solid (43.0 mg, 0.0633 mmol, 65%).

C₃₃**H**₃₈**CIF**₃**N**₄**O**₄**S. MW**: 679.20 g/mol. **MP** = 150 °C (decomp.). [α_D^{20}] = 18.2 (c = 0.11 g/dl, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃): δ = 14.29 (b, 1H, ArOH), 8.65 (s, 1H, CHN), 7.37-7.35 (m, 2H, ArH), 7.33-7.29 (m, 2H, ArH) and NHCCHN), 7.17-7.05 (m, 9H, ArH), 6.76 (t, 1H, J = 1.3 Hz, NHCCHN), 5.33 (d, 1H, J = 14.2 Hz, ArCHH), 5.12 (d, 1H, J = 10.0 Hz, CNCHAr), 4.93-4.88 (m, 2H, ArCHH and ArCHNHTf), 4.22-4.09 (m, 2H, CH₂CH₂OH), 3.90-3.77 (m, 2H, CH₂CH₂OH), 2.80 (s, 3H, CH₃), 1.26 (s, 9H, C(CH₃)₃). ¹⁹**F NMR (376 MHz, CDCl₃)**: δ = 78.3. ¹³**C NMR (100 MHz, CDCl₃)**: δ = 167.5, 158.2, 144.8, 141.4, 139.3, 138.6, 130.6, 130.3, 128.6, 128.35, 128.28, 128.2, 127.9, 127.7, 122.3, 120.5, 120.2, 119.0, 75.7, 65.9, 59.9, 51.1, 48.5, 34.2, 31.6, 10.8. **IR (solid)**: $\tilde{\nu}$ = 3300, 3033, 2962, 2872, 1630, 1601, 1456, 1370, 1226, 1191, 1147, 1049, 732, 699, 600 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₃₃H₃₈F₃N₄O₄S]⁺ 643.2560, measured 643.2556.

N-((1*R*,2*R*)-2-(((*E*)-5-(tert-butyl)-2-hydroxy-3-(((2'-hydroxy-[(*R*)-1,1'-binaphthalen]-2yl)oxy)methyl)benzylidene)amino)-1,2-diphenylethyl)-1,1,1-trifluoromethanesulfonamide (L6)

Imine **L6** was prepared according to **GP3**, using aldehyde **25** (51.04 mg, 0.107 mmol, 1.0 equiv), amine **9a** (36.88 mg, 0.107 mmol, 1.0 equiv) and anhydrous CH_2Cl_2 (4 mL). The crude product was purified *via* crystallization. The received solid was dissolved in CH_2Cl_2 (1 mL), overlaid with n-hexane (10 mL) and the mixture cooled to -20 °C overnight. The crystalline product **L6** was separated, dried under reduced pressure and isolated as a yellow solid (63.1 mg, 0.0786 mmol, 73%).

C₄₇**H**₄₁**F**₃**N**₂**O**₅**S. MW**: 802.91 g/mol. **MP** = 133 °C (decomp.). $[\alpha_D^{20}] = 46.6$ (c = 0.19 g/dl, CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃): $\delta = 12.75$ (*b*, 1H, ArO*H*), 8.11 (*s*, 1H, C*H*N), 8.09 (*d*, 1H, *J* = 9.8 Hz, Ar*H*), 7.96-7.89 (*m*, 2H, Ar*H*), 7.86 (*d*, 1H, *J* = 8.0 Hz, Ar*H*), 7.69 (*d*, 1H, *J* = 9.0 Hz, Ar*H*), 7.42-7.18 (*m*, 14H, Ar*H*), 7.16-7.08 (*m*, 3H, Ar*H*), 7.03 (*d*, 1H, *J* = 1.9 Hz, Ar*H*), 6.93 (*d*, 1H, *J* = 2.1 Hz, Ar*H*), 5.71 (*b*, 1H, ArO*H*), 5.37 (*d*, 1H, *J* = 12.8 Hz, ArCH*H*), 5.19 (*d*, 1H, *J* = 12.8 Hz, ArCH*H*), 5.07 (*d*, 1H, *J* = 4.6 Hz, CNCHAr), 4.64 (*d*, 1H, *J* = 4.6 Hz, ArC*H*NHTf), 1.00 (*s*, 9H, C(CH₃)₃). ¹⁹**F NMR (376 MHz, CDCl₃)**: $\delta = 77.4$. ¹³**C NMR (100 MHz, CDCl₃)**: $\delta = 168.6$, 155.5, 155.2, 151.4, 141.9, 138.2, 137.4, 134.3, 134.0, 131.2, 129.9, 129.7, 129.4, 129.4, 129.0, 128.8, 128.6, 128.5, 128.3, 128.3, 127.6, 127.6, 127.4, 127.0, 126.6, 125.1, 125.1, 124.4, 124.4, 123.4, 119.6 (*q*, *J* = 303.2 Hz, CF₃), 117.8, 117.0, 116.0, 115.5, 115.1, 75.4, 65.5, 64.8, 34.0, 31.2. **IR (solid)**: $\tilde{\nu} = 3529$, 3313, 3063, 2962, 1623, 1597, 1457, 1378, 1265, 1228, 1201, 1145, 1055, 734, 700 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₄₇H₄₁F₃N₂O₅S]⁺ 803.2761, measured 803.2750. 3-(5-(*tert*-Butyl)-3-((*E*)-(((1*R*,2*R*)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2hydroxybenzyl)-1-(2'-hydroxy-[1,1'-biphenyl]-2-yl)-1H-imidazol-3-ium chloride (L7)

L7

Imine L7 was prepared according to GP3, using aldehyde 26 (42.58 mg, 0.0893 mmol, 1.0 equiv), amine 9a (30.77 mg, 0.0893 mmol, 1.0 equiv) and anhydrous CH₂Cl₂ (4 mL). The formed yellow solid was dissolved by addition of methanol (1 mL) and the resulting solution was the filtered over a small pad of celite[®]. After removal of the solvent, the received solid was dissolved in chloroform (0.5 mL), overlaid with diethylether (3 mL) and the mixture cooled to -20 °C overnight. The crystalline product L7 was separated, dried under reduced pressure and isolated as a yellow solid (34.6 mg, 0.0438 mmol, 67%).

C₄₂**H**₄₀**ClF**₃**N**₄**O**₄**S. MW**: 789.31 g/mol. **MP** = 235 °C (decomp.). [α_D^{20}] = ...40.2 (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR (400 MHz, MeOD)**: δ = 8.93 (s, 1H, NCHN), 8.65 (s, 1H, CHN), 7.71-7.55 (m, 6H, ArH), 7.53-7.47 (m, 2H, ArH and NHCCHN), 7.25-7.13 (m, 10H, ArH), 7.09 (d, 1H, *J* = 7.3 Hz, ArH), 7.04-6.98 (m, 1H, ArH), 6.67 (b, 1H, NHCCHN), 6.61 (d, 1H, *J* = 8.3 Hz, ArH), 5.42 (s, 2H, ArCH₂), 5.00 (d, 1H, *J* = 9.7 Hz, CNCHAr), 4.70 (d, 1H, *J* = 9.7 Hz, ArCHNHTf), 1.36 (s, 9H, C(CH₃)₃).¹⁹**F NMR (376 MHz, CDCl**₃): δ = 79.8. ¹³**C NMR (100 MHz, CDCl**₃): δ = 168.4, 158.3, 155.3, 143.5, 140.5, 139.4, 138.0, 136.6, 135.4, 133.4, 132.5, 132.0, 131.8, 131.7, 131.3, 130.1, 129.6, 129.4, 129.1, 129.0, 128.7, 126.6, 125.0, 124.9, 124.6, 123.1, 123.0, 121.6, 121.1, 120.9 (q, *J* = 320.6 Hz, *C*F₃), 120.1, 116.3, 79.7, 66.5, 49.8, 35.0, 31.8. **IR (solid)**: $\tilde{\nu}$ = 2966, 1631, 1602, 1444, 1363, 1224, 1191, 1146, 1047, 957, 760, 729 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₄₂H₄₀F₃N₄O₄S]⁺ 753.2717, measured 753.2744.

3-(5-(*tert*-Butyl)-3-((*E*)-(((1*R*,2*R*)-1,2-diphenyl-2-((trifluoromethyl)sulfonamido)ethyl)imino)methyl)-2hydroxybenzyl)-1-(2-hydroxyphenyl)-1H-imidazol-3-ium chloride (L8)

L8

Imine L8 was prepared according to GP3, using aldehyde 27 (45.00 mg, 0.116 mmol, 1.0 equiv), amine 9a (40.05 mg, 0.116 mmol, 1.0 equiv) and anhydrous CH₂Cl₂ (4 mL). After removing the solvent, the received solid was dissolved in chloroform (1 mL), overlaid with diethylether (10 mL) and cooled to -20 °C overnight. The precipitated solid was separated, dried under reduced pressure and the product L8 was isolated as a yellow solid (52.5 mg, 0.0736 mmol, 63%).

C₃₆**H**₃₆**ClF**₃**N**₄**O**₄**S. MW**: 713.21 g/mol. **MP** = 186 °C (decomp.). $[\alpha_D^{20}] = 123.0$ (c = 0.21 g/dl, CH₂Cl₂). ¹**H NMR (700 MHz, CDCl**₃): δ = 14.51 (*br*, 1H, ArO*H*), 9.25 (*s*, 1H, NC*H*N), 8.61 (*s*, 1H, C*H*N), 7.62 (*s*, 1H, Ar*H*), 7.57 (*s*, 1H, Ar*H*), 7.47 (*d*, 1H, *J* = 6.5 Hz, Ar*H*), 7.42-7.38 (*m*, 2H, Ar*H*), 7.17-7.07 (*m*, 10H, Ar*H*), 7.02 (*d*, 1H, *J* = 6.8 Hz, NHCCHN), 6.72 (*d*, 1H, *J* = 7.1 Hz, NHCC*H*N), 5.52 (*d*, 1H, *J* = 13.3 Hz, ArCH*H*), 5.25 (*d*, 1H, *J* = 10.1 Hz, CNC*H*Ar), 5.20 (*d*, 1H, *J* = 13.3 Hz, ArCH*H*), 5.32 (*d*, 1H, *J* = 10.1 Hz, ArC*H*NHTf), 1.11 (*s*, 9H, C(C*H*₃)₃). ¹⁹**F NMR (376 MHz, CDCl**₃): δ = 78.0. ¹³**C NMR (176 MHz, CDCl**₃): δ = 167.7, 158.1, 150.4, 141.9, 139.0, 138.4, 036.2, 131.5, 131.1, 130.8, 128.7, 128.5, 128.3, 128.2, 128.0, 127.8, 123.5, 122.3, 122.0, 121.8, 120.4, 119.9, 119.6 (*q*, *J* = 321.7 Hz, *C*F₃), 119.0, 118.9, 75.2, 65.8, 49.5, 34.1, 31.3.**IR (Solid)**: $\tilde{\nu}$ = 3148, 3032, 2961, 2869, 2696, 1630, 1601, 1465, 1370, 1226, 1191, 1147, 1049, 909, 756, 731, 699, 598 cm⁻¹, **HRMS (ESI)** *m/z*: calculated [C₃₆H₃₆F₃N₄O₄S]⁺ 677.2404, measured 677.2431.

Synthesis of the Complexes

Cu(II)-Phenoxyimine-Complex (S,S)(R) (C1b-Cu)

Complex **C1b-Cu** was prepared according to **GP4**, using ligand **L1b** (281.2 mg,0.316 mmol, 1.0 equiv) and copper(II) acetylacetonate (82.8 mg, 0.316 mmol, 1.0 equiv) and anhydrous acetonitrile (20 mL). The complex **C1b-Cu** was isolated as a green solid (299.4 mg, 0.309 mmol, 98%).

 $C_{50}H_{44}ClCuF_3N_4O_5S.$ MW: 968.98 g/mol. MP = 228 °C (decomp.). $[\alpha_D^{20}] = -79.7$ (c = 0.21 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu}$ = 3393, 3139, 3058, 3025, 2952, 2865, 1623, 1541, 1451, 1434, 1318, 1272, 1173, 1094, 1071, 814, 748, 700, 627 cm⁻¹. HRMS (ESI) *m/z*: calculated $[C_{50}H_{42}CuF_3N_4O_4S]^+$ 914.2169, measured 914.2167. Elemental Analysis calculated for $[C_{50}H_{42}ClCuF_3N_4O_4S \times 1H_2O]$: C 61.98, H 4.58, N 5.78, found: C 61.88, H 4.65, N 5.59.

Activated Cu(II)-Phenoxyimine-Complex (S,S)(R) (C1b-Cu*)

The deprotonation of the complex **C1b-Cu** (40.0 mg, 0.0413 mmol, 1.0 equiv) was performed according to **GP5.** The complex **C1b-Cu*** was isolated as a red brown solid (38.7 mg, 0.414 mmol, >99%).

 $C_{50}H_{43}CuF_{3}N_{4}O_{5}S.$ MW: 932.52 g/mol. MP = 201 °C (decomp.). $[\alpha_{D}^{20}] = -867.4$ (c = 0.16 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu}$ = 3138, 3057, 3026, 2962, 2864, 1624, 1591, 1542, 1450, 1438, 1367, 1346, 1319, 1260, 1175, 1093, 1060, 1023, 798, 747, 700 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₅₀H₄₂CuF₃N₄O₄S]⁺ 914.2169, measured 914.2157. Elemental Analysis calculated for [C₅₀H₄₂CuF₃N₄O₄S x 1H₂O x 1THF]: C 64.58, H 5.12, N 5.58, found: C 64.55, H 5.11, N 5.30.

Cu(II)-Phenoxyimine-Complex (R,R)(R) (C1a-Cu)

C1a-Cu

Complex **C1a-Cu** was prepared according to **GP4**, using ligand **L1a** (18.66 mg, 0.0210 mmol, 1.0 equiv) and copper(II) acetylacetonate (5.49 mg, 0.0210 mmol, 1.0 equiv) and anhydrous acetonitrile (3 mL). The complex **C1a-Cu** was isolated as a green solid (14.8 mg, 0.0153 mmol, 73%).

C₅₀**H**₄₄**ClCuF**₃**N**₄**O**₅**S. MW**: 968.98 g/mol. **MP** = 225 °C (decomp.). $[\alpha_D^{20}] = 629.2$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR**: paramagnetic species. ¹³**C NMR**: paramagnetic species. **IR (solid)**: $\tilde{\nu}$ = 3060, 2961, 1625, 1543, 1451, 1434, 1320, 1274, 1211, 1186, 1095, 1073, 909, 731, 702 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₅₀H₄₂CuF₃N₄O₄S]⁺ 914.2169, measured 914.2170. **Elemental Analysis** calculated for [C₅₀H₄₂CuF₃N₄O₄S x 1H₂O]: C 61.98, H 4.58, N 5.78, found: C 61.69, H 4.55, N 5.77.

Ni(II)-Phenoxyimine-Complex (S,S)(R) (C1b-Ni)

C1b-Ni

Complex **C1b-Ni** was prepared according to **GP4**, using ligand **L1b** (44.30 mg, 0.0498 mmol, 1.0 equiv) and nickel(II) acetylacetonate (12.79 mg, 0.0498 mmol, 1.0 equiv) and anhydrous acetonitrile (4 mL). The complex **C1b-Ni** was isolated as a brown solid (44.1 mg, 0.0457 mmol, 92%).

C₅₀**H**₄₄**ClF**₃**N**₄**NiO**₅**S. MW**: 964.12 g/mol. **MP** = 235 °C (decomp.). $[\alpha_D^{20}] = -203.8$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR**: paramagnetic species. ¹³**C NMR**: paramagnetic species. **IR (solid)**: $\tilde{\nu}$ = 3142, 3056, 3025, 2955, 1622, 1600, 1544, 1510, 1451, 1434, 1323, 1274, 1210, 1180, 1095, 1067, 1002, 957, 815, 749, 699 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₅₀H₄₂NiF₃N₄O₄S]⁺ 909.2227, measured 909.2220. **Elemental Analysis** calculated for [C₅₀H₄₂ClNiF₃N₄O₄S x 1H₂O]: C 62.29, H 4.60, N 5.81, found: C 61.90, H 4.67, N 5.47.

Ni(II)-Phenoxyimine-Complex (R,R)(R) (C1a-Ni)

Complex **C1a-Ni** was prepared according to **GP4**, using ligand **L1a** (25.92 mg, 0.029 mmol, 1.0 equiv) and nickel(II) acetylacetonate (7.49 mg, 0.029 mmol, 1.0 equiv) and anhydrous acetonitrile (3 mL). The complex **C1a-Ni** was isolated as a brown solid (26.6 mg, 0.0276 mmol, 95%).

 $C_{50}H_{44}ClF_{3}N_{4}NiO_{5}S.$ MW: 964.12 g/mol. MP = 234 °C (decomp.). $[\alpha_{D}^{20}] = 53.7$ (c = 0.15 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu}$ = 3361, 3060, 2960, 1622, 1603, 1545, 1510, 1451, 1435, 1323, 1275, 1210, 1184, 1147, 910, 732 cm⁻¹. HRMS (ESI) *m/z*: calculated $[C_{50}H_{42}NiF_{3}N_{4}O_{4}S]^{+}$ 909.2227, measured 909.2244.

Control Systems

Cu(II)-Phenoxyimine-Complex (R,R) (C2)

Complex **C2** was prepared according to **GP4**, using ligand **L2** (19.5 mg, 0.0348 mmol, 1.0 equiv) and copper(II) acetylacetonate (9.56 mg, 0.037 mmol, 1.05 equiv) and anhydrous acetonitrile (2 mL). The complex **C2** was isolated as a green solid (19.1 mg, 0.0298 mmol, 85%).

 $C_{30}H_{35}CuF_{3}N_{2}O_{4}S.$ MW: 640.22 g/mol. MP = 120 °C (decomp.). $[\alpha_{D}^{20}] = 19.7$ (c = 0.15 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu} = 2955$, 1617, 1576, 1526, 1450, 1429, 1387, 1360, 1319, 1172, 1146, 1070, 1009, 939, 778, 698 cm⁻¹. HRMS (ESI) *m/z*: calculated $[C_{30}H_{33}CuF_{3}N_{2}NaO_{3}S]^{+}$ 644.1352, measured 644.1347.

Cu(II)-Phenoxyimine-Complex (R,R) (C3)

Complex **C3** was prepared according to **GP4**, using ligand **L3** (16.45 mg, 0.0259 mmol, 1.0 equiv) and copper(II) acetylacetonate (7.12 mg, 0.0272 mmol, 1.05 equiv) and anhydrous acetonitrile (2 mL). The complex **C3** was isolated as a green solid (15.2 mg, 0,0212 mmol, 82%).

 $C_{31}H_{34}ClCuF_{3}N_{4}O_{4}S.$ MW: 714.69 g/mol. MP = 168 °C (decomp.). $[\alpha_{D}^{20}] = 603.8$ (c = 0.15 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu} = 2955$, 1625, 1544, 1451, 1393, 1321, 1212, 1180, 1073, 996, 942, 766, 702 cm⁻¹. HRMS (ESI) *m/z*: calculated $[C_{31}H_{32}CuF_{3}N_{4}O_{3}S]^{+}$ 660.1438, measured 660.1427. Elemental Analysis calculated for $[C_{31}H_{32}ClCuF_{3}N_{4}O3S \times 1H_{2}O]$: C 52.09, H 4.79, N 7.84, found: C 51.68, H 4.72, N 7.45.

Cu(II)-Phenoxyimine-Complex (R,R) (C4)

Complex **C4** was prepared according to **GP4**, using ligand **L4** (16.4 mg, 0.0247 mmol, 1.0 equiv) and copper(II) acetylacetonate (6.78 mg, 0.0259 mmol, 1.05 equiv) and anhydrous acetonitrile (2 mL). The complex **C4** was isolated as a green solid (12.1 mg, 0.0163 mmol, 66%).

C₃₂**H**₃₆**ClCuF**₃**N**₄**O**₅**S. MW**: 744.71 g/mol. **MP** = 180 °C (decomp.). $[\alpha_D^{20}] = 399.4$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR**: paramagnetic species. ¹³**C NMR**: paramagnetic species. **IR (solid)**: $\tilde{\nu} = 3423$, 3062, 2959, 1625, 1545, 1451, 1320, 1211, 1176, 1072, 996, 766, 701 cm⁻¹. **HRMS (ESI)** *m/z*: calculated $[C_{32}H_{34}CuF_{3}N_4O_4S]^+$ 690.1543, measured 690.1556. **Elemental Analysis** calculated for $[C_{32}H_{34}ClCuF_{3}N_4O_4S \times 1H_2O]$: C 51.61, H 4.87, N 7.52, found: C 51.73, H 4.84, N 7.38.

Cu(II)-Phenoxyimine-Complex (R,R) (C5)

Complex **C5** was prepared according to **GP4**, using ligand **L5** (15.8 mg, 0.0232 mmol, 1.0 equiv) and copper(II) acetylacetonate (6.38 mg, 0.02 mmol, 1.0 equiv) and anhydrous acetonitrile (2 mL). The complex **C5** was isolated as a green solid (15.7 mg, 0.0206 mmol, 89%).

 $C_{33}H_{38}ClCuF_{3}N_{4}O_{5}S.$ MW: 758.74 g/mol. MP = 160 °C (decomp.). $[\alpha_{D}^{20}] = 586.8$ (c = 0.15 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu} = 3387$, 2962, 1626, 1544, 1451, 1395, 1366, 1320, 1212, 1186, 1073, 733, 702 cm⁻¹. **HRMS (ESI)** *m*/*z*: calculated [C₃₃H₃₆CuF₃N₄O₄S]⁺ 704.1700, measured 704.1733.

Cu(II)-Phenoxyimine-Complex (R,R)(R) (C6)

Complex **C6** was prepared according to **GP4**, using ligand **L6** (15.91 mg, 0.0198 mmol, 1.0 equiv) and copper(II) acetylacetonate (5.19 mg, 0.0198 mmol, 1.0 equiv) and anhydrous acetonitrile (2 mL). The crude product was recrystallized in the freezer by dissolving in CH_2Cl_2 (0.2 mL) and overlaying with *n*-hexane (5 mL). The complex **C6** was isolated as a green solid (8.1 mg, 0.00918 mmol, 46%).

 $C_{47}H_{41}CuF_{3}N_{2}O_{6}S.$ MW: 882.45 g/mol. MP = 200 °C (decomp.). $[\alpha_{D}^{20}] = 53.1$ (c = 0.15 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu}$ = 3405, 3060, 2961, 1622, 1592, 1545, 1507, 1438, 1317, 1262, 1210, 1178, 1146, 1071, 1013, 908, 811, 731, 699 cm⁻¹. HRMS (ESI) m/z: calculated $[C_{47}H_{39}CuF_{3}N_{2}NaO_{5}S]^{+}$ 886.1720, measured 886.1699.

CCDC 1872223 contains the supplementary crystallographic data for compound **C6**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Cu(II)-Phenoxyimine-Complex (R,R) (C7)

Complex **C7** was prepared according to **GP4**, using ligand **L7** (24.9 mg, 0.0315 mmol, 1.0 equiv) and copper(II) acetylacetonate (8.26 mg, 0.0315 mmol, 1.0 equiv) and anhydrous acetonitrile (2 mL). The complex **C7** is isolated as a green solid (23.2 mg, 0.0267 mmol, 85%).

 $C_{42}H_{40}ClCuF_{3}N_{4}O_{5}S.$ MW: 868.85 g/mol. MP = 112 °C (decomp.). $[\alpha_{D}^{20}] = 67.2$ (c = 0.15 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu}$ = 3062, 2960, 2925, 2854, 2251, 1655, 1625, 1547, 1489, 1451, 1403, 1318, 1273, 1187, 1144, 1072, 908, 761, 729, 699 cm⁻¹. HRMS (ESI) m/z: calculated $[C_{42}H_{38}CuF_{3}N_{2}O_{4}S]^{+}$ 814.1856, measured 814.1866.

Cu(II)-Phenoxyimine-Complex (R,R) (C8)

Complex **C8** was prepared according to **GP4**, using ligand **L8** (37.5 mg, 0.0526 mmol, 1.0 equiv) and copper(II) acetylacetonate (13.8 mg, 0.0526 mmol, 1.0 equiv) and anhydrous acetonitrile (3 mL). The complex **C8** is isolated as a green solid (39.0 mg, 0.0492 mmol, 93%).

 $C_{36}H_{36}ClCuF_{3}N_{4}O_{5}S.$ MW: 792.76 g/mol. MP = 199 °C (decomp.). $[\alpha_{D}^{20}] = 126.9$ (c = 0.15 g/dl, CH₂Cl₂). ¹H NMR: paramagnetic species. ¹³C NMR: paramagnetic species. IR (solid): $\tilde{\nu} = 3061, 2961, 1724, 1625, 1547,$

1452, 1366, 1318, 1275, 1212, 1185, 910, 765, 732, 702 cm⁻¹. **HRMS (ESI)** m/z: calculated [C₃₆H₃₄CuF₃N₄O₄S]⁺ 738.1543, measured 738.1525. **Elemental Analysis** calculated for [C₃₆H₃₄ClCuF₃N₄O₄S x 2H₂O]: C 53.33, H 4.72, N 6.91, found: C 53.49, H 4.66, N 6.66.

Catalytic Products

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3aA)

The product **3aA** was synthesized as described in **GP6-standard**. **3aA** was isolated as a white solid (60.8 mg, 0.199 mmol, 99%, $dr_{(S,S+R,R):(R,S+S,R)} = 94:6$, $ee_{(S,S)} = 99\%$). Diastereomerically pure substance **3aA** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 22.2$ min, $t_{(R,S)} = 15.9$ min.

C₁₆**H**₁₉**NO**₅. **MW**: 305.33 g/mol. **MP** = 86-87 °C. $[\alpha_D^{20}] = 13,7$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 7.33-7.27$ (*m*, 3H, Ar*H*), 7.21-7.17 (*m*, 2H, Ar*H*), 5.29 (*dd*, 1H, *J* = 13.3, 11.3 Hz, CH*H*NO₂), 4.83 (*dd*, 1H, *J* = 13.3, 3.5 Hz, C*H*HNO₂), 4.29-4.15 (*m*, 3H, OCH₂CH₃ and C*H*Ph), 2.46-2.38 (*m*, 1H, C*H*_{cyclopentane}), 2.35-2.28 (*m*, 1H, C*H*_{cyclopentane}), 2.03-1.92 (*m*, 2H, C*H*_{cyclopentane}), 1.86-1.75 (*m*, 1H, C*H*_{cyclopentane}), 1.47-1.37 (*m*, 1H, C*H*_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³C **NMR (125 MHz, CDCl₃)**: $\delta = 215.7, 171.2, 135.7, 129.3, 129.2, 128.6, 77.1, 62.41, 62.37, 47.4, 39.7, 33.7, 19.7, 14.2.$ **IR (solid)** $: <math>\tilde{\nu} = 2980, 1726, 1554, 1378, 1229, 1149, 1229, 1111, 704 cm⁻¹.$ **HRMS (ESI)***m/z*: calculated [C₁₆H₁₉NNaO₅]⁺ 328.1155, measured 328.1158.

CCDC 1872231 contains the supplementary crystallographic data for compound **3aA**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-1-(4-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aB)

The product **3aB** was synthesized as described in **GP6-standard**. **3aB** was isolated as a white solid (70.3 mg, 0.183 mmol, 92%, $dr_{(S,S+R,R):(R,S+S,R)} = 94:6$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3aB** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 32.9$ min, $t_{(R,S)} = 20.5$ min.

C₁₆**H**₁₈**BrNO**₅. **MW**: 384.23 g/mol. **MP** = 115-116 °C. $[\alpha_D^{20}] = 38.5$ (c = 0.14 g/dl, CH₂Cl₂). ¹**H NMR** (700 MHz, CDCl₃): $\delta = 7.44$ (d, 2H, J = 8.5 Hz, Ar*H*), 7.08 (d, 2H, J = 8.5 Hz, Ar*H*), 5.25 (dd, 1H, J = 13.6, 11.2 Hz, CH*H*NO₂), 4.83 (dd, 1H, J = 13.6, 3.5 Hz, C*H*HNO₂), 4.28-4.15 (*m*, 3H, OCH₂CH₃ and CHAr), 2.47-2.41 (*m*, 1H, CH_{cyclopentane}), 2.33-2.29 (*m*, 1H, CH_{cyclopentane}), 2.02-1.94 (*m*, 1H, CH_{cyclopentane}), 1.93-1.80 (*m*, 2H, CH_{cyclopentane}), 1.56-1.49 (*m*, 1H, CH_{cyclopentane}), 1.27 (*t*, 3H, J = 7.2 Hz, OCH₂CH₃). ¹³C NMR (176 MHz, CDCl₃): $\delta = 215.3$, 170.9, 134.8, 132.3, 131.0, 122.8, 76.8, 62.6, 62.3, 46.8, 39.6, 33.6, 19.7, 14.2. IR (solid): $\tilde{\nu} = 2978$, 1725, 1533, 1490, 1378, 1228, 1149, 1115, 1076, 1011, 827 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₆H₁₈BrNNaO₅]⁺ 406.0261, measured 406.0257.

CCDC 1872225 contains the supplementary crystallographic data for compound **3aB**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

S44

Ethyl (S)-1-((S)-1-(3-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aC)

The product **3aC** was synthesized as described in **GP6-standard**. **3aC** was isolated as a white solid (74.1 mg, 0.193 mmol, 96%, $dr_{(S,S+R,R):(R,S+S,R)} = 96:4$, $ee_{(S,S)} = 99\%$). Diastereometically pure substance **3aC** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel AS-H, *n*-hexane/*i*PrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 57.8$ min, $t_{(R,S)} = 21.8$ min.

C₁₆**H**₁₈**BrNO**₅. **MW**: 384.23 g/mol. **MP** = 100 °C. $[\alpha_D^{20}] = 21.5$ (c = 0.19 g/dl, CH₂Cl₂). ¹**H NMR (700 MHz, CDCl₃)**: δ = 7.43 (d, 1H, J = 7.9 Hz, Ar*H*), 7.35 (s, 1H, Ar*H*), 7.19 (t, 1H, J = 7.9 Hz, Ar*H*), 7.13 (d, 1H, J = 7.9 Hz, Ar*H*), 5.23 (dd, 1H, J = 13.7, 11.2 Hz, CHHNO₂), 4.79 (dd, 1H, J = 13.7, 3.4 Hz, CHHNO₂), 4.27-4.15 (m, 3H, OCH₂CH₃ and CHAr), 2.48-2.42 (m, 1H, CH_{cyclopentane}), 2.36-2.31 (m, 1H, CH_{cyclopentane}), 2.04-1.98 (m, 1H, CH_{cyclopentane}), 1.94-1.81 (m, 2H, CH_{cyclopentane}), 1.57-1.51 (m, 1H, CH_{cyclopentane}), 1.27 (t, 3H, J = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (176 MHz, CDCl₃)**: δ = 215.1, 170.7, 138.2, 132.6, 131.8, 130.7, 127.7, 123.2, 76.8, 62.6, 62.5, 46.8, 39.5, 33.4, 19.7, 14.2. **IR (solid)**: $\tilde{\nu}$ = 2980, 1723, 1551, 1476, 1432, 1377, 1317, 1226, 1147, 1111, 1076, 1014, 998, 822, 794, 699 cm⁻¹. **HRMS (ESI)** *m*/*z*: calculated [C₁₆H₁₈BrNNaO₅]⁺ 406.0261, measured 406.0271.

CCDC 1872232 contains the supplementary crystallographic data for compound **3aC**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((R)-1-(2-Bromophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aD)

The product **3aD** was synthesized as described in **GP6-standard**. **3aD** was isolated as a white solid (64.0 mg, 0.167 mmol, 83%, $dr_{(S,R+R,S):(R,R+S,S)} = 90:10$, $ee_{(S,R)} = 99\%$). Diastereometrically pure substance **3aD** was obtained by trituration of the mixture of diastereometrical with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,R)} = 23.6$ min, $t_{(R,R)} = 16.3$ min.

C1₁₆**H**₁₈**BrNO**₅. **MW**: 384.23 g/mol. **MP** = 84-85 °C. $[\alpha_D^{20}] = 54.1$ (c = 0.16 g/dl, CH₂Cl₂). ¹**H NMR (700 MHz, CDCl₃)**: δ = 7.61 (*dd*, 1H, *J* = 8.0, 1.1 Hz, Ar*H*), 7.27 (*t*, 1H, *J* = 8.0 Hz, Ar*H*), 7.21 (*dd*, 1H, *J* = 7.8, 1.6 Hz, Ar*H*), 7.14 (*td*, 1H, *J* = 7.8, 1.6 Hz, Ar*H*), 5.36 (*dd*, 1H, *J* = 14.0, 10.8 Hz, CH*H*NO₂), 5.01 (*dd*, 1H, *J* = 10.7, 3.3 Hz, CHAr), 4.90 (*dd*, 1H, *J* = 13.9, 3.3 Hz, CHHNO₂), 4.33-4.20 (*m*, 2H, OCH₂CH₃), 2.46-2.39 (*m*, 2H, CH_{cyclopentane}), 1.97-1.81 (*m*, 3H, CH_{cyclopentane}), 1.57-1.51 (*m*, 1H, CH_{cyclopentane}), 1.29 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR** (**125 MHz, CDCl₃)**: δ = 216.0, 171.2, 135.7, 133.9, 129.9, 128.4, 128.3, 128.0, 76.8, 62.5, 44.5, 39.7, 33.4, 20.0, 14.2. **IR (solid)**: $\tilde{\nu}$ = 2979, 1724, 1552, 147, 1434, 1377, 1274, 1228, 1147, 1025, 859, 757, 660 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₁₈BrNNaO₅]⁺ 406.0261, measured 406.0268.

Ethyl (S)-1-((S)-1-(4-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aE)

The product **3aE** was synthesized as described in **GP6-standard**. **3aE** was isolated as a white solid (66.8 mg, 0.197 mmol, 98%, $dr_{(S,S+R,R):(R,S+S,R)} = 95:5$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3aE** was

obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻ ¹, detection at 214 nm, t(s,s) = 26.0 min, t(R,s) = 16.4 min.

C₁₆**H**₁₈**CINO**₅. **MW**: 339.77 g/mol. **MP** = 124-125 °C. $[\alpha_D^{20}] = 32.8$ (c = 0.15 g/dl, CH₂Cl₂ CH₂Cl₂). ¹**H NMR** (**300 MHz, CDCl**₃): δ = 7.32-7.26 (*m*, 2H, Ar*H*), 7.17-7.11 (*m*, 2H, Ar*H*), 5.26 (*dd*, 1H, *J* = 13.6, 11.1 Hz, CH*H*NO₂), 4.83 (*dd*, 1H, *J* = 13.6, 3.4 Hz, CHHNO₂), 4.32-4.12 (*m*, 3H, OCH₂CH₃ and CHAr), 2.51-2.25 (*m*, 2H, CH_{cyclopentane}), 2.06-1.75 (*m*, 3H, CH_{cyclopentane}), 1.59-1.45 (*m*, 1H, CH_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.3 Hz, OCH₂CH₃). ¹³**C NMR** (176 MHz, CDCl₃): δ = 215.3, 170.9, 134.6, 134.2, 130.7, 129.4, 76.9, 62.5, 62.4, 46.7, 39.5, 33.5, 19.7, 14.2. **IR** (solid): $\tilde{\nu}$ = 2980, 1724, 1552, 1493, 1445, 1377, 1296, 1274, 1226, 1147, 1115, 1093, 1013, 910, 827, 730 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₁₈CINNaO₅]⁺ 362.0766, measured 362.0737.

CCDC 1872234 contains the supplementary crystallographic data for compound **3aE**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The product **3aF** was synthesized as described in **GP6-standard**. **3aF** was isolated as a white solid (65.1 mg, 0.192 mmol, 96%, $dr_{(S,S+R,R):(R,S+S,R)} = 97:3$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3aF** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 23.1$ min, $t_{(R,S)} = 16.7$ min.

C₁₆**H**₁₈**CINO**₅. **MW**: 339.77 g/mol. **MP** = 98-99 °C. $[\alpha_D^{20}] = 24.6$ (c = 0.31 g/dl, CH₂Cl₂), ¹**H NMR (300 MHz, CDCl₃)**: $\delta = 7.30-7.18$ (*m*, 3H, Ar*H*), 7.12-7.06 (m, 1H, Ar*H*), 5.24 (*dd*, 1H, *J* = 13.6, 11.0 Hz, CH*H*NO₂), 4.79 (*dd*, 1H, *J* = 13.6, 3.4 Hz, CHHNO₂), 4.32-4.12 (*m*, 3H, OCH₂CH₃ and CHAr), 2.52-2.26 (*m*, 2H, CH_{cyclopentane}),

2.09-1.76 (*m*, 3H, C*H*_{cyclopentane}), 1.61-1.47 (*m*, 1H, C*H*_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.2 Hz, OCH₂C*H*₃). ¹³C NMR (176 MHz, CDCl₃): δ = 215.1, 170.8, 137.9, 135.0, 130.4, 129.7, 128.9, 127.3, 76.8, 62.6, 62.4, 46.9, 39.5, 33.4, 19.7, 14.1. IR (solid): $\tilde{\nu}$ = 3068, 2980, 2896, 1723, 1596, 1552, 1477, 1435, 1377, 1317, 1225, 1147, 1111, 1014, 912, 838, 790, 699 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₆H₁₈ClNNaO₅]⁺ 362.0766, measured 362.0740.

CCDC 1872233 contains the supplementary crystallographic data for compound **3aF**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((R)-1-(2-Chlorophenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aG)

The product **3aG** was synthesized as described in **GP6-standard** within 72 h reaction time. **3aG** was isolated as a white solid (56.3 mg, 0.166 mmol, 83%, $dr_{(S,R+R,S):(R,R+S,S)} = 93:7$, $ee_{(S,R)} = 99\%$). Diastereometrically pure substance **3aG** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,R)} = 22.3$ min, $t_{(R,R)} = 15.1$ min.

C₁₆**H**₁₈**CINO**₅. **MW**: 339.77 g/mol. **MP** = 89-90 °C. $[\alpha_D^{20}] = 21.8$ (c = 0.23 g/dl, CH₂Cl₂), ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.46-7.38 (*m*, 1H, Ar*H*), 7.25-7.19 (*m*, 3H, Ar*H*), 5.37 (*dd*, 1H, *J* = 14.0, 10.9 Hz, CH*H*NO₂), 5.01 (*dd*, 1H, *J* = 10.9, 3.3 Hz, C*H*Ar), 4.90 (*dd*, 1H, *J* = 14.0, 3.3 Hz, C*H*HNO₂), 4.36-4.16 (*m*, 2H, OC*H*₂CH₃), 2.50-2.32 (*m*, 2H, C*H*_{cyclopentane}), 2.00-1.76 (*m*, 3H, C*H*_{cyclopentane}), 1.61-1.47 (*m*, 1H, C*H*_{cyclopentane}), 1.29 (*t*, 3H, *J* = 7.4 Hz, OCH₂CH₃). ¹³**C NMR (176 MHz, CDCl₃)**: δ = 215.9, 171.3, 136.7, 134.0, 130.5, 129.6, 128.3, 127.7, 76.6, 62.51, 62.50, 41.7, 39.6, 33.4, 19.9, 14.2. **IR (solid)**: $\tilde{\nu}$ = 2979, 2922, 1724, 1552, 1476, 1438, 1377, 1275, 1228, 1147, 1110, 1038, 1014, 859, 758 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₁₈CINNaO₅]⁺ 362.0766, measured 362.0788.

Ethyl (S)-1-((S)-2-Nitro-1-(4-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aH)

The product **3aH** was synthesized as described in **GP6-standard**. **3aH** was isolated as a white solid (69.5 mg, 0.198 mmol, 99%, $dr_{(S,S+R,R):(R,S+S,R)} = 94:6$, $ee_{(S,S)} = 96\%$). Diastereometrically pure substance **3aH** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 98.5$ min, $t_{(R,S)} = 57.8$ min.

C₁₆**H**₁₈**N**₂**O**₇. **MW**: 350.33 g/mol. **MP** = 124-125 C. $[\alpha_D^{20}] = 37.8$ (c = 0.18 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃**): δ = 8.23-8.14 (*m*, 2H, Ar*H*), 7.46-7.38 (*m*, 2H, Ar*H*), 5.32 (*dd*, 1H, *J* = 14.1, 11.9 Hz, CH*H*NO₂), 4.82 (*dd*, 1H, *J* = 14.1, 3.3 Hz, CHHNO₂), 4.38-4.14 (*m*, 3H, OCH₂CH₃ and CHAr), 2.57-2.31 (*m*, 2H, CH_{cyclopentane}), 2.08-1.78 (*m*, 3H, CH_{cyclopentane}), 1.67-1.52 (*m*, 1H, CH_{cyclopentane}), 1.28 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR** (**176 MHz, CDCl₃): δ** = 214.6, 170.4, 148.0, 143.4, 130.5, 124.2, 76.5, 62.8, 62.5, 46.8, 39.3, 33.4, 19.7, 14.2. **IR (solid)**: $\tilde{\nu}$ = 2980, 2259, 1724, 1605, 1554, 1522, 1447, 1377, 1347, 1318, 1227, 1148, 1111, 1014, 909, 857, 727, 700 cm⁻¹. **HRMS (EI)** *m/z*: calculated [C₁₆H₁₈N₂O₇]⁺ 350.1114, measured 350.1105. CCDC 1872227 contains the supplementary crystallographic data for compound **3aH**. These data can be

obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-2-Nitro-1-(3-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3al)

The product **3al** was synthesized as described in **GP6-standard**. **3al** was isolated as a colorless oil (70.1 mg, 0.199 mmol, 99%, $dr_{(S,S+R,R):(R,S+S,R)} = 97:3$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3al** was obtained by trituration of the mixture of diastereometrical normality for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 59.7$ min, $t_{(R,S)} = 45.2$ min.

C₁₆**H**₁₈**N**₂**O**₇. **MW**: 350.33 g/mol. [α_D^{20}] = 18.3 (c = 0.16 g/dl, CH₂Cl₂). ¹**H** NMR (300 MHz, CDCl₃): δ = 8.20-8.14 (*m*, 1H, Ar*H*), 8.11 (*t*, 1H, *J* = 1.9 Hz, Ar*H*), 7.60-7.49 (*m*, 2H, Ar*H*), 5.28 (*dd*, 1H, *J* = 14.0, 11.3 Hz, CH*H*NO₂), 4.80 (*dd*, 1H, *J* = 13.8, 3.3 Hz, C*H*HNO₂), 4.35 (*dd*, 1H, *J* = 11.2, 3.3 Hz, C*H*Ar), 4.30-4.13 (*m*, 2H, OCH₂CH₃), 2.57-2.34 (*m*, 2H, C*H*_{cyclopentane}), 2.11-1.81 (*m*, 3H, C*H*_{cyclopentane}), 1.72-1.56 (*m*, 1H, C*H*_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ = 214.2, 170.2, 148.6, 138.2, 135.1, 130.2, 124.5, 123.6, 76.5, 62.8, 62.7, 46.7, 39.0, 33.1, 19.6, 14.1. IR (solid): $\tilde{\nu}$ = 3091, 2980, 1723, 1553, 1529, 1467, 1446, 1378, 1349, 1317, 1279, 1228, 1149, 1108, 1015, 909, 859, 811, 737, 693 cm⁻¹. HRMS (EI) *m/z*: calculated [C₁₆H₁₈N₂O₇]⁺ 350.1114, measured 350.1107.

Ethyl (S)-1-((S)-2-Nitro-1-(2-nitrophenyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aJ)

The product **3aJ** was synthesized as described in **GP6-standard**. **3aJ** was isolated in diastereomerically pure form as a white solid (68.0 mg, 0.194 mmol, 97%, $dr_{(5,5+R,R):(R,S+S,R)} = 99:1$, $ee_{(5,5)} = 99\%$). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(5,5)} = 101.9$ min, $t_{(R,S)} = 37.4$ min. **C**₁₆**H**₁₈**N**₂**O**₇. **MW**: 350.33 g/mol. **MP** = 85-86 C. $[\alpha_D^{20}] = -135.3$ (c = 0.25 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.89-7.83 (*m*, 1H, Ar*H*), 7.60-7.52 (*m*, 1H, Ar*H*), 7.50-7.41 (*m*, 1H, Ar*H*), 5.37 (*dd*, 1H, *J* = 14.4, 10.8 Hz, CH*H*NO₂), 5.02 (*dd*, 1H, *J* = 10.9, 3.3 Hz, CHAr), 4.89 (*dd*, 1H, *J* = 14.4, 3.3 Hz, CHHNO₂), 4.35-4.14 (*m*, 2H, OCH₂CH₃), 2.60-2.42 (*m*, 2H, CH_{cyclopentane}), 2.16-1.72 (*m*, 4H, CH_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.0 Hz, OCH₂CH₃). ¹³**C NMR (125 MHz, CDCl₃)**: δ = 215.6, 170.8, 151.6, 133.3, 131.5, 129.3, 128.6, 125.4, 77.1, 62.7, 62.6, 40.0, 39.5, 34.2, 19.9, 14.1. **IR (solid)**: $\tilde{\nu}$ = 2982, 1725, 1609, 1554, 1527, 1447, 1377, 1356, 1318, 1276, 1229, 1148, 1014, 855, 788, 711 cm⁻¹. **HRMS (EI)** *m/z*: calculated [C₁₆H₁₈N₂O₇]⁺ 350.1114, measured 350.1103.

CCDC 1872224 contains the supplementary crystallographic data for compound **3aJ**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The product **3aK** was synthesized as described in **GP6-standard**. **3aK** was isolated as a white solid (59.1 mg, 0.185 mmol, 92%, $dr_{(S,S+R,R):(R,S+S,R)} = 93:7$, $ee_{(S,S)} = 99\%$). Diastereomerically pure substance **3aK** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel AS-H, *n*-hexane/*i*PrOH (95/5), 0.7 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 37.9$ min, $t_{(R,S)} = 17.0$ min.

C₁₇**H**₂₁**NO**₅. **MW**: 319.36 g/mol. **MP** = 107-108 °C. $[\alpha_D^{20}]$ = 43.1 (c = 0.21 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.15-7.02 (*m*, 4H, Ar*H*), 5.26 (*dd*, 1H, *J* = 13.5, 11.1 Hz, CH*H*NO₂), 4.81 (*dd*, 1H, *J* = 13.5, 3.7 Hz, C*H*HNO₂), 4.32-4.10 (*m*, 3H, C*H*Ar and OC*H*₂CH₃), 2.48-2.24 (*m*, 2H, C*H*_{cyclopentane}), 2.30 (*s*, 3H, ArC*H*₃), 2.06-1.90 (*m*, 2H, C*H*_{cyclopentane}), 1.89-1.72 (*m*, 1H, C*H*_{cyclopentane}), 1.51-1.36 (*m*, 1H, C*H*_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.1 Hz, OCH₂C*H*₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 215.8, 171.3, 138.4, 132.5, 129.8, 129.2, 77.2, 62.4, 62.3, 47.1, 39.7, 33.8, 21.2, 19.8, 14.2. **IR (solid)**: $\tilde{\nu}$ = 2980, 2924, 1724, 1552, 1516, 1446, 1378, 1275,

1226, 1147, 1120, 1107, 1019 822 cm⁻¹. **HRMS (EI)** *m/z*: calculated [C₁₇H₂₁NO₅]⁺ 319.1420, measured 319.1416.

CCDC 1872235 contains the supplementary crystallographic data for compound **3aK**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-2-Nitro-1-(m-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aL)

The product **3aL** was synthesized as described in **GP6-standard**. **3aL** was isolated as a colorless oil (62.0 mg, 0.194 mmol, 97%, $dr_{(S,S+R,R):(R,S+S,R)} = 96:4$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3aL** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 16.6$ min, $t_{(R,S)} = 12.7$ min.

C₁₇**H**₂₁**NO**₅. **MW**: 319.36 g/mol. [α_D^{20}] = 38.4 (c = 0.24 g/dl, CH₂Cl₂). ¹**H NMR (500 MHz, CDCl₃)**: δ = 7.18 (*t*, 1H, *J* = 7.8 Hz, Ar*H*), 7.08 (*d*, 1H, *J* = 7.8 Hz, Ar*H*), 6.99-6.95 (*m*, 2H, Ar*H*), 5.26 (*dd*, 1H, *J* = 13.6, 11.4 Hz, CH*H*NO₂), 4.80 (*dd*, 1H, *J* = 13.6, 3.8 Hz, C*H*HNO₂), 4.28-4.12 (*m*, 3H, C*H*Ar and OC*H*₂CH₃), 2.46-2.37 (*m*, 1H, C*H*_{cyclopentane}), 2.31 (*s*, 3H, ArC*H*₃), 2.33-2.26 (*m*, 1H, C*H*_{cyclopentane}), 2.03-1.93 (*m*, 2H, C*H*_{cyclopentane}), 1.48-1.39 (*m*, 1H, C*H*_{cyclopentae}), 1.27 (*t*, 3H, *J* = 7.1 Hz, OCH₂C*H*₃). ¹³**C NMR (125 MHz, CDCl₃)**: δ = 215.8, 171.3, 138.8, 135.6, 130.2, 129.3, 129.0, 126.1, 77.2, 62.4, 62.3, 47.4, 39.7, 33.7, 21.6, 19.8, 14.3. **IR (solid)**: $\tilde{\nu}$ = 2979, 1726, 1554, 1446, 1378, 1226, 1147, 1112, 1019, 708cm⁻¹. **HRMS (ESI)** *m*/*z*: calculated [C₁₇H₂₁NNaO₅]⁺ 342.1312, measured 342.1306.

Ethyl (S)-1-((S)-2-Nitro-1-(o-tolyl)ethyl)-2-oxocyclopentane-1-carboxylate (3aM)

The product **3aM** was synthesized as described in **GP6-standard**. **3aM** was isolated as a colorless oil (54.1 mg, 0.169 mmol, 85%, $dr_{(5,5+R,R):(R,S+S,R)} = 96:4$, $ee_{(5,5)} = 99\%$). Diastereometrically pure substance **3aM** was obtained by trituration of the mixture of diastereometrical normality of analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, $t_{(5,5)} = 17.6$ min, $t_{(R,S)} = 15.6$ min.

C₁₇**H**₂₁**NO**₅. **MW**: 319.36 g/mol. [α_D^{20}] = 60.1 (c = 0.24 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.20-7.05 (*m*, 4H, Ar*H*), 5.32 (*dd*, 1H, *J* = 13.8, 10.9 Hz, CH*H*NO₂), 4.87 (*dd*, 1H, *J* = 13.8, 3.6 Hz, C*H*HNO₂), 4.63 (*dd*, 1H, *J* = 10.9, 3.5 Hz, CHAr), 4.34-4.13 (*m*, 2H, OCH₂CH₃), 2.49-2.25 (*m*, 2H, CH_{cyclopentane}), 2.42 (*s*, 3H, ArCH₃), 2.02-1.74 (*m*, 3H, CH_{cyclopentane}), 1.66-1.55 (*m*, 1H, CH_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (100 MHz, CDCl₃)**: δ = 216.2, 171.6, 138.6, 134.7, 131.3, 128.2, 127.0, 126.4, 77.4, 62.6, 62.4, 41.3, 39.7, 33.0, 20.3, 20.0, 14.2. **IR (solid)**: $\tilde{\nu}$ = 2978, 1725, 1552, 1465, 1446, 1378, 1275, 1228, 1146, 1123, 1084, 1030, 1014, 751, 727cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₁NNaO₅]⁺ 342.1312, measured 342.1310.

Ethyl (S)-1-((S)-1-(4-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aN)

The product **3aN** was synthesized as described in **GP6-standard**. **3aN** was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated (60.4 mg, 0.192 mmol, 90%, $dr_{(S,S+R,R):(R,S+S,R)} = 93:7$, $ee_{(S,S)} = 99\%$). The *ee* values were determined by chiral column HPLC: Chiracel 2xOD-H in series, *n*-hexane/*i*PrOH (85/15), 0.3 mL min⁻¹, detection at 213 nm, $t_{(S,S)} = 102.4$ min, $t_{(R,S)} =$ 72.6 min. **C**₁₇**H**₂₁**NO**₆. **MW**: 335.36 g/mol. [α_D^{20}] = 46.5 (c = 0.12 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ =7.21-7.06 (*m*, 2H, Ar*H*), 6.84-6.77 (*m*, 2H, Ar*H*), 5.23 (*dd*, 1H, *J* = 13.2, 11.2 Hz, CH*H*NO₂), 4.79 (*dd*, 1H, *J* = 13.3, 3.6 Hz, C*H*HNO₂), 4.30-4.08 (*m*, 3H, OC*H*₂CH₃ and C*H*Ar), 3.76 (*s*, 3H, OC*H*₃), 2.47-2.23 (*m*, 2H, C*H*_{cyclopentane}), 2.05-1.71 (*m*, 3H, C*H*_{cyclopentane}), 1.51-1.37 (*m*, 1H, C*H*_{cyclopentane}), 1.25 (*t*, 3H, *J* = 7.2 Hz, OCH₂C*H*₃). ¹³**C NMR** (**75 MHz, CDCl**₃): δ = 215.8, 171.3, 159.6, 130.4, 127.3, 114.5, 77.2, 62.4, 62.3, 55.3, 46.8, 39.7, 33.7, 19.7, 14.1. **IR (solid)**: $\tilde{\nu}$ = 2961, 1726, 1612, 1554, 1515, 1349, 1253, 1230, 1182, 1148, 1120, 1033, 838, 732 cm⁻¹. **HRMS (EI)** *m/z*: calculated [C₁₇H₂₁N₁O₆]⁺ 335.1369, measured 335.1368.

Ethyl (S)-1-((S)-1-(3-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aO)

The product **3aO** was synthesized as described in **GP6-standard**. **3aO** was isolated as a colorless oil (63.8 mg, 0.190 mmol, 95%, $dr_{(s,s+R,R):(R,S+S,R)} = 96:4$, $ee_{(s,s)} = 99\%$). Diastereomerically pure substance **3aO** was obtained by trituration of the mixture of diastereomers with a solvent mixture of n-hexane/diethyleteher (10/1)for analytic purposes. The *ee* values were determined by chiral column HPLC: Chiracel AS-H, *n*-hexane/*i*PrOH (80/20), 1.0 mL min⁻¹, detection at 220 nm, $t_{(s,s)} = 133.3$ min, $t_{(R,S)} = 14.0$ min.

C₁₇**H**₂₁**NO**₆. **MW**: 335.36 g/mol. [α_D^{20}] = 33.1 (c = 0.28 g/dl, CH₂Cl₂). ¹**H NMR (500 MHz, CDCl₃)**: δ =7.21 (*t*, 1H, *J* = 7.9 Hz Ar*H*), 6.81 (*dd*, 1H, *J* = 8.2, 4.2 Hz Ar*H*), 6.76 (*d*, 1H, *J* = 7.8 Hz Ar*H*), 6.72 (*t*, 1H, *J* = 1.9 Hz Ar*H*), 5.26 (*dd*, 1H, *J* = 13.4, 11.0 Hz, CHHNO₂), 4.82 (*dd*, 1H, *J* = 13.5, 3.5 Hz, CHHNO₂), 4.29-4.13 (*m*, 3H, OCH₂CH₃ and CHAr), 3.77 (*s*, 3H, OCH₃), 2.47-2.37 (*m*, 1H, CH_{cyclopentane}), 2.34-2.26 (*m*, 1H, CH_{cyclopentane}), 2.06-1.94 (*m*, 2H, CH_{cyclopentane}), 1.87-1.77 (*m*, 1H, CH_{cyclopentane}), 1.51-1.42 (*m*, 1H, CH_{cyclopentane}), 1.27 (*t*, 3H, *J* = 7.0 Hz, OCH₂CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 215.7, 171.2, 160.0, 137.2, 130.2, 121.3, 115.5, 113.7, 77.1, 62.4, 62.3, 55.4, 47.4, 39.7, 33.8, 19.8, 14.2. IR (solid): $\tilde{\nu}$ = 2979, 1226, 1553, 1466, 1446, 1378, 1317, 1275, 1229, 1147, 1123, 1031, 1014, 751, 727 cm⁻¹. HRMS (ESI) *m*/*z*: calculated [C₁₇H₂₁NNaO₆]⁺ 358.1261, measured 358.1262.

Ethyl (S)-1-((S)-1-(2-Methoxyphenyl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aP)

The product **3aP** was synthesized as described in **GP6-standard** within 72 h reaction time. **3aP** was isolated as a white solid (52.9 mg, 0.158 mmol, 79%, $dr_{(S,S+R,R):(R,S+S,R)} = 95:5$, $ee_{(S,S)} = 99\%$). Diastereomerically pure substance **3aP** was obtained by trituration of the mixture of diastereomers with a solvent mixture of n-hexane/diethyleteher (10/1) for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (95/5), 0.5 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 45.0$ min, $t_{(R,S)} = 34.3$ min.

C₁₇**H**₂₁**NO**₆. **MW**: 335.36 g/mol. **MP** = 85-86 °C. $[\alpha_D^{20}] = 52.0$ (c = 0.27 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.26 (*dt*, 1H, *J* = 7.8, 1.6 Hz, Ar*H*), 7.13 (*dd*, 1H, *J* = 7.5, 1.6 Hz, Ar*H*), 6.93-6.84 (*m*, 2H, Ar*H*), 5.25 (*dd*, 1H, *J* = 13.4, 11.0 Hz, CH*H*NO₂), 4.91 (*dd*, 1H, *J* = 13.4, 3.6 Hz, C*H*HNO₂), 4.73 (*dd*, 1H, *J* = 11.0, 3.3 Hz, CHAr), 4.31-4.14 (*m*, 2H, OCH₂CH₃), 3.82 (*s*, 3H, OCH₃), 2.46-2.24 (*m*, 2H, CH_{cyclopentane}), 2.09-1.72 (*m*, 3H, CH_{cyclopentane}), 1.49-1.34 (*m*, 1H, CH_{cyclopentane}), 1.26 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 215.4, 171.8, 158.0, 129.7, 124.3, 121.2, 111.3, 76.5, 62.2, 61.6, 55.3, 39.4, 33.7, 20.0, 14.1. **IR (solid)**: $\tilde{\nu}$ = 2967, 2841, 1724, 1551, 1494, 1463, 1440, 1378, 1289, 1275, 1246, 1226, 1147, 1123, 1025, 757 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₁NNaO₆]⁺ 358.1261, measured 358.1272.

Ethyl (S)-1-((S)-1-(Benzo[d][1,3]dioxol-5-yl)-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aQ)

The product **3aQ** was synthesized as described in **GP6-standard** within 72 h reaction time. **3aQ** was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated (65.3 mg, 0.187 mmol, 94%, $dr_{(S,S+R,R):(R,S+S,R)} = 95:5$, $ee_{(S,S)} = 99\%$). The *ee* values were determined by chiral column

HPLC: Chiracel AS-H, *n*-hexane/*i*PrOH (70/30), 1.0 mL min⁻¹, detection at 214 nm, *t*(s,s) = 73.3 min, *t*(R,S) = 19.3 min.

C₁₇**H**₁₉**NO**₇. **MW**: 349.34 g/mol. [α_D^{20}] = 39.7 (c = 0.19 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 6.79-6.61 (*m*, 3H, Ar*H*), 5.93 (*s*, 2H, OCH₂O), 5.20 (*dd*, 1H, *J* = 13.3, 11.3 Hz, CH*H*NO₂), 4.76 (*dd*, 1H, *J* = 13.3, 3.5 Hz, C*H*HNO₂), 4.30-4.06 (*m*, 3H, OCH₂CH₃ and C*H*Ar), 2.49-2.24 (*m*, 2H, C*H*_{cyclopentane}), 2.09-1.74 (*m*, 3H, C*H*_{cyclopentane}), 1.60-1.46 (*m*, 1H, C*H*_{cyclopentane}), 1.26 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 215.7, 171.1, 148.2, 147.7, 129.1, 123.0, 109.2, 108.7, 101.4, 77.2, 62.5, 62.3, 47.2, 39.6, 33.6, 19.7, 14.1. **IR (solid)**: $\tilde{\nu}$ = 2979, 2898, 2780, 1722, 1552, 1504, 1489, 1445, 1377, 1244, 1225, 1150, 1107, 1036, 933, 905, 816, 730 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₇H₁₉NNaO₇]⁺ 372.1054, measured 372.1037.

The product **3aR** was synthesized as described in **GP6-standard**. **3aR** was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated (52.9 mg, 0.179 mmol, 89%, $dr_{(5,5+R,R):(R,5+S,R)} = 90:10$, $ee_{(5,5)} = 99\%$). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, $t_{(5,5)} = 25.1$ min, $t_{(R,5)} = 13.5$ min.

C₁₄**H**₁₇**NO**₆. **MW**: 295.29 g/mol. [α_D^{20}] = 71.7 (c = 0.12 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.31 (*d*, 1H, *J* = 1.5, Ar*H*), 6.30-6.26 (*m*, 1H, Ar*H*), 6.24-6.20 (*m*, 1H, Ar*H*) 5.10 (*dd*, 1H, *J* = 13.4, 11.0 Hz, CH*H*NO₂), 4.77 (*dd*, 1H, *J* = 13.5, 3.2 Hz, C*H*HNO₂), 4.32 (*dd*, 1H, *J* = 11.0, 3.2 Hz, C*H*Ar), 4.27-4.11 (*m*, 2H, OC*H*₂CH₃), 2.49-2.28 (*m*, 2H, C*H*_{cyclopentane}), 2.25-2.10 (*m*, 1H, C*H*_{cyclopentane}), 2.06-1.80 (*m*, 2H, C*H*_{cyclopentane}), 1.48-1.33 (*m*, 1H, C*H*_{cyclopentane}), 1.25 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (125 MHz, CDCl₃)**: δ = 214.5, 171.0, 149.4, 143.0, 110.9, 110.4, 75.7, 62.4, 60.8, 41.4, 39.2, 34.2, 19.7, 14.1. **IR (solid)**: $\tilde{\nu}$ = 3127, 2979, 1726, 1555, 1505, 1467, 1447, 1403, 1377, 1317, 1230, 1147, 1111, 1074, 1015, 917, 822, 744 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₄H₁₇NNaO₆]⁺ 318.0948, measured 318.0951.

Ethyl (S)-1-((S)-2-Nitro-1-(thiophen-2-yl)ethyl)-2-oxocyclopentane-1-carboxylate (3aS)

The product **3aS** was synthesized as described in **GP6-standard**. **3aS** was isolated as a white solid (60.1 mg, 0.193 mmol, 97%, $dr_{(S,S+R,R):(R,S+S,R)} = 96:4$, $ee_{(S,S)} = 98\%$). Diastereometrically pure substance **3aS** was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/iPrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, t(s,s) = 26.8 min, t(R,s) = 16.5 min.

C₁₄**H**₁₇**NO**₅**S. MW**: 311.35 g/mol. **MP** = 76-77 °C. $[\alpha_D^{20}] = 30.3$ (c = 015 g/dl, CH₂Cl₂). ¹**H NMR** (500 MHz, **CDCl**₃): δ = 7.22 (*d*, 1H, *J* = 4.9, Ar*H*), 6.95-6.90 (*m*, 2H, Ar*H*), 5.22 (*dd*, 1H, *J* = 13.3, 10.8 Hz, CHHNO₂), 4.78 (*dd*, 1H, *J* = 13.3, 3.4 Hz, CHHNO₂), 4.52 (*dd*, 1H, *J* = 10.9, 3.3 Hz, CHAr), 4.31-4.16 (*m*, 2H, OCH₂CH₃), 2.51-2.42 (m, 1H, CH_{cyclopentane}), 2.38-2.32 (m, 1H, CH_{cyclopentane}), 2.17-2.04 (m, 2H, CH_{cyclopentane}), 1.95-1.84 (m, 1H, CH_{cyclopentane}), 1.65-1.56 (*m*, 1H, CH_{cyclopentane}), 1.28 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 215.3, 170.9, 137.9, 128.4, 127.3, 126.1, 78.3, 62.7, 62.5, 42.9, 39.5, 33.8, 19.7, 14.2. IR (solid): \tilde{v} = 3115, 2962, 2921, 2853, 1741, 1724, 1556, 1549, 1437, 1378, 1322, 1248, 1234, 1188, 1144, 1113, 1013, 999, 854, 714 cm⁻¹. **HRMS (ESI)** *m*/*z*: calculated [C₁₄H₁₇NNaO₅S]⁺ 334.0720, measured 334.0706.

Ethyl (S)-1-((S,E)-1-Nitro-4-phenylbut-3-en-2-yl)-2-oxocyclopentane-1-carboxylate (3aT)

3aT

The product **3aT** was synthesized as described in **GP6-standard**. **3aT** was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated (56.6 mg, 0.171 mmol, 85%, $dr_{(S,S+R,R):(R,S+S,R)} = 91:9$, $ee_{(S,S)} = 97\%$). The *ee* values were determined by chiral column HPLC: Chiracel 2xOD-H in series, *n*-hexane/iPrOH (85/15), 0.3 mL min⁻¹, detection at 213 nm, $t_{(S,S)} = 92.2$ min, $t_{(R,S)} = 10.2$ 66.1 min.

C₁₈**H**₂₁**NO**₅. **MW**: 331.37 g/mol. [α_D^{20}] = 20.4 (c = 0.10 g/dl, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ = 7.30-7.18 (*m*, 5H, Ar*H*), 6.52 (*d*, *J* = 15.7, PhC*H*=CHC), 5.78 (*dd*, 1H, *J* = 15.8, 10.1 Hz, PhCH=CHCH), 4.88 (*dd*, 1H, *J* = 12.5, 11.0 Hz, C*H*HNO₂), 4.53 (*dd*, 1H, *J* = 12.5, 3.2 Hz, CH*H*NO₂), 4.24-4.12 (*m*, 2H, OC*H*₂CH₃), 3.64 (*dt*, 1H, *J* = 10.2, 3.1 Hz, PhCH=CHCH), 2.51-2.32 (*m*, 2H, C*H*_{cyclopentane}), 2.18-2.09 (*m*, 2H, C*H*_{cyclopentane}), 1.95-1.87 (*m*, 2H, C*H*_{cyclopentane}), 1.23 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 214.3, 170.7, 137.2, 135.8, 128.7, 126.7, 122.7, 76.7, 62.3, 61.7, 45.9, 39.1, 33.4, 19.8, 14.1. IR (solid): $\tilde{\nu}$ = 3061, 3027, 2978, 2923, 1745, 1722, 1551, 1448, 1378, 1316, 1224, 1151, 1112, 1031, 971, 915, 748, 694 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₈H₂₁NNaO₅]⁺ 354.1312, measured 354.1306.

Ethyl (S)-1-((S)-3-Methyl-1-nitrobutan-2-yl)-2-oxocyclopentane-1-carboxylate (3aU)

The product **3aU** was synthesized as described in **GP6-standard** within72 h reaction time. **3aU** was isolated as a colorless oil (49.8 mg, 0.184 mmol, 92%, $dr_{(S,S+R,R):(R,S+S,R)} = 98:2$, $ee_{(S,S)} = 99\%$). Diastereomerically pure substance **3aU** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel AS-H, *n*-hexane/*i*PrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 13.0$ min, $t_{(R,S)} = 15.3$ min.

C₁₃**H**₂₁**NO**₅. **MW**: 271.31 g/mol. [α_D^{20}] = -2.9 (c = 0.25 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 4.50 (*dd*, 1H, *J* = 13.7, 6.3 Hz, CHHNO₂), 4.42 (*dd*, 1H, *J* = 13.7, 5.1 Hz, CHHNO₂), 4.25-4.09 (*m*, 2H, OCH₂CH₃), 3.18-3.10 (*m*, 1H, CHiPr), 2.62-2.35 (*m*, 2H, Alkyl*H*), 2.30-2.14 (*m*, 1H, Alkyl*H*), 2.10-1.84 (*m*, 4H, Alkyl*H*), 1.25 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃), 0.97 (*d*, 3H, *J* = 7.0 Hz, CHCH₃), 0.82 (*d*, 3H, *J* = 6.9 Hz, CHCH₃). ¹³**C NMR** (75 MHz, CDCl₃): δ = 213.4, 170.0, 73.8, 64.0, 62.3, 45.3, 37.7, 31.2, 28.3, 22.4, 19.5, 17.8, 14.1. **IR** (solid): $\tilde{\nu}$ = 2967, 1751, 1719, 1553, 1467, 1384, 1365, 1221, 1179, 1154, 1126, 1095, 1025, 857 cm⁻¹. **HRMS** (ESI) *m/z*: calculated [C₁₃H₂₁NNaO₅]⁺ 294.1312, measured 294.1301.

Ethyl (S)-1-((S)-1-Cyclohexyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aV)

The product **3aV** was synthesized as described in **GP6-neat** within 72 h reaction time. Diastereomerically pure **3aV** was isolated as a colorless oil (56.1 mg, 0.180 mmol, 90%, $dr_{(S,S+R,R):(R,S+S,R)} = 97:3$, $ee_{(S,S)} = 99\%$). The *ee* values were determined by chiral column HPLC: Chiracel AS-H, *n*-hexane/*i*PrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 13.9$ min, $t_{(R,S)} = 15.4$ min.

C₁₆**H**₂₅**NO**₅. **MW**: 311.38 g/mol. [α_D^{20}] = -9.2 (c = 0.21 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 4.57 (*dd*, 1H, *J* = 13.7, 6.8 Hz, CHHNO₂), 4.38 (*dd*, 1H, *J* = 13.7, 4.7 Hz, CHHNO₂), 4.26-4.09 (*m*, 2H, OCH₂CH₃), 3.13-3.06 (*m*, 1H, CHCH₂NO₂), 2.60-2.35 (*m*, 2H, Alkyl*H*), 2.29-2.14 (*m*, 1H, Alkyl*H*), 2.06-1.84 (*m*, 3H, Alkyl*H*), 1.77-1.66 (*m*, 2H, Alkyl*H*), 1.66-1.53 (*m*, 3H, Alkyl*H*), 1.53-1.43 (*m*, 1H, Alkyl*H*), 1.25 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃), 1.21-0.86 (*m*, 5H, Alkyl*H*). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 213.6, 170.2, 74.4, 63.9, 62.2, 45.3, 38.9, 37.7, 32.6, 31.4, 28.5, 26.9, 26.5, 26.0, 19.5, 14.1. **IR (solid)**: $\tilde{\nu}$ = 2927, 2854, 1750, 1719, 1552, 1448, 1373, 1220, 1176, 1153, 1140, 1111, 1016 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₂₅NNaO₅]⁺ 334.1625, measured 334.1629.

Ethyl (S)-1-((S)-1-Cyclopropyl-2-nitroethyl)-2-oxocyclopentane-1-carboxylate (3aW)

The product **3aW** was synthesized as described in **GP6-neat** within 72 h reaction time. **3aW** was isolated as a colorless oil and mixture of diastereomeres, which could not be separated (51.6 mg, 0.192 mmol, 96%, $dr_{(S,S+R,R):(R,S+S,R)} = 88:12$, $ee_{(S,S)} = 98\%$). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (97/3), 0.5 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 45.4$ min, $t_{(R,S)} = 40.2$ min.

C₁₃**H**₁₉**NO**₅. **MW**: 269.30 g/mol. $[\alpha_D^{20}] = -0.06$ (c = 0.15 g/dl, CH₂Cl₂).¹**H NMR (300 MHz, CDCl₃)**: $\delta = 4.72$ (*dd*, 1H, *J* = 12.5, 8.3 Hz, CHHNO₂), 4.50 (*dd*, 1H, *J* = 12.7, 3.9 Hz, CHHNO₂), 4.27-4.12 (*m*, 2H, OCH₂CH₃), 2.56-2.27 (*m*, 4H, Alkyl*H*), 2.26-1.86 (*m*, 1H, CHCH₂NO₂), 1.89-1.65 (*m*, 2H, Alkyl*H*), 1.26 (*t*, 3H, *J* = 7.1 Hz,

OCH₂CH₃), 0.74-0.43 (*m*, 3H, Alkyl*H*), 0.35-0.17 (*m*, 1H, Alkyl*H*). ¹³C NMR (**75** MHz, CDCl₃): δ = 213.9, 170.3, 78.2, 64.0, 62.2, 45.0, 38.6, 31.6, 19.6, 14.1, 11.9, 5.7, 2.4. IR (solid): $\tilde{\nu}$ = 2981, 2923, 2258, 1748, 1723, 1552., 1464, 1434, 1380, 1298, 1225, 1160, 1112, 1030, 910, 728, 648 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₃H₂₀NO₅]⁺ 270.1336, measured 270.1323.

Ethyl (S)-1-((S)-4-Methyl-1-nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aX)

The product **3aX** was synthesized as described in **GP6-neat** within 72 h reaction time. **3aX** was isolated as a colorless oil (49.0 mg, 0.172 mmol, 86%, $dr_{(S,S+R,R):(R,S+S,R)} = 90:10$, $ee_{(S,S)} = 99\%$). The purification of the diastereomerical mixture *via* preparative TLC (petroleum ether/ethyl acetate, 10/1) led to 5% impurity of minor diastereomer and was used for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel 2xOD-H in series, *n*-hexane/*i*PrOH (90/10), 0.3 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 46.8 \text{ min}, t_{(R,S)} = 42.2 \text{ min}.$

C₁₄**H**₂₃**NO**₅. **MW**: 285.34 g/mol. [α_D^{20}] = -2.6 (c = 0.11 g/dl, CH₂Cl₂). ¹**H NMR (700 MHz, CDCl₃)**: δ = 4.57 (*dd*, 1H, *J* = 13.2, 5.0 Hz, CHHNO₂), 4.39 (*dd*, 1H, *J* = 13.3, 5.6 Hz, CHHNO₂), 4.18 (*q*, 2H, *J* = 7.2 Hz, OCH₂CH₃), 3.02-2.97 (*m*, 1H, CHCH₂NO₂), 2.50-2.41 (*m*, 2H, Alkyl*H*), 2.28-2.21 (*m*, 1H, Alkyl*H*), 2.05-1.89 (*m*, 3H, Alkyl*H*), 1.58-1.52 (*m*, 1H, Alkyl*H*), 1.35-1.29 (*m*, 1H, Alkyl*H*), 1.29-1.24 (*m*, 1H, Alkyl*H*), 1.26 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃), 0.90 (*dd*, 6H, *J* = 11.7, 6.4 Hz, CH(CH₃)₂).¹³C **NMR (176 MHz, CDCl₃)**: δ = 213.6, 170.4, 77.5, 63.5, 62.2, 39.0, 38.4, 38.3, 31.6, 25.8, 23.8, 21.3, 19.4, 14.1. **IR (solid)**: $\tilde{\nu}$ = 2959, 2872, 1749, 1719, 1551, 1468, 1381, 1368, 1221, 1157, 1131, 1106, 1020 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₄H₂₃NNaO₅]⁺ 308.1468, measured 308.1467.

Ethyl (S)-1-((S)-1-Nitropentan-2-yl)-2-oxocyclopentane-1-carboxylate (3aY)

The product **3aY** was synthesized as described in **GP6-neat** within 72 h reaction time. **3aY** was isolated as a colorless oil (52.1 mg, 0.192 mmol, 96%, $dr_{(5,5+R,R):(R,5+S,R)} = 87:13$, $ee_{(5,5)} = 98\%$). Diastereomerically pure substance **3aY** was obtained by purification of diastereomerical mixture *via* preparative TLC (petroleum ether/ethyl acetate, 10/1) for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (97/3), 0.3 mL min⁻¹, detection at 214 nm, $t_{(5,5)} = 47.5$ min, $t_{(R,5)} = 40.7$ min.

C₁₃**H**₂₁**NO**₅. **MW**: 271.31 g/mol. [α_D^{20}] = -8.2 (c = 0.23 g/dl, CH₂Cl₂). ¹**H NMR (700 MHz, CDCl₃)**: δ = 4.53 (*dd*, 1H, *J* = 13.3, 4.6 Hz, CHHNO₂), 4.46 (*dd*, 1H, *J* = 13.3, 6.5 Hz, CHHNO₂), 4.19 (*q*, 2H, *J* = 7.1 Hz, OCH₂CH₃), 2.96-2.90 (*m*, 1H, CHCH₂NO₂), 2.51-2.43 (*m*, 2H, Alkyl*H*), 2.28-2.21 (*m*, 1H, Alkyl*H*), 2.04-1.91 (*m*, 3H, Alkyl*H*), 1.60-1.53 (*m*, 1H, Alkyl*H*), 1.42-1.34 (*m*, 1H, Alkyl*H*), 1.33-1.24 (*m*, 2H, Alkyl*H*), 1.26 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃), 0.90 (*t*, 3H, *J* = 7.0 Hz, CH₂CH₂CH₃). ¹³C **NMR (75 MHz, CDCl₃)**: δ = 213.7, 170.5, 77.3, 63.3, 62.1, 40.2, 38.3, 32.0, 31.9, 20.7, 19.4, 14.1. **IR (solid)**: $\tilde{\nu}$ = 2963, 2875, 1749, 1720, 1552, 1466, 1381, 1223, 1175, 1157, 1126, 1028, 822 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₃H₂₁NNaO₅]⁺ 294.1312, measured 294.1301.

Ethyl (S)-1-((S)-1-(Benzyloxy)-3-nitro-1-oxopropan-2-yl)-2-oxocyclopentane-1-carboxylate (3aZ)

∠OBn NO₂ CO₂Et

3aZ

The product **3aZ** was synthesized as described in **GP6-standard** within 48 h reaction time. **3aZ** was isolated as a colorless oil as mixture of diastereomers, which could not be separated (40.8 mg, 0.112 mmol, 56%, $dr_{(S,S+R,R):(R,S+S,R)} = 74:26$, $ee_{(S,S)} = 96\%$). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (95/5), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 44.6$ min, $t_{(R,S)} = 37.8$ min.

C₁₈**H**₂₁**NO**₇. **MW**: 363.37 g/mol. $[\alpha_D^{20}] = 2.0$ (c = 0.13 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.41-7.28 (m, 5H, Ar*H*), 5.15 (*d*, 2H, *J* = 1.5 Hz, OCH₂Ar), 4.94 (*dd*, 1H, *J* = 14.4, 9.9 Hz, CH*H*NO₂), 4.59 (*dd*, 1H, *J* = 14.5, 3.2 Hz, C*H*HNO₂), 4.20-4.06 (*m*, 2H, OCH₂CH₃), 4.01 (*dd*, 1H, *J* = 10.0, 3.2 Hz, C*H*CO₂Bn), 2.51-2.37 (*m*, 2H, C*H*_{cyclopentane}), 2.26-1.80 (*m*, 4H, C*H*_{cyclopentane}), 1.20 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl**₃): δ = 212.4, 170.1, 169.4, 134.7, 128.8, 128.7, 128.6, 73.5, 68.0, 62.6, 60.0, 46.5, 38.1, 32.3, 19.4, 13.9. **IR (solid)**: $\tilde{\nu}$ = 2963, 2924, 1725, 1557, 1455, 1378, 1221, 1153, 1110, 949, 915, 751, 698 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₈H₂₁NNaO₇]⁺ 386.1210, measured 386.1211.

Ethyl (1S)-1-((1S,2R)-2-Nitro-1-phenylpropyl)-2-oxocyclopentane-1-carboxylate (3aA-Me)

3aA-MeE = CO₂Et

The product **3aA-Me** was synthesized as described in **GP7** within 120 h reaction time. **3aA-Me** was isolated as a white solid as mixture of diastereomers (57.9 mg, 0.181 mmol, 91%, $dr_{(S,S,R+R,R,S):D2:D3:D4} = 94:3:2:1$, $ee_{(S,S,R)} = >99\%$). Diastereomerically pure substance **3aA-Me** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* and *dr* values were determined by chiral column HPLC of the crude reaction mixture: Chiracel IB, *n*-heptane/*i*PrOH (98/2), 0.3 mL min⁻¹, detection at 210 nm, $t_{(S,S,R)} = 69.1$ min, $t_{(R,R,S)} = 67.3$ min.

C₁₇**H**₂₁**NO**₅. **MW**: 319.36 g/mol. **MP** = 96-97 °C. $[\alpha_D^{20}] = -12.0$ (c = 0.13 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.34-7.26 (*m*, 3H, Ar*H*), 7.16-7.13 (*m*, 2H, Ar*H*), 5.35-5.25 (*m*, 1H, CHCH₃NO₂), 4.06 (*d*, 1H, *J* = 10.1 Hz, CHAr), 4.00-3.81 (*m*, 2H, OCH₂CH₃), 2.66-2.59 (*m*, 1H, CH_{cyclopentane}), 2.43-2.14 (*m*, 3H, CH_{cyclopentane}), 2.01-1.74 (*m*, 2H, CH_{cyclopentane}), 1.20 (*d*, 3H, *J* = 6.7 Hz, CHCH₃NO₂), 1.10 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 212.2, 168.4, 136.2, 129.5, 128.9, 128.2, 82.5, 64.9, 62.1, 52.5, 37.4, 30.4, 19.5, 19.1, 13.7. **IR (solid)**: $\tilde{\nu}$ = 2983, 1753, 1728, 1553, 1454, 1388, 1361, 1225, 1123, 705. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₁NNaO₅]⁺ 342.1312, measured 342.1310.

CCDC 1908072 contains the supplementary crystallographic data for compound **3aA-Me**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (1S)-1-((1S,2R)-1-(4-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aB-Me)

3aB-Me E = CO₂Et

The product **3aB-Me** was synthesized as described in **GP7** within 120 h reaction time. **3aB-Me** was isolated as a white solid as mixture of diastereomers (73.4 mg, 0.184 mmol, 92%, $dr_{(5,5,R+R,R,S):D2:D3:D4} = 94:3:2:1$, $ee_{(5,5,R)} = >99\%$). Diastereomerically pure substance **3aB-Me** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* and *dr* values were determined by chiral column HPLC of the crude reaction mixture: Chiracel IB, *n*-heptane/*i*PrOH (98/2), 0.5 mL min⁻¹, detection at 210 nm, $t_{(5,5,R)} = 60.9$ min, $t_{(R,R,S)} = 56.9$ min.

C₁₇**H**₂₀**BrNO**₅. **MW**: 398.25 g/mol. **MP** = 93-94 °C. $[\alpha_D^{20}] = -11.3$ (c = 0.21 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.47-7.43 (*m*, 2H, Ar*H*), 7.06-7.02 (*m*, 2H, Ar*H*), 5.30-5.21 (*m*, 1H, CHCH₃NO₂), 4.05 (*d*, 1H, *J* = 9.7 Hz, CHAr), 4.00-3.84 (*m*, 2H, OCH₂CH₃), 2.62-2.55 (*m*, 1H, CH_{cyclopentane}), 2.43-2.13 (*m*, 3H, CH_{cyclopentane}), 2.03-1.76 (*m*, 2H, CH_{cyclopentane}), 1.21 (*d*, 3H, *J* = 6.6 Hz, CHCH₃NO₂), 1.12 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 211.9, 168.3, 135.3, 132.1, 131.1, 122.3, 82.2, 64.7, 62.3, 51.9, 37.3, 30.5, 19.5, 19.0, 13.7. **IR (solid)**: $\tilde{\nu}$ = 2981, 1753, 1727, 1553, 1490, 1451, 1407, 1389, 1360, 1225, 1124, 1011, 838. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₀BrNNaO₅]⁺ 420.0417, measured 420.0415.

Ethyl (1S)-1-((1S,2R)-1-(3-Bromophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3aC-Me)

3aC-MeE = CO₂Et

The product **3aC-Me** was synthesized as described in **GP7** within 120 h reaction time. **3aC-Me** was isolated as a white solid as mixture of diastereomers (68.2 mg, 0.171 mmol, 86%, $dr_{(S,S,R+R,R,S):D2:D3:D4} = 97:2:1:0.2$, $ee_{(S,S,R)} = 99\%$). Diastereomerically pure substance **3aC-Me** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* and *dr* values were determined by chiral

column HPLC of the crude reaction mixture: Chiracel ADH, *n*-heptane/*i*PrOH (97/3), 0.3 mL min⁻¹, detection at 210 nm, $t_{(S,S,R)} = 61.1$ min, $t_{(R,R,S)} = 57.9$ min.

C₁₇**H**₂₀**BrNO**₅. **MW**: 398.25 g/mol. **MP** = 117-118 °C. $[\alpha_D^{20}] = -16.0$ (c = 0.13 g/dl, CH₂Cl₂). ¹**H NMR** (700 MHz, CDCl₃): δ = 7.45-7.41 (*m*, 1H, Ar*H*), 7.33 (*t*, 1H, *J* = 1.7 Hz, Ar*H*), 7.19 (*t*, 1H, *J* = 7.8 Hz, Ar*H*), 7.10-7.08 (*m*, 1H, Ar*H*), 5.28-5.18 (*m*, 1H, CHCH₃NO₂), 4.04 (*d*, 1H, *J* = 9.9 Hz, CHAr), 4.02-3.85 (*m*, 2H, OCH₂CH₃), 2.66-2.58 (*m*, 1H, CH_{cyclopentane}), 2.44-2.15 (*m*, 3H, CH_{cyclopentane}), 2.03-1.76 (*m*, 2H, CH_{cyclopentane}), 1.22 (*d*, 3H, *J* = 6.6 Hz, CHCH₃NO₂), 1.12 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃): δ = 211.6, 168.1, 138.6, 132.7, 131.4, 130.5, 127.8, 122.9, 82.2, 64.9, 62.3, 52.0, 37.2, 30.1, 19.5, 16.0, 13.7. IR (solid): $\tilde{\nu}$ = 2981, 1753, 1725, 1552, 1475, 1450, 1387, 1360, 1223, 1193, 1175, 1153, 1121, 1093, 1021, 866, 792, 705. HRMS (ESI) *m/z*: calculated [C₁₇H₂₀BrNNaO₅]⁺ 420.0417, measured 420.0421.

The product 3aE-Me was synthesized as described in GP7 within 120 h reaction time. 3aE-Me was isolated diastereomers а white solid as mixture of (69.9 mg, 0.198 mmol, 99%. as $dr_{(S,S,R+R,R,S):(S,S,S+R,R,R):D3:D4} = 94:3:3:0.4, ee_{(S,S,R)} = >99\%$). Diastereomerically pure substance **3aE-Me** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* and dr values were determined by chiral column HPLC of the crude reaction mixture: Chiracel IB, nheptane/*i*PrOH (95/5), 0.3 mL min⁻¹, detection at 210 nm, $t_{(s,s,R)} = 31.8$ min, $t_{(R,R,s)} = 30.7$ min.

C₁₇**H**₂₀**CINO**₅. **MW**: 353.80 g/mol. **MP** = 83-84 °C. $[\alpha_D^{20}] = -18.3$ (c = 0.13 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.32-7.28 (*m*, 2H, Ar*H*), 7.12-7.08 (*m*, 2H, Ar*H*), 5.31-5.21 (*m*, 1H, CHCH₃NO₂), 4.06 (*d*, 1H, *J* = 9.7 Hz, CHAr), 4.00-3.84 (*m*, 2H, OCH₂CH₃), 2.64-2.56 (*m*, 1H, CH_{cyclopentane}), 2.43-2.14 (*m*, 3H, CH_{cyclopentane}), 2.03-1.76 (*m*, 2H, CH_{cyclopentane}), 1.21 (*d*, 3H, *J* = 6.5 Hz, CHCH₃NO₂), 1.13 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (176 MHz, CDCl₃)**: δ = 211.9, 168.3, 134.8, 134.2, 130.8, 129.2, 82.3, 64.8, 62.3, 51.8, 37.3, 30.5, 19.5, 19.0, 13.7. **IR (solid)**: $\tilde{\nu}$ = 2982, 1753, 1727, 1553, 1493, 1451, 1389, 1360, 1225, 1193, 1152, 1124, 1094, 1015 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₀ClNNaO₅]⁺ 376.0922, measured 376.0921.

CCDC 1908073 contains the supplementary crystallographic data for compound **3aE-Me**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (1S)-1-((1S,2R)-1-(3-Nitroophenyl)-2-nitropropyl)-2-oxocyclopentane-1-carboxylate (3al-Me)

3aI-MeE = CO₂Et

The product **3al-Me** was synthesized as described in **GP7** within 120 h reaction time. **3al-Me** was isolated as a white solid as mixture of diastereomers (64.4 mg, 0.177 mmol, 88%, $dr_{(S,S,R+R,R,S):D2:D3:D4} = 92:5:2:1$, $ee_{(S,S,R)} = >99\%$). Diastereomerically pure substance **3al-Me** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* and *dr* values were determined by chiral column HPLC of the crude reaction mixture: Chiracel ADH, *n*-heptane/*i*PrOH (95/5), 0.7 mL min⁻¹, detection at 210 nm, $t_{(S,S,R)} = 58.7$ min, $t_{(R,R,S)} = 70.5$ min.

C₁₇**H**₂₀**N**₂**O**₇. **MW**: 364.35 g/mol. **MP** = 98-99 °C. $[\alpha_D^{20}] = -33.1$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 8.19-8.16 (*m*, 1H, Ar*H*), 8.07 (*s*, 1H, Ar*H*), 7.56-7.52 (*m*, 2H, Ar*H*), 5.30-5.21 (*m*, 1H, C*H*CH₃NO₂), 4.25 (*d*, 1H, *J* = 9.5 Hz, C*H*Ar), 4.02-3.83 (*m*, 2H, OC*H*₂CH₃), 2.71-2.63 (*m*, 1H, C*H*_{cyclopentane}), 2.47-2.18 (*m*, 3H, C*H*_{cyclopentane}), 2.11-1.81 (*m*, 2H, C*H*_{cyclopentane}), 1.23 (*d*, 3H, *J* = 6.7 Hz, CHC*H*₃NO₂), 1.11 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 211.1, 167.9, 148.4, 138.5, 135.6, 130.0, 124.3, 123.3, 82.0, 65.0, 62.5, 51.9, 37.0, 29.9, 19.4, 19.0, 13.7. **IR (solid)**: $\tilde{\nu}$ = 3090, 2983, 1752, 1724, 1553, 1528, 1449, 1389, 1348, 1224, 1175, 1120, 1020, 911, 869, 811. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₀N₂NaO₇]⁺ 387.1163, measured 387.1163.

Ethyl (1S)-1-((1S,2R)-2-nitro-1-p-tolylpropyl)-2-oxocyclopentane-1-carboxylate (3aK-Me)

3aK-MeE = CO₂Et

The product **3aK-Me** was synthesized as described in **GP7** within 120 h reaction time. **3aK-Me** was isolated as a white solid as mixture of diastereomers (49.4 mg, 0.148 mmol, 74%, $dr_{(S,S,R+R,R,S):D2:D3:D4} = 93:4:2:0.1$, $ee_{(S,S,R)} = >98\%$). Diastereomerically pure substance **3aK-Me** was obtained by trituration of the mixture of diastereomers with *n*-hexane for analytical purposes. The *ee* and *dr* values were determined by chiral column and reversed phase HPLC of the crude reaction mixture: Chiracel IB, *n*-heptane/*i*PrOH (98/2), 0.5 mL min⁻¹, detection at 210 nm, $t_{(S,S,R)} = 63.7$ min, $t_{(R,R,S)} = 58.8$ min.

C₁₈**H**₂₃**NO**₅. **MW**: 333.38 g/mol. **MP** = 96-97 °C. $[\alpha_D^{20}] = -8.2$ (c = 0.14 g/dl, CH₂Cl₂). ¹**H NMR (700 MHz, CDCl₃)**: δ = 7.11-7.07 (*m*, 2H, Ar*H*), 7.03-7.00 (*m*, 2H, Ar*H*), 5.34-5.24 (*m*, 1H, CHCH₃NO₂), 4.03-3.82 (*m*, 3H, CHAr and OCH₂CH₃), 2.63-2.55 (*m*, 1H, CH_{cyclopentane}), 2.41-2.14 (*m*, 3H, CH_{cyclopentane}), 2.31 (*s*, 3H, Ar-CH₃), 1.99-1.75 (*m*, 2H, CH_{cyclopentane}), 1.19 (*d*, 3H, *J* = 6.4 Hz, CHCH₃NO₂), 1.12 (*t*, 3H, *J* = 6.9 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 212.4, 168.6, 137.9, 133.1, 129.6, 129.3, 82.6, 64.9, 62.1, 52.2, 37.5, 30.5, 21.0, 19.5, 19.1, 13.7. **IR (solid)**: $\tilde{\nu}$ = 2980, 1750, 1725, 1547, 1515, 1446, 1403, 1387, 1359, 1220, 1187, 1153, 1126, 1108, 1022, 870, 832, 812. **HRMS (ESI)** *m/z*: calculated [C₁₈H₂₃NNaO₅]⁺ 356.1468, measured 356.1464.

Methyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1-carboxylate (3bA)

The product **3bA** was synthesized as described in **GP6-standard**. **3bA** was isolated as colorless oil (53.8 mg, 0.185 mmol, 92%, $dr_{(S,S+R,R):(R,S+S,R)} = 95:5$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3bA** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee*

values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 1.0 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 23.3$ min, $t_{(R,S)} = 16.2$ min.

C₁₅**H**₁₇**NO**₅. **MW**: 291.30 g/mol. [α_D^{20}] = 29.2 (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl₃)**: δ = 7.34-7.27 (*m*, 3H, Ar*H*), 7.21-7.14 (*m*, 2H, Ar*H*), 5.26 (*dd*, 1H, *J* = 13.5, 11.2 Hz, CH*H*NO₂), 4.83 (*dd*, 1H, *J* = 13.5, 3.7 Hz, C*H*HNO₂), 4.20 (*dd*, 1H, *J* = 11.1, 3.6 Hz, C*H*Ph), 3.75 (*s*, 3H, OCH₃), 2.48-2.28 (*m*, 2H, C*H*_{cyclopentane}), 2.06-1.92 (*m*, 2H, C*H*_{cyclopentane}), 1.87-1.74 (*m*, 1H, C*H*_{cyclopentane}), 1.47-1.36 (*m*, 1H, C*H*_{cyclopentane}). ¹³**C NMR** (100 MHz, CDCl₃): δ = 215.5, 171.6, 135.6, 129.3, 129.2, 128.6, 77.0, 62.4, 53.2, 47.5, 39.7, 33.6, 19.7. **IR** (solid): $\tilde{\nu}$ = 2957, 2923, 1726, 1550, 1433, 1378, 1229, 1147, 1111, 703 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₅H₁₇NNaO₅]⁺ 314.0999, measured 314.1011.

The product **3cA** was synthesized as described in **GP6-standard**. **3cA** was isolated as white solid (58.8 mg, 0.184 mmol, 92%, $dr_{(S,S+R,R):(R,S+S,R)} = 97:3$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3cA** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (95/5), 0.3 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 19.6$ min, $t_{(R,S)} = 18.3$ min.

C₁₇**H**₂₁**NO**₅. **MW**: 319.36 g/mol. **MP** = 84-85 °C. $[\alpha_D^{20}] = 16.2$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl₃)**: δ = 7.34-7.27 (*m*, 3H, Ar*H*), 7.22-7.16 (*m*, 2H, Ar*H*), 5.30 (*dd*, 1H, *J* = 13.3, 11.1 Hz, CH*H*NO₂), 5.07 (*sept*, 1H, *J* = 6.3 Hz, OC*H*(CH₃)₂), 4.83 (*dd*, 1H, *J* = 13.5, 3.3 Hz, C*H*HNO₂), 4.18 (*dd*, 1H, *J* = 11.0, 3.3 Hz, C*H*Ph), 2.45-2.34 (*m*, 1H, C*H*_{cyclopentane}), 2.33-2.24 (*m*, 1H, C*H*_{cyclopentane}), 2.04-1.89 (*m*, 2H, C*H*_{cyclopentane}), 1.87-1.74 (*m*, 1H, C*H*_{cyclopentane}), 1.48-1.37 (*m*, 1H, C*H*_{cyclopentane}), 1.25 (*d*, 6H, *J* = 6.3 Hz, OCH(CH₃)₂). ¹³**C NMR** (100 MHz, CDCl₃): δ = 215.6, 170.8, 135.8, 129.4, 129.1, 128.5, 77.2, 70.3, 62.5, 47.4, 39.6, 33.7, 21.7, 21.6, 19.7. **IR (solid)**: $\tilde{\nu}$ = 3.034, 2981, 1742, 1720, 1553, 1455, 1377, 1231, 1148, 1100, 907, 729, 702 cm⁻¹. **HRMS** (ESI) *m*/*z*: calculated [C₁₇H₂₁NNaO₅]⁺ 342.1312, measured 342.1312.

CCDC 1872236 contains the supplementary crystallographic data for compound **3cA**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The product **3dA** was synthesized as described in **GP6-standard**. **3dA** was isolated as colorless oil (63.1 mg, 0.179 mmol, 89%, $dr_{(S,S+R,R):(R,S+S,R)} = 93:7$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3dA** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (80/20), 1.0 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 29.3$ min, $t_{(R,S)} = 11.8$ min.

C₂₀**H**₁₉**NO**₅. **MW**: 353.37 g/mol. **MP** = 90-91 °C. $[\alpha_D^{20}] = 24.0$ (c = 0.12 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.75 (d, 1H, J = 7.8 Hz, Ar*H*), 7.49 (dt, J = 7.5, 1.3 Hz, Ar*H*), 7.34 (t, 1H, J = 7.2 Hz, Ar*H*), 7.23 (d, 1H, J = 7.8 Hz, Ar*H*), 7.17-7.09 (m, 5H, Ar*H*), 5.19 (dd, 1H, J = 13.5, 11.0 Hz, CH*H*NO₂), 5.06 (dd, 1H, J = 13.5, 3.6 Hz, C*H*HNO₂), 4.48 (dd, 1H, J = 11.0, 3.5 Hz, C*H*Ph), 4.15 (q, 2H, J = 7.1 Hz, OCH₂CH₃), 3.49 (d, 1H, J = 17.6 Hz, C*H*_{cyclopentane}), 3.16 (d, 1H, J = 17.6 Hz, C*H*_{cyclopentane}), 1.16 (t, 3H, J = 7.1 Hz, OCH₂CH₃). ¹³**C NMR** (100 MHz, CDCl₃): δ = 202.2, 170.7, 152.5, 136.3, 135.8, 135.0, 129.1, 128.7, 128.4, 128.0, 126.1, 124.5, 77.3, 62.4, 61.9, 47.6, 36.7. **IR (solid)**: $\tilde{\nu}$ = 3063, 3034, 2982, 2926, 1731, 1704, 1605, 1551, 1378, 1240, 1213, 1182, 1009, 909, 754, 730, 702 cm⁻¹. **HRMS (ESI)** *m*/*z*: calculated [C₂₀H₁₉NNaO₅]⁺ 376.1155, measured 376.1151.

CCDC 1872229 contains the supplementary crystallographic data for compound **3dA**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclohexane-1-carboxylate (3eA)

The product **3eA** was synthesized as described in **GP6-neat** at 0°C within 72 h reaction time. **3eA** was isolated as a colorless oil and as a mixture of diastereomers, which could not be separated (61.6 mg, 0.193 mmol, 96%, $dr_{(S,S+R,R):(R,S+S,R)} = 80:20$, $ee_{(S,S)} = 97\%$). The *ee* values were determined by chiral column HPLC: Chiracel AS-H, *n*-hexane/*i*PrOH (95/5), 0.5 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 71.3$ min, $t_{(R,S)} = 33.5$ min.

C₁₇**H**₂₁**NO**₅. **MW**: 319.36 g/mol. $[\alpha_D^{20}] = -40.9$ (c = 0.15 g/dl, CH₂Cl₂). **Major Diastereomer**: ¹**H NMR** (**500 MHz, CDCl**₃): δ = 7.32-7.21 (*m*, 5H, Ar*H*), 5.16 (*dd*, 1H, *J* = 13.6, 11.0 Hz, CH*H*NO₂), 4.76 (*dd*, 1H, *J* = 13.6, 3.3 Hz, C*H*HNO₂), 4.25-4.08 (*m*, 3H, OCH₂CH₃ and C*H*Ph), 2.53-2.39 (*m*, 3H, C*H*_{cyclohexane}), 1.99-1.92 (*m*, 1H, C*H*_{cyclohexane}), 1.79-1.69 (*m*, 1H,C*H*_{cyclohexane}), 1.65-1.59 (*m*, 1H, C*H*_{cyclohexane}), 1.54-1.43 (*m*, 1H, C*H*_{cyclohexane}), 1.41-1.34 (*m*, 1H, C*H*_{cyclohexane}), 1.24 (*t*, 3H, *J* = 7.0 Hz, OCH₂C*H*₃). ¹³**C NMR (125 MHz, CDCl**₃): δ = 206.7, 170.4, 135.9, 129.7, 128.8, 128.3, 77.4, 64.4, 62.3, 48.0, 41.5, 33.5, 26.3, 22.3, 14.1. **Minor Diastereomer** :²³ ¹**H NMR (300 MHz, CDCl**₃): δ = 7.32-7.21 (*m*, 3H, Ar*H*), 7.17-7.13 (*m*, 2H, Ar*H*), 5.06 (*dd*, 1H, *J* = 13.2, 3.1 Hz, CH*H*NO₂), 4.79 (*dd*, 1H, *J* = 13.2, 11.3 Hz, CHHNO₂), 4.25-4.08 (*m*, 2H, OCH₂CH₃), 4.00 (*dd*, 1H, *J* = 11.3, 3.1 Hz, CHPh), 2.55-2.39 (*m*, 3H, C*H*_{cyclohexane}), 2.13-2.06 (*m*, 1H, C*H*_{cyclohexane}), 2.05-1.99 (*m*, 1H,C*H*_{cyclohexane}), 1.72-1.64 (*m*, 1H, C*H*_{cyclohexane}), 1.64-1.60 (*m*, 1H, C*H*_{cyclohexane}), 1.54-1.43 (*m*, 1H, C*H*_{cyclohexane}), 1.25 (*t*, 3H, *J* = 6.8 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl**₃): δ = 207.2, 169.8, 135.5, 129.6, 128.8, 128.6, 77.7, 63.1, 62.1, 47.9, 37.2, 33.5, 28.8, 22.5, 14.1. **IR (solid)**: $\tilde{\nu}$ = 3032, 2944, 2870, 1709, 1552, 1435, 1378, 1235, 1203, 1095, 1019, 703 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₇H₂₂NO₅]⁺ 320.1492, measured 320.1485.

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocycloheptane-1-carboxylate (3fA)

The product **3fA** was synthesized as described in **GP6-standard**. **3fA** was isolated as colorless oil (63.7 mg, 0.191 mmol, 96%, $dr_{(S,S+R,R):(R,S+S,R)} = 91:9$, $ee_{(S,S)} = 99\%$). Diastereometrically pure substance **3fA** was obtained by trituration of the mixture of diastereometric with *n*-hexane for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (95/5), 1.0 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 20.3$ min, $t_{(R,S)} = 11.6$ min.

C₁₈**H**₂₃**NO**₅. **MW**: 333.38 g/mol. **MP** = 85-86 °C. $[\alpha_D^{20}] = 10.9$ (c = 0.15 g/dl, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl₃)**: δ = 7.34-7.27 (*m*, 3H, Ar*H*), 7.22-7.16 (*m*, 2H, Ar*H*), 5.14 (*dd*, 1H, *J* = 13.6, 11.1 Hz, CH*H*NO₂), 4.81 (*dd*, 1H, *J* = 13.6, 3.0 Hz, C*H*HNO₂), 4.33-4.17 (*m*, 2H, OCH₂CH₃), 4.06 (*dd*, 1H, *J* = 11.0, 3.0 Hz, C*H*Ph), 2.59-2.48 (*m*, 1H, C*H*_{cycloheptane}), 2.18-2.00 (*m*, 2H, C*H*_{cycloheptane}), 1.86-1.76 (*m*, 1H, C*H*_{cycloheptane}), 1.71-1.57 (*m*, 3H, C*H*_{cycloheptane}), 1.52-1.37 (*m*, 2H, C*H*_{cycloheptane}), 1.35-1.23 (*m*, 1H, C*H*_{cycloheptane}), 1.30 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ = 210.6, 171.8, 135.2, 129.5, 128.8, 128.4, 78.2, 65.6, 62.1, 50.9, 45.3, 34.2, 30.2, 25.1, 24.3, 14.1. IR (solid): $\tilde{\nu}$ = 3032, 2934, 2862, 1698, 1551, 1454, 1378, 1226, 1152, 1021, 702 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₈H₂₄NO₅]⁺ 334.1649, measured 334.1636.

Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclooctane-1-carboxylate (3gA)

The product **3gA** was synthesized as described in **GP6-standard** using 0.1 mL THF (instead of 0.4 mL) at 0°C within 72 h reaction time. **3gA** was isolated as a colorless oil and as a mixture of diastereomeres, which could not be separated (37.4 mg, 0.108 mmol, 54%, $dr_{(S,S+R,R):(R,S+S,R)} = 69:31$, $ee_{(S,S)} = 92\%$). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (95/5), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 24.4$ min, $t_{(R,S)} = 17.7$ min.

C₁₉**H**₂₅**NO**₅. **MW**: 347.41 g/mol. $[\alpha_D^{20}] = 10.2$ (c = 0.23 g/dl, CH₂Cl₂). **Major Diastereomer**: ¹**H NMR** (**300 MHz, CDCl₃**): δ = 7.30-7.22 (*m*, 5H, Ar*H*), 5.03-4.2 (*m*, 2H, CH₂NO₂), 4.34-3.95 (*m*, 3H, OCH₂CH₃ and CHPh), 2.68-2.11 (*m*, 3H, CH_{cyclooctane}), 2.04-1.93 (*m*, 1H, CH_{cyclooctane}), 1.85-1.54 (*m*, 6H, CH_{cyclooctane}), 1.43-1.69 (*m*, 2H, CH_{cyclooctane}), 1.18 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 211.2, 170.6, 135.9, 129.6, 128.6, 128.3, 77.4, 65.6, 62.0, 47.4, 40.7, 29.8, 28.2 25.7, 25.5, 24.4, 14.0. **Minor Diastereomer**: ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.30-7.22 (*m*, 3H, Ar*H*), 7.13-7.08 (*m*, 2H, Ar*H*), 5.01 (*dd*, 1H,

J = 13.3, 3.1 Hz, CH*H*NO₂), 4.71 (*dd*, 1H, *J* = 13.3, 11.3 Hz, C*H*HNO₂), 4.34-3.95 (*m*, 3H, OCH₂CH₃ and C*H*Ph), 2.68-2.11 (*m*, 4H, CH_{cyclooctane}), 1.85-1.54 (*m*, 6H, CH_{cyclooctane}), 1.43-1.69 (*m*, 2H, CH_{cyclooctane}), 1.31 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃): δ = 210.9, 170.7, 136.1, 129.6, 128.8, 128.4, 78.7, 64.6, 62.1, 46.2, 40.1, 31.8, 27.4, 26.4, 24.9, 22.6, 14.2. IR (solid): $\tilde{\nu}$ = 2931, 2859, 1742, 1705, 1553, 1455, 1378, 1281, 1220, 1183, 1093, 1022, 703 cm⁻¹. HRMS (ESI) *m*/*z*: calculated [C₁₉H₂₅NO₅Na]⁺ 370.1625, measured 370.1627.

Methyl (25,35)-2-Acetyl-2-methyl-4-nitro-3-phenylbutanoate (3hA)

The product **3hA** was synthesized as described in **GP6-standard** using 0.125 mL THF (n(2A) = 0.25 mmol, n(1h) = 0.50 mmol, $n(C1b-Cu^*) = 0.0125$ mmol) within 72 h reaction time. **3hA** was isolated as a white solid (57.2 mg, 0.205 mmol, 80%, $dr_{(S,S+R,R):(R,S+S,R)} = 84:16$, $ee_{(S,S)} = 75\%$). Diastereomerically pure substance **3hA** was obtained by trituration of the mixture of diastereomers with n-hexane for analytical purposes. The ee values were determined by chiral column HPLC: Chiracel OD-H, n-hexane/*i*PrOH (91/9), 0.7 mL min⁻¹, detection at 214 nm, $t_{(S,S)} = 30.1$ min, $t_{(R,S)} = 22.1$ min.

C₁₄**H**₁₇**NO**₅. **MW**: 279.29 g/mol. MP = 71-72 °C. $[\alpha_D^{20}] = -17.7$ (c = 0.24 g/dl, CH₂Cl₂), ¹H NMR (300 MHz, **CDCl**₃): δ = 7.33-7.27 (m, 3H, Ar*H*), 7.23-7.18 (m, 2H, Ar*H*), 4.93 (m, 2H, CH₂NO₂), 4.24 (dd, 1H, *J* = 8.0, 6.6 Hz, CHAr), 3.64 (*s*, 3H,OCH₃), 2.11 (s, 3H, COCH₃), 1.44 (s, 3H, CH₃)..¹³C NMR (75 MHz, CDCl₃): δ = 205.4, 171.4, 135.5, 129.3, 128.9, 128.5, 76.9, 62.1, 52.9, 47.4, 27.8, 18.1. IR (solid): $\tilde{\nu}$ = 3000, 2954, 1711, 1603, 1552, 1497, 1455, 1434, 1379, 1359, 1307, 1238, 1198, 1118, 1096, 976, 832, 704 cm⁻¹. HRMS (ESI) *m*/*z*: calculated [C₁₄H₁₈NO₅]⁺ 280.1179, measured 280.1169.

CCDC 1872230 contains the supplementary crystallographic data for compound **3hA**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Dimethyl (R)-2-(2-Nitro-1-phenylethyl)malonate (3iA)

The product **3iA** was synthesized as described in **GP6-standard**, using 0.1 mL THF (instead of 0.4 mL) within 72 h reaction time. **3iA** was isolated as colorless oil (32.4 mg, 0.115 mmol, 58%, $ee_{(R)} = 80\%$). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (70/30), 0.5 mL min⁻¹, detection at 254 nm, $t_{(R)} = 26.5$ min, $t_{(S)} = 24.3$ min.

C₁₃**H**₁₅**NO**₆. **MW**: 281.26 g/mol. $[\alpha_D^{20}] = -4.3$ (c = 0.37 g/dl, CHCl₃), ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.36-7.27 (m, 3H, Ar*H*), 7.25-7.19 (m, 2H, Ar*H*), 4.93 (*dd*, 1H, *J* = 13.2, 5.4 Hz, CH*H*NO₂), 4.86 (*dd*, 1H, *J* = 13.2, 8.6 Hz, C*H*HNO₂), 4.25 (*td*, 1H, *J* = 8.6, 5.4 Hz, C*H*Ar), 3.86 (*d*, 1H, *J* = 9.0 Hz, C*H*(CO₂Me)₂), 3.75 (s, 3H, CO₂C*H*₃), 3.55 (s, 3H, CO₂C*H*₃).¹³**C NMR (75 MHz, CDCl₃)**: δ = 168.0, 167.4, 136.2, 129.1, 128.5, 128.0, 77.5, 54.9, 53.1, 52.9, 43.0. **IR (solid)**: $\tilde{\nu}$ = 3033, 2956, 1731, 1551, 1434, 1379, 1290, 1256, 1236, 1196, 1152, 1018, 700 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₃H₁₅NNaO₆]⁺ 304.0792, measured 304.0793. The absolute configuration of (-)- was determined to be (R)-isomer by comparing the specific optical rotation with literature value.²⁴ [lit. for the (*S*)-enantiomere (93% *ee*): [α_D^{20}] = + 4.40 (c = 1.02 g/dL, CHCl₃)]

The product **3jA** was synthesized as described in **GP6-standard** using 0.1 mL THF (instead of 0.4 mL) at -30°C within 72 h reaction time. **3jA** was isolated as colorless oil and as a mixture of diastereomeres, which could not be separated (45.4 mg, 0.142 mmol, 71%, $dr_{(S,S+R,R):(R,S+S,R)}$ = 84:16, $ee_{(S,S)}$ = 91%). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (90/10), 0.5 mL min⁻¹, detection at 214 nm, $t_{(S,S)}$ = 57.7 min, $t_{(R,S)}$ = 49.5 min.
C₁₆**H**₂₀**N**₂**O**₅. **MW**: 320.35 g/mol. $[\alpha_D^{20}] = 62.4$ (c = 0.16 g/dl, CH₂Cl₂). **Major Diastereomer**: ¹**H NMR** (**300 MHz, CDCl₃**): δ = 7.32-7.23 (*m*, 5H, Ar*H*), 5.29 (*dd*, 1H, *J* = 13.7, 11.0 Hz, CH*H*NO₂), 5.02 (*dd*, 1H, *J* = 13.7, 3.4 Hz, CHHNO₂), 4.34-4.15 (*m*, 3H, *J* = 7.1 Hz, OCH₂CH₃ and CHCH₂NO₂), 3.15-3.05 (*m*, 1H, Alkyl*H*), 2.76 (*s*, 3H, NCH₃), 2.32-2.17 (*m*, 2H, Alkyl*H*), 2.07-1.96 (*m*, 1H, Alkyl*H*), 1.29 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 171.5, 170.9, 135.5, 129.3, 128.9, 128.6, 77.4, 62.4, 58.0, 47.4, 46.8, 30.2, 28.6, 14.2. **Minor Diastereomer**: ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.32-7.23 (*m*, 5H, Ar*H*), 5.51 (*dd*, 1H, *J* = 13.6, 3.6 Hz, CH*H*NO₂), 5.11 (*dd*, 1H, *J* = 13.6, 11.1 Hz, CHHNO₂), 4.34-4.15 (*m*, 2H, *J* = 7.1 Hz, OCH₂CH₃), 4.11 (*dd*, 1H, *J* = 11.1, 3.6 Hz, CHCH₂NO₂), 3.35-3.25 (*m*, 1H, Alkyl*H*), 3.30-2.91 (*m*, 1H, Alkyl*H*), 2.75 (*s*, 3H, NCH₃), 2.46-2.36 (*m*, 1H, Alkyl*H*), 2.07-1.96 (*m*, 1H, Alkyl*H*), 1.30 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR** (**75 MHz, CDCl₃**): δ =170.3, 170.0, 135.9, 129.1, 128.9, 128.4, 77.4, 62.4, 58.2, 47.4, 46.7, 30.4, 27.0, 14.17. **IR (solid)**: $\tilde{\nu}$ = 3032, 2983, 2935, 2887, 1730, 1686, 1551, 1498, 1455, 1433, 1404, 1379, 1307, 1270, 1230, 1197, 1099, 705 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₂₀N₂NaO₅]⁺ 343.1264, measured 343.1248.

Ethyl (S)-1-Methyl-3-((S)-2-nitro-1-phenylethyl)-2,5-dioxopyrrolidine-3-carboxylate (3kA)

The product **3kA** was synthesized as described in **GP6-standard** using 0.1 mL THF (instead of 0.4 mL). **3kA** was isolated as colorless oil and as a mixture of diastereomeres, which could not be separated (63.4 mg, 0.189 mmol, 95%, $dr_{(S,S+R,R):(R,S+S,R)} = 83:17$, $ee_{(S,S)} = 98\%$). The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (80/20), 1.0 mL min⁻¹, detection at 220 nm, $t_{(S,S)} = 55.6$ min, $t_{(R,S)} = 20.6$ min.

C₁₆**H**₁₈**N**₂**O**₆. **MW**: 334.33 g/mol. $[\alpha_D^{20}] = 60.5$ (c = 0.36 g/dl, CH₂Cl₂). **Major Diastereomer**: ¹**H NMR** (**300 MHz, CDCl₃**): δ = 7.34-7.28 (*m*, 3H, Ar*H*), 7.16-7.13 (*m*, 2H, Ar*H*), 5.25 (*dd*, 1H, *J* = 13.7, 10.6 Hz, CH*H*NO₂), 5.12 (*dd*, 1H, *J* = 13.8, 3.6 Hz, CHHNO₂), 4.34-4.15 (*m*, 3H, *J* = 7.1 Hz, OCH₂CH₃ and CHCH₂NO₂), 2.92 (*s*, 3H, NCH₃), 2.86 (*d*, *J* = 18.2 Hz, COC*H*H), 2.66 (*d*, *J* = 18.2 Hz, COC*H*H), 1.29 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 174.8, 173.4, 169.1, 133.7, 129.6, 129.4, 128.9, 76.8, 63.4, 56.7, 46.8, 38.4, 25.4, 14.0. **Minor Diastereomer**: ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.34-7.28 (*m*, 3H, Ar*H*), 7.25-7.20 (*m*, 2H, Ar*H*), 5.19 (*dd*, 1H, *J* = 13.4, 4.1 Hz, CH*H*NO₂), 5.12 (*dd*, 1H, *J* = 13.4, 10.5 Hz, CHHNO₂), 4.42 (*dd*, 1H, *J* = 10.5, 4.1 Hz, CHCH₂NO₂), 4.34-4.15 (*m*, 2H, *J* = 7.1 Hz, OCH₂CH₃) 3.19 (*d*, *J* = 18.1 Hz, COC*H*H), 2.66 (*d*, *J* = 18.1 Hz, CCH₁), 1.33 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃**): δ = 173.8, 173.6, 170.5, 133.7, 129.4, 129.2, 128.7, 76.0, 63.6, 58.1, 46.3, 35.7, 25.4, 14.2. **IR (solid**): $\tilde{\nu} = 2984$, 1785, 1736, 1699, 1553, 1497, 1435, 1379, 1341, 1284, 1245, 1187, 1128, 1076, 1011, 913, 732, 704 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₁₈N₂NaO₆]⁺ 357.1057, measured 357.1050.

Ethyl (1S,2S,3S,4R)-3-Nitro-6-oxo-2-phenylbicyclo[2.2.2]octane-1-carboxylate (4-D2)

4-D2

The product **4-D2** was synthesized as described in **GP6-standard** using 0.1 mL THF (instead of 0.4 mL) at 22°C. After completing 71 h of reaction time, *tetra-n*-butylammonium fluoride (60 µL, 0.3 equiv, 1 M in

THF) was added and the reaction mixture was stirred an additional hour at room temperature. The work up was proceeded as described in **GP6 Standard** and **4-D2** was isolated as colorless oil (59.6 mg, 0.189 mmol, 92%, $dr_{(S,S,S,R+R,R,R,S):(R,S,S+S,R,R,R)} = 93:7$, $ee_{(S,S,S,R)} = 97\%$). Diastereomerically pure substance **4-D2** was obtained by purification *via* preparative TLC (petroleum ether/ethyl acetate, 8/1) for analytical purposes. The *ee* values were determined by chiral column HPLC: Chiracel OD-H, *n*-hexane/*i*PrOH (95/5), 0.7 mL min⁻¹, detection at 220 nm, $t_{(S,S,S,R)} = 46.1$ min, $t_{(R,R,S)} = 43.7$ min.

C₁₇**H**₁₉**NO**₅. **MW**: 317.34 g/mol. [α_D^{20}] = 25.3 (c = 0.34 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.36-7.26 (*m*, 5H, Ar*H*), 5.04-4.99 (*m*, 1H, CHNO₂), 5.04-4.99 (*m*, 1H, CHNO₂), 4.49-4.45 (*m*, 1H, CHPh), 4.13-3.90 (*m*, 2H, OCH₂CH₃), 3.05 (*sext*, 1H, *J* = 2.8 Hz, (CH₂)₂CHCHNO₂), 2.70 (*dt*, 1H, *J* = 19.5, 2.4 Hz, COCHHCH), 2.50-2.37 (*m*, 2H, COCHHCH and (C)₃CHHCH₂), 2.20-1.94 (*m*, 3H, (C)₃CHHCH₂CH), 1.11 (*t*, 3H, *J* = 7.2 Hz, OCH₂CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 205.7, 168.7, 136.5, 129.2, 129.0, 128.5, 90.3, 61.4, 59.2, 44.4, 38.3, 34.8, 23.8, 20.1, 14.0. IR (solid): $\tilde{\nu}$ = 2977, 1726, 1550, 1497, 1471, 1455, 1406, 1368, 1306, 1267, 1242, 1171, 1076, 1047, 705 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₇H₁₉NO₅Na]⁺ 340.1155, measured 340.1164.

Confirming the Configurational Outcome with 2D-NMR Experiments of Compound 4-D2.

To confirm the structure of the major diastereomer of compound **4-D2**, several NMR-Experiments were performed (COSY, HSQC, HMBC and NOESY) and the different 2D-NMR spectra are shown in the next chapters.

COSY-Experiment

HSQC-Experiment

NOESY-Experiment

Upscaling Experiment for the Synthesis of Ethyl (S)-1-((S)-2-Nitro-1-phenylethyl)-2-oxocyclopentane-1carboxylate 3aA

The product **3aA-D2** was synthesized as described in **GP6 neat**. Using 1.27 mL **1a** (1.34 g, 8.60 mmol, 2.0 equiv), 0.64 g **2A** (4.30 mmol, 1.0 equiv) and 19.7 mg of the catalyst **C1b-Cu*** (0.0215 mmol, 0.5 mol%) for 165 h at -20 °C. The product **3aA-D2** was isolated as a white solid (1.20 g, 3.904 mmol, 91%, dr = 95:5, ee = 99%). The analytical data are in agreement with the published data in this supporting information.

Catalyst Recycling:

The catalytic reaction was performed as described in **GP6-standard**. Upon filtration of the reaction mixture the catalyst **C1b-Cu*** turned green on the silica and stuck on the top end of the silica pad (see pictures left), while isolating the crude product with a solvent mixture of petroleum ether/ethyl acetate (1/1, 5 to 10 mL). The residual solvent was then completely pressed through the silica pad (to dryness) to allow for a solvent exchange. Then the silica pad was rinsed using a solvent mixture of CH₂Cl₂/THF/NEt₃ (66/33/1). By that the catalyst turned brown again and the activated catalyst was collected using approximately 10 mL of the solvent mixture (see pictures right). The solvent was removed under reduced pressure, the resulting brown solid was dried in high *vacuo* and the activated catalyst could be used without further purification in the next catalytic transformation. For that purpose the reisolated catalyst **C1b-Cu*** was dissolved in THF (0.05 mL) and transferred to a reaction vessel. Additional THF (0.05 mL) was used to allow for a complete catalyst transfer. Afterwards the substrates were added as described in **GP6-standard**.

Derivatisation of the Catalytic Product 3aA

Ethyl (15,2R)-2-hydroxy-1-((S)-2-nitro-1-phenylethyl)cyclopentane-1-carboxylate (10)

3aA (71.5 mg, 0.234 mmol, 1.0 equiv, $dr_{(5,5+R,R):(R,5+S,R)} = 90:10$, $ee_{(5,5)} = 99\%$) was dissolved in a solvent mixture of ethanol/dichloromethane (1.0 mL/0.5 mL) and cooled to -78 °C under nitrogen atmosphere. NaBH₄ (35.4 mg, 0.937 mmol, 4.0 equiv) was added in portions to the reaction mixture at -78 °C which was then slowly warmed to room temperature overnight. Afterwards saturated aqueous ammonium chloride (5 mL) was added and the crude product was extracted with CH₂Cl₂ (3x10 mL). The combined organic fraction was washed with water (5 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified via column chromatography on silica gel (petroleum ether/ethyl acetate, 5/1 to 2/1) to yield the pure product **10** as a colorless solid and as a mixture of diastereomers, which could not be separated (52.9 mg, 0.172 mmol, dr = 90:10, 74%).

C₁₆**H**₂₁**NO**₅. **MW**: 307.35 g/mol. **MP** = 139-140 °C. [α_D^{20}] = 31.8 (c = 0.28 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.33-7.27 (*m*, 3H, Ar*H*), 7.25-7.21 (*m*, 2H, Ar*H*), 5.06 (*dd*, 1H, *J* = 13.2, 11.6 Hz, CH*H*NO₂), 4.83 (*dd*, 1H, *J* = 13.2, 4.2 Hz, C*H*HNO₂), 4.28-4.21 (*m*, 2H, C*H*OH and C*H*Ph), 4.16-3.97 (*m*, 2H, OC*H*₂CH₃), 2.34-2.26 (*m*, 1H, C*H*_{cyclopentane}), 2.05-1.87 (*m*, 3H, C*H*_{cyclopentane}), 1.66-1.52 (*m*, 3H, C*H*_{cyclopentane} and CHO*H*), 1.17 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ = 174.0, 137.3, 128.7, 128.3, 128.0, 78.5, 75.1, 62.7, 61.2, 45.9, 33.8, 32.2, 21.1, 14.0. **IR (solid)**: $\tilde{\nu}$ = 3500, 3034, 2978, 2934, 2877, 1707, 1555, 1543, 1443, 1378, 1316, 1217, 1189, 1084, 1070, 1013, 701 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₂₀NO₅]⁻ 306.1336, measured 306.1340.

CCDC 1872237 contains the supplementary crystallographic data for compound **10**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The reaction was performed in analogy to a literature procedure.²⁵ **10** (24.7 mg, 0.0804 mmol, 1.0 equiv) was dissolved in MeOH (1 mL) under nitrogen atmosphere and NiCl₂x6H₂O (19.12 mg, 0.0804 mmol, 1.0 equiv) was added. The reaction mixture was cooled to 0 °C and NaBH₄ (30.42 mg, 0.8042 mmol, 10 equiv) was added in several portions. The reaction mixture was slowly warmed to room temperature overnight. Afterwards, a saturated aqueous NH₄Cl-solution (5 mL) was added and the aqueous phase was extracted using dichloromethane (3x5 mL). The combined organic fraction was dried over MgSO₄ and the solvents were removed under reduced pressure to yield the product **11** (18.2 mg, 0.0656 mmol, 82%) as a colorless solid. Product **11** slowly cyclizes to the corresponding spiro-compound by storage for longer time, whereby also decomposition was observed.

C₁₆**H**₂₃**NO**₅. **MW**: 277.36 g/mol. **MP** = 127-128°C. $[\alpha_D^{20}] = 29.8$ (c = 0.25 g/dl, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl₃)**: δ = 7.28-7.12 (*m*, 5H, Ar*H*), 4.30-4.25 (*m*, 1H, CHPh), 3.97-3.85 (*m*, 2H, OCH₂CH₃) 3.34-3.29 (*m*, 1H, CHOH), 3.25-3.09 (*m*, 2H, CH₂NH₂), 2.55 (*br*, 3H, NH₂ and OH) 2.33-2-26 (*m*, 1H, CH_{cyclopentane}), 1.98-1.70 (*m*, 3H, CH_{cyclopentane}), 1.62-1.56 (*m*, 2H, CH_{cyclopentane}), 1.08 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (176 MHz, CDCl₃)**: δ = 175.1, 141.4, 128.7, 128.3, 126.9, 77.3, 63.5, 60.5, 51.4, 43.3, 33.4, 28.5, 20.9, 14.0. **IR** (**solid**): $\tilde{\nu}$ = 3296, 3030, 2923, 2872, 2853, 2244, 1684, 1454, 1375, 1261, 1089, 1064, 1025, 908 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₂₃NO₃Na]⁻ 300.1570, measured 300.1556.

CCDC 1908074 contains the supplementary crystallographic data for compound **11**. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

(4S,5S,6R)-6-hydroxy-4-phenyl-2-azaspiro[4.4]nonan-1-one (15)

11 (30.7 mg, 0.111 mmol, 1.0 equiv) was dissolved in methanol (60 μ L), cooled to 0°C and 10% aqueous KOH solution (71 μ L, 0.111 mmol, 1.0 equiv) was added dropwise. The reaction mixture was slowly warmed to room temperature overnight. After removing the solvent under reduced pressure, the residue was dissolved in dichloromethane (1.5 mL) and washed with saturated aqueous NH₄Cl solution (0.2 mL). The organic layer was separated, washed with brine (1 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure to yield the product **15** (23.8 mg, 0.103 mmol, 93%) as a colorless oil.

C₁₄**H**₁₇**NO**₂. **MW**: 231.29 g/mol. [α_D^{20}] = -101.7 (c = 0.21 g/dl, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 7.35-7.19 (*m*, 5H, Ar*H*), 6.57 (*b*, 1H, N*H*CO)4.10-4.06 (*m*, 1H, C*H*Ph), 3.74-3.68 (*dd*, 1H, *J* = 7.0, 10.0 Hz, C*H*OH), 3.33-3.29 (*m*, 2H, C*H*₂NH₂), 2.26-2.12 (*m*, 1H, C*H*_{cyclopentane}), 2.09-1.94 (*m*, 2H, C*H*_{cyclopentane}), 1.89-1.62 (*m*, 3H, O*H* and C*H*_{cyclopentane}), 1.51-1.40 (*m*, 1H, C*H*_{cyclopentane}). ¹³C NMR (176 MHz, CDCl₃): δ = 181.3, 142.3, 129.2, 127.7, 127.5, 77.3, 75.9, 50.9, 47.6, 35.6, 33.5, 21.4. IR (solid): $\tilde{\nu}$ = 3266, 3029, 2948, 2875, 2244, 1680, 1494, 1485, 1454, 1433, 1370, 1263, 1083, 1063, 1025, 909 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₄H₁₇NO₂Na]⁺ 254.1451, measured 254.1166.

Ethyl (3S,3aS)-3-phenyl-2,4,5,6-tetrahydrocyclopenta[b]pyrrole-3a(3H)-carboxylate (12)

3aA (67.8 mg, 0.222 mmol, 1.0 equiv, $dr_{(S,S+R,R):(R,S+S,R)} = 94:6$, $ee_{(S,S)} = 99\%$) was dissolved in a solvent mixture of methanol/dichloromethane (0.4 mL/0.4 mL) and cooled to 0 °C. Zinc powder (145.1 mg, 2.220 mmol, 10 equiv), followed by glacial acetic acid (0.38 ml, 6.662 mmol, 30 equiv) were added to the reaction mixture at 0 °C. After 30 minutes the ice bath was removed and stirring was continued 4.5 h at room temperature. The reaction mixture was filtrated and the residue was washed with dichloromethane (2 mL). After evaporating the solvents, the reaction mixture was redissolved in dichloromethane (5 mL) and washed with saturated aqueous NaHCO₃ (5 mL). The water phase was extracted twice with

dichloromethane (5 mL) and the combined organic fractions were dried over Na₂SO₄. After removing the solvent under reduced pressure, the crude product was purified via column chromatography on silica gel (CH₂Cl₂/MeOH, 40/1 to 20/1) to yield the pure product **12** as a yellowish oil and as a mixture of diastereomers, which could not be separated (30.1 mg, 0.117 mmol, dr = 94:6, 53%).

C₁₆**H**₁₉**NO**₂. **MW**: 257.33 g/mol. [α_D^{20}] = -50.0 (c = 0.19 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃)**: δ = 7.32-7.21 (*m*, 3H, Ar*H*), 7.09-704 (*m*, 2H, Ar*H*), 4.66-4.53 (*m*, 1H, CHPh), 4.44 (*d*, 1H, *J* = 14.9 Hz, CHHNC), 4.25 (*q*, 2H, *J* = 7.0 Hz, OCH₂CH₃), 3.85 (*d*, 1H, *J* = 6.2 Hz, CHHNC), 2.55-2.39 (*m*, 1H, CH_{cyclopentane}), 2.32-2.1.99 (*m*, 2H, CH_{cyclopentane}), 1.88-1.74(*m*, 2H, CH_{cyclopentane}), 1.30 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃), 0.99-0.0.86(*m*, 1H, CH_{cyclopentane}). ¹³**C NMR (176 MHz, CDCl₃)**: δ = 185.6, 173.1, 140.9, 128.7, 128.1, 127.1, 72.6, 61.5, 52.4, 33.6, 27.7, 25.8, 25.6, 14.3. **IR (solid)**: $\tilde{\nu}$ = 3028, 2955, 2873, 1719, 1673, 1494, 1449, 1298, 1226, 1174, 1144, 1129, 1055, 1026, 766, 701 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₁₆H₂₀NO₂]⁺ 258.1489, measured 258.1478.

3aA (207.0 mg, 0.678 mmol, 1.0 equiv, $dr_{(5,5+R,R):(R,5+S,R)} = 94:6$, $ee_{(5,5)} = 99\%$) was dissolved in THF (3 mL) and a solution of ammonium chloride (36.3 mg, 0.678 mmol, 1.0 equiv) in H₂O (1 mL) was added. Afterwards zinc powder (443.25 mg, 6.780 mmol, 10 equiv) was added in portions and the reaction mixture was stirred for 3 h at room temperature. The reaction mixture was filtrated and the residue was washed with THF (2 mL). After evaporating the solvents, the reaction mixture was redissolved in chloroform (5 mL) and washed with H₂O (5 mL). The water phase was extracted twice with chloroform (5 mL) and the combined organic fractions were dried over MgSO₄. After removing the solvent under reduced pressure, the crude product was purified via column chromatography on silica gel (CH₂Cl₂/MeOH, 40/1 to 20/1) to yield the pure product **13** as colorless oil (115.2 mg, 0.422 mmol, 62%) and the side product **12** was isolated as yellowish oil (48.9 mg, 0.190 mmol, 28%).

C₁₆**H**₁₉**NO**₃. **MW**: 273.33 g/mol. $[\alpha_D^{20}] = 28.4$ (c = 0.29 g/dl, CH₂Cl₂). ¹**H NMR (700 MHz, CDCl₃)**: δ = 7.36 (*t*, 2H, *J* = 7.6 Hz, Ar*H*), 7.30 (*t*, 1H, *J* = 7.5 Hz, Ar*H*), 7.14 (*d*, 2H, *J* = 7.7 Hz, Ar*H*), 5.06-5.01 (*m*, 1H, CHPh), 4.29 (*q*, 2H, *J* = 7.1 Hz, OCH₂CH₃), 4.25 (*d*, 1H, *J* = 13.8 Hz, CHHNO), 3.99 (*d*, 1H, *J* = 6.8 Hz, CHHNO), 2.63-2.56

(*m*, 1H, C*H*_{cyclopentane}), 2.47-2.41 (*m*, 1H, C*H*_{cyclopentane}), 2.13-2.05(*m*, 1H, C*H*_{cyclopentane}), 1.97-1.91 (*m*, 1H, C*H*_{cyclopentane}), 1.80-1.75 (*m*, 1H, C*H*_{cyclopentane}), 1.34 (*t*, 3H, J = 7.1 Hz, OCH₂C*H*₃), 1.01-0.95(*m*, 1H, C*H*_{cyclopentane}). ¹³C NMR (176 MHz, CDCl₃): $\delta = 172.9$, 152.6, 139.0, 129.3, 128.0, 127.6, 73.3, 67.4, 62.3, 46.7, 29.8, 26.7, 22.9, 14.4. IR (solid): $\tilde{\nu} = 3416$, 3030, 2975, 1722, 1637, 1497, 1458, 1352, 1285, 1252, 1229, 1207, 1142, 1019, 756, 703 cm⁻¹. HRMS (ESI) *m/z*: calculated [C₁₆H₁₉NO₃]⁺ 274.1438, measured 274.1434.

6a-ethyl 2,3-dimethyl (3a*R*,6a*S*,7*S*)-7-Phenyl-5,6,7,8-tetrahydrocyclopenta[2,3]pyrrolo[1,2-*b*][1,2] oxazole-2,3,6a(4*H*)-tricarboxylate (14)

13 (40.2 mg, 0.147 mmol, 1.0 equiv) was dissolved in toluene (0.5 mL), dimethyl acetylenedicarboxylate (19.0 μ L, 21.95 mg, 0.154 mmol, 1.05 equiv) was added and the reaction mixture was stirred overnight at 100 °C. After evaporating all volatiles under reduced pressure, the crude product was purified via column chromatography on silica gel (petroleum ether/ethyl acetate, 5/1 to 2/1) to yield the pure product **14** as yellowish oil (26.8 mg, 0.0645 mmol, 43%).

C₂₂**H**₂₅**NO**₇. **MW**: 415.44 g/mol. [α_D^{20}] = 106.5 (c = 0.27 g/dl, CH₂Cl₂). ¹**H NMR (300 MHz, CDCl₃**): δ = 7.33-7-14 (*m*, 5H, Ar*H*), 4.39-4.17 (*m*, 3H, C*H*Ph and OCH₂CH₃), 3.93-3.73 (*m*, 1H, C*H*HNO), 3.84 (*s*, 3H, OCH₃) 3.81 (*s*, 3H, OCH₃), 3.62-3.48 (*m*, 1H, *J* = 6.8 Hz, CH*H*NO), 2.45-2.33 (*m*, 1H, C*H*_{cyclopentane}), 2.47-2.41 (*m*, 1H, C*H*_{cyclopentane}), 2.17-1.84 (*m*, 4H, C*H*_{cyclopentane}), 1.78-1.62 (*m*, 1H, C*H*_{cyclopentane}), 1.47-1.39 (*m*, 1H, C*H*_{cyclopentane}), 1.32 (*t*, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³**C NMR (75 MHz, CDCl₃)**: δ =172.5, 161.5, 159.7, 137.3, 128.5, 128.32, 128.29, 127.9, 127.1, 72.6, 68.7, 61.8, 52.43, 52.29, 52.1, 47.3, 39.0, 30.3, 24.0, 14.1. **IR (solid)**: $\tilde{\nu}$ = 3061, 2954, 2852, 1719, 1631, 1437, 1312, 1280, 1238, 1205, 1149, 1096, 1034, 762, 702 cm⁻¹. **HRMS (ESI)** *m/z*: calculated [C₂₂H₂₅NO₇]⁺ 416.1704, measured 416.1708.

Confirming the Configurational Outcome with 2D-NOESY-NMR Experiments of Compound 14.

To confirm the structure of the major diastereomer of compound **14**, a NOESY NMR-Experiment was performed and is shown in the following 2D-NMR spectra.

Kinetic Experiments

Kinetic Experiments – Initial Rate Kinetic Analysis

Determining the Partial Reaction Order for the Catalyst C1b-Cu*

For varying initial concentrations of the activated Cu(II)-catalyst **C1b-Cu*** (5.1 mol%-1.0 mol%): To a NMR sample tube were added a solution of catalyst **C1b-Cu*** (0.00254 mmol, 0.00200 mmol, 0.00151 mmol, 0.00103 mmol, 0.000503 mmol), 1,2-diphenylethane (internal standard, 0.05 mmol), ketoester **1a** (8.15 μ l, 8.59 mg, 0.055 mmol, 1.1 equiv), nitroolefin **2A** (7.46 mg, 0.05 mmol, 1.0 equiv) in tetrahydrofuran-d8 (0.5 mL). The reaction mixture was analyzed by ¹H NMR spectroscopy at room temperature to monitor the yield / time dependence of **3aA-D2**.

Concentration of **3aA-D2** in mol/L versus time in the reactions with different catalyst loadings are summarized in **Table S1** and are plotted in **Figure S1**. The partial reaction order for the catalyst **C1b-Cu***was determined in **Figure S2** as 0.93 ^(ref.26) using the differential method.^{27, 28, 29}

Table S1: Varying initial concentrations of the activated Cu(II)-catalyst C1b-Cu* (5.1 mol%-1.0 mol%)							
Entry	[C1b-Cu*]	d [3aA-D2]/dt	In ([C1b-Cu*])	ln(d[3aA]/dt)			
	in mol/L	in mol/L min					
1	0,005074	1,48399E-04	-5,28	-8,82			
2	0,004002	1,38750E-04	-5,52	-8,88			
3	0,003020	1,02244E-04	-5,80	-9,19			
4	0,002056	6,62626E-05	-6,19	-9,62			
5	0,001006	3,57237E-05	-6,90	-10,24			

Figure S1: Plots of the Yields of 3aA -D2 in mol/L versus time with different catalyst loadings.

Determining the Partial Reaction Order for the Ketoester 1a

For varying initial concentrations of the ketoester **1a** (1.7 equiv – 0.3 equiv): To a NMR sample tube were added a solution of catalyst **C1b-Cu*** (1.16 mg, 0.00125 mmol, 2.5 mol%), 1,2-diphenylethane (internal standard, 0.05 mmol), ketoester **1a** (0.0839 mmol, 0.0642 mmol, 0.0456 mmol, 0.0348 mmol, 0.0227 mmol, 0.0163 mmol), nitroolefin **2A** (7.46 mg, 0.05 mmol, 1.0 equiv) in tetrahydrofuran-d8 (0.5 mL). The reaction mixture was analyzed by ¹H NMR spectroscopy at room temperature to monitor the yield / time dependence of **3aA-D2**.

Concentration of **3aA-D2** in mol/L versus time in the reactions for varying initial concentrations of the ketoester **1a** are summarized in the **Table S2** and are plotted in **Figure S3**. The partial reaction order for the ketoester **1a** was determined in **Figure S4** as 0.67 ^(ref. 30) using the differential method. ^{27, 28, 29}

Table S2: Varying initial concentrations of the ketoester 1a (1.7 equiv – 0.3 equiv).								
Entry	[1a] in mol/L	d [3aA-D2]/dt in mol/L min	ln ([1a])	ln(d[3aA-D2]/dt)				
1	0,16782	1,34285E-04	-1,78	-8,92				
2	0,12844	1,21685E-04	-2,05	-9,01				
3	0,09120	9,06893E-05	-2,39	-9,31				
4	0,06966	7,88032E-05	-2,66	-9,45				
5	0,04548	5,83488E-05	-3,09	-9,75				
6	0,03266	4,57819E-05	-3,42	-9,99				

Figure S3. Plots of the Yields of 3aA-D2 in mol/L versus time with different equivalents of the ketoester 1a.

Determining the Partial Reaction Order for the Nitroolefin 2A

For varying initial concentrations of the nitroolefin **2A** (1.5 equiv – 0.5 equiv): To a NMR sample tube were added a solution of catalyst **C1b-Cu*** (2.33 mg, 0.0025 mmol, 5 mol%), 1,2-diphenylethane (internal standard, 0.05 mmol), ketoester **1a** (7.41 μ l, 7.81 mg, 0.05 mmol, 1.0 equiv), nitroolefin **2A** (0.0750 mmol, 0.0625 mmol, 0.0502 mmol, 0.0371 mmol, 0.0252 mmol) in tetrahydrofuran-d8 (0.5 mL). The reaction mixture was analyzed by ¹H NMR spectroscopy at room temperature to monitor the yield / time dependence of **3aA-D2**.

Concentration of **3aA-D2** in mol/L versus time in the reactions for varying initial concentrations of the nitroolefin **2A** are summarized in the **Table S3** and are plotted in **Figure S5**. The partial reaction order for the nitroolefin **2A** was determined in **Figure S6** as 0.96 ^(ref. 31) using the differential method. ^{27, 28, 29}

Table S3: Varying initial concentrations of the nitroolefin 2A (1.5 equiv – 0.5 equiv).									
Entry	Equiv.	[2A] in mol/L	d [3aA-D2]/dt in mol/L min	ln ([2A])	ln(d[3aA-D2]/dt)				
1	1.50	0,149916	2,51365E-04	-1,90	-8,29				
2	1.25	0,124974	2,16457E-04	-2,08	-8,44				
3	1.00	0,100302	1,61663E-04	-2,30	-8,73				
4	0.75	0,074154	1,33278E-04	-2,60	-8,92				
5	0.50	0,050420	8,79391E-05	-2,99	-9,34				

Figure S5: Plots of the Yields of 3aA-D2 in mol/L versus time with different equivalents of the nitroolefin 2A.

Figure S6: Plot for determining the partial reaction order for the nitroolefin 2A (c in mol/L).

Kinetic Experiments – Probing Catalyst Robustness and Product Influence

For probing the catalyst stability/robustness and product influence during the catalytic reaction three kinetic experiments were performed under the "same-excess" conditions of the reactants **1a** and **2A** in analogy to *Blackmond*.^{32,33} The different initial concentrations for the reactants **1a** and **2A** and the catalyst for the kinetic experiments are summarized in **Table S4**.

Table S4: Different initial concentrations of β -ketoester **1a**, nitroolefin **2A** and product **3aA** in "same-excess"-experiments and "product addition" for investigation of possible product inhibition and catalyst stability.

#	Experiment	[1a]	Equiv	[2A]	Equiv	[C1b-Cu*]	Equiv.	[3aA]	Equiv.
		/mol/L	of 1a	/mol/L	of 2A	/mol/L	of C1b-Cu*	/mol/L	of 3aA
B1	Standard	0.11	1.1	0.10	1.0	0.0025	0.025	0.00	0.0
B2	Same Excess	0.06	0.6	0.05	0.5	0.0025	0.025	0.00	0.0
B3	Product Addition	0.06	0.6	0.05	0.5	0.0025	0.025	0.05	0.5

The corresponding experiments **B1-B3** were performed by adding a solution of the catalyst **C1b-Cu***, 1,2diphenylethane (internal standard, 0.05 mmol), ketoester **1a** (freshly distilled), and nitroolefin **2A** in tetrahydrofuran-d8 (0.5 mL, degassed via "freeze-pump-thaw"-method) to an NMR sample tube under vigorous exclusion of air (**Table S4**). The reaction mixture was analysed by ¹H NMR spectroscopy at room temperature to monitor the time dependence of the conversion of **2A**.

In **Figure S7** the concentration profiles of the "same-excess"- and "product-addition"-experiments are illustrated. The "same excess" experiment **B2** starts at the point, where the "standard"-experiment **B1** has reached 50% conversion. In the "standard" reaction **B1**, the catalyst already promoted ca. 10 turnovers, but in **B2** the catalyst is fresh and therefore the catalyst stability can be investigated. To compare the

concentration profiles **B1** and **B2**, the curve of **B2** is shifted by adjusting the starting time to the point where **B1** reaches the same conversion. Both profiles overlay when the time adjustment is performed (**Figure S7**, o with D) thus demonstrating that the catalyst is not affected by several catalyst turnovers and nearly no catalyst deactivation takes place during the catalytic reaction.

In a third experiment **B3**, 50 mol% of product **3aA** was added to the same initial conditions as in reaction **B2** to provide an identical concentration of substrates **1a** and **2A** but also of product **3aA** in the timeadjusted point of **B1**. This experiment enables investigation of the effect of product **3aA** on the catalyst's behaviour. Overlaying the concentration profile **B3** (**Figure S7**, \triangle with \Box) by adjusting the starting time to the point where the concentrations of curve **B3** is equal to **B1** leads to nearly complete overlay of both profiles. This nearly identical curve progression shows that the product **3aA** is not influencing the catalyst in the catalytic reaction.

Raw Data and Calculated Concentrations for the "Same-Excess"- and "Product Addition"-Experiments.

 Table S5. Raw data of the "same-excess"-experiments B1-B3, calculated concentration of nitroolefin 2A and time adjustment.

adjustment		B2 E0%			B2 E0% + E0	94 2 2 4	
B1 - Standa	rd	B2 -50%			B3 - 50% + 50% 38A		
Time /min	[2A] /mol/L	Time /min	Time adjustment /min	[2A] /mol/L	Time /min	Time adjustment /min	[2A] /mol/L
0	0,1000	0	480	0,0500	0	480	0,0500
13	0,0965	39	519	0,0468	10	490	0,0481
41	0,0920	48	528	0,0454	39	519	0,0467
71	0,0878	62	542	0,0443	69	549	0,0451
101	0,0831	92	572	0,0422	115	595	0,0422
143	0,0758	123	603	0,0421	154	634	0,0405
178	0,0716	152	632	0,0407	184	664	0,0395
208	0,0683	183	663	0,0383	214	694	0,0383
240	0,0657	209	689	0,0399	244	724	0,0374
268	0,0632	269	749	0,0368	275	755	0,0366
328	0,0592	329	809	0,0348	301	781	0,0358
388	0,0548	390	870	0,0336	361	841	0,0342
448	0,0512	449	929	0,0320	421	901	0,0324
509	0,0481	509	989	0,0315	481	961	0,0310
568	0,0449	569	1049	0,0298	541	1021	0,0298
628	0,0424	630	1110	0,0268	601	1081	0,0282
688	0,0398	690	1170	0,0257	661	1141	0,0276
748	0,0378	750	1230	0,0244	721	1201	0,0261
808	0,0355	810	1290	0,0241	781	1261	0,0251
868	0,0339	871	1351	0,0251	842	1322	0,0237
928	0,0321	930	1410	0,0237	901	1381	0,0233
989	0,0308	990	1470	0,0226	961	1441	0,0228
1048	0,0288	1051	1531	0,0215	1021	1501	0,0219
1108	0,0279	1111	1591	0,0219	1081	1561	0,0207
1228	0,0258	1170	1650	0,0193	1141	1621	0,0204
1288	0,0243	1230	1710	0,0196	1261	1741	0,0184
1348	0,0234	1290	1770	0,0195	1322	1802	0,0186
1408	0,0226	1351	1831	0,0189	1381	1861	0,0173
1469	0,0217	1410	1890	0,0189	1441	1921	0,0174
1528	0,0209	1470	1950	0,0175	1501	1981	0,0169

1588	0,0198			
1708	0,0185			
1828	0,0172			
1948	0,0163			

Kinetic Experiments – Determination of reaction orders using variable time normalization graphical analysis (VTNA)

The orders of the reaction of all reaction components were determined using the variable time normalization graphical analysis method (VTNA) described by Burés.^{34,35}

Four reactions **K1-K4** with different initial concentrations of each component, catalyst **C1b-Cu***, β -ketoester **1a** and nitroolefin **2A**, were performed and monitored via ¹H NMR. The different initial concentrations for the components used in the kinetic experiments are summarized in the T**able S6**.

Tab	Table S6: Variation of the initial concentrations of catalyst C1b-Cu [*] , β -ketoester 1a and nitroolefin 2A .								
#	Experiment	[1a]	Equiv.	[2 A]	Equiv.	[C1b-Cu*]	Equiv.		
		/ mol/L	of 1a	/ mol/L	of 2A	/ mol/L	of C1b-Cu*		
K1	Standard	0.11	1.1	0.10	1.0	0.0050	0.050		
К2	Dif. [C1b-Cu*]	0.11	1.1	0.10	1.0	0.0025	0.025		
К3	Dif. [1a]	0.15	1.5	0.10	1.0	0.0050	0.050		
К4	Dif. [2A]	0.11	1.1	0.15	1.5	0.0050	0.050		

The corresponding experiments **K1-K4** were performed by adding a solution of the catalyst **C1b-Cu***, 1,2diphenylethane (internal standard, 0.05 mmol), ketoester **1a**, nitroolefin **2A** in tetrahydrofuran-d8 (0.5 mL) to an NMR sample tube as shown in table **S6**. The reaction mixture was analyzed by ¹H NMR spectroscopy at room temperature to monitor the conversion of **1a** and **2A** and the yield of **3aA** in dependence of time (**Figure S8**).

Figure S8. Conversion of 1a and 2A and the yield of 3aA in dependence of time.

The reaction progress profiles of all four reactions **K1-K4** are plotted in **Figure S9** and were investigated using VTNA.^{34,35,36} VTNA makes use of a variable normalization of the time scale for a visual comparison of entire concentration reaction profiles. The normalization of the time axis enables the comparison of the progress reaction profiles of the series of reactions where different initial concentrations of each reaction component were used. For each component variables with different exponents were added to this normalized time axis. The order in each component can be determined visually by systematically changing each exponent of the normalized time axis, with the intention to obtain a linear overlay of all reaction profiles in the plot. The normalized time axis equation used for the investigation of the catalytic reaction is described as:

$$\sum_{i=1}^{n} [C1b - Cu^*]^{\alpha} [1a]^{\beta} [2A]^{\gamma} \Delta t =$$
$$\sum_{i=1}^{n} \left(\frac{[C1b - Cu^*]_i + [C1b - Cu^*]_{i-1}}{2} \right)^{\alpha} \left(\frac{[1a]_i + [1a]_{i-1}}{2} \right)^{\beta} \left(\frac{[2A]_i + [2A]_{i-1}}{2} \right)^{\gamma} (t_i - t_{i-1})$$

The equation can be simplified by substituting the term of the catalyst with $[C1b-Cu^*]_0^{\alpha}t$, because the concentration of active catalyst is constant and no deactivation of the catalyst during the reaction takes place, as shown by the "Same-Excess"-experiments in the previous section (**Kinetic Experiments – Probing Catalyst Robustness and Product Influence**). The simplified equation can be described as followed, whereby $[C1b-Cu^*]_0$ the initial concentration of the catalyst is.

$$\sum_{i=1}^{n} ([C1b-Cu^*]_0)^{\alpha} \left(\frac{[1a]_i + [1a]_{i-1}}{2}\right)^{\beta} \left(\frac{[2A]_i + [2A]_{i-1}}{2}\right)^{\gamma} (t_i - t_{i-1})$$

In **Figure S9** the original reaction progress profiles of the conversion in nitroolefin **2A** and the time were plotted. The VTNA cannot be applied on reaction profiles with different starting coordinates (**K4**, **[2A]** = 0.15 mol/L), therefore the profile of **K4** has to be shifted vertically to the starting point of the other reaction progress profiles (**[2A]** = 0.10 mol/L, **Figure S9**).^[35] Application of the normalization to all components displaying a kinetic effect in the reaction should result in a plot with a straight line with the slope equaling the rate constant k_{obs}. The reaction profiles overlay in a straight line (**Figure S10**), when all the driving forces, which change during the catalytic reaction, were raised to orders of 0.90 in **C1b-Cu***, 0.85 in **1a** and 1.15 in **2A**. The slope, k_{obs} of the reaction and was found to be 2.9 L^{2.9}mol^{-2.9}s⁻¹. The plot of this time normalized reaction profiles is shown in **Figure S10**.

Figure S9. Original reaction progress profile of the conversion of nitroolefin 2A for the four reactions (α , β , γ = 0).

Figure S10. Best overlay of all four reaction progress profiles with orders 0.90 in C1b-Cu^{*}, 0.85 in 1a and 1.15 in 2A. Unit of x-axis in s(mol/L)^{2.9} (k_{obs} = 2.9 L^{2.9}mol^{-2.9}s⁻¹)

Modifying any of the orders in the reaction components to other values did not lead to overlaying (nonlinear profiles). In the following **Figure S11-S13** the correct orders were systematically modified by ±0.3 to evaluate the divergences of the corresponding normalized reaction profiles. In all cases (**Figure S11-S13**), the manipulated profiles of the different initial concentration's diverge from the other profiles with the correct orders.

Evaluation of the order in catalyst [C1b-Cu*]

Evaluation of the order in [1a]

Figure S12. Divergence of the reaction profiles when the order in [1a] is modified by ± 0.3 from 0.85.

Evaluation of the order in [2A]

Figure S13. Divergence of the reaction profiles when the order in [2A] is modified by ± 0.3 from 1.15.

Raw Data, Calculated Concentrations and Processed Data for the VTNA.

		[4]2)	[24]	1
Time	[C1b-Cu*]₀	[1a]*'	[2A]	$\sum [C1b-Cu^*]^{\alpha} [1a]^{\beta} [2A]^{\gamma} \Delta t$
/min	/mol/L	/mol/L	/mol/L	
0	0,005	0,110	0,100	0,0000
13	0,005	0,108	0,098	0,0010
53	0,005	0,099	0,089	0,0039
73	0,005	0,093	0,083	0,0051
106	0,005	0,088	0,078	0,0069
133	0,005	0,083	0,073	0,0082
163	0,005	0,080	0,070	0,0094
193	0,005	0,076	0,066	0,0106
223	0,005	0,071	0,061	0,0116
253	0,005	0,070	0,060	0,0126
283	0,005	0,067	0,057	0,0134
313	0,005	0,064	0,054	0,0142
343	0,005	0,060	0,050	0,0149
373	0,005	0,059	0,049	0,0155
403	0,005	0,057	0,047	0,0161
433	0,005	0,055	0,045	0,0167
463	0,005	0,054	0,044	0,0172
493	0,005	0,052	0,042	0,0177
523	0,005	0,050	0,040	0,0181
553	0,005	0,049	0,039	0,0185
583	0,005	0,047	0,037	0,0189
613	0,005	0,046	0,036	0,0193
643	0,005	0,046	0,036	0,0196
673	0,005	0,044	0,034	0,0199
703	0,005	0,043	0,033	0,0202
733	0,005	0,042	0,032	0,0205
763	0,005	0,042	0,032	0,0208
793	0,005	0,040	0,030	0,0211
823	0,005	0,039	0,029	0,0213

All processed data are given in α = 0.90, β = 0.85, γ = 1.15.

853	0,005	0,039	0,029	0,0215			
883	0,005	0,039	0,029	0,0217			
913	0,005	0,038	0,028	0,0220			
973	0,005	0,036	0,026	0,0224			
1033	0,005	0,036	0,026	0,0227			
1093	0,005	0,035	0,025	0,0231			
1153	0,005	0,034	0,024	0,0234			
1213	0,005	0,032	0,022	0,0237			
1273	0,005	0,031	0,021	0,0240			
1393	0,005	0,030	0,020	0,0245			
1513	0,005	0,029	0,019	0,0250			
1633	0,005	0,028	0,018	0,0254			
1753	0,005	0,027	0,017	0,0257			
1873	0,005	0,026	0,016	0,0261			
a) Due to inaccuracy in the integration of the signals of 1a in the ¹ H-NMR, [1a] was							
calculated using Blackmond's "excess" method ([1a] = [2a]–[e]). ^{32,33}							
[e] is defined as the difference of concentration of the two reactants, which can be							
seen as the stoichiometry of the reactants and remains constant during the reaction.							

K2, Difference in [C1b-Cu*]								
Time	[C1b-Cu*]0	[1a] ^{a)}	[2A]	$\sum [C_1 h_C u^*]^{\alpha} [1_{\alpha}]^{\beta} [2_4]^{\gamma} \wedge t$				
/min	/mol/L	/mol/L	/mol/L					
0	0,0025	0,110	0,100	0,0000				
13	0,0025	0,107	0,097	0,0006				
43	0,0025	0,105	0,095	0,0018				
73	0,0025	0,100	0,090	0,0029				
103	0,0025	0,097	0,087	0,0039				
133	0,0025	0,094	0,084	0,0049				
163	0,0025	0,090	0,080	0,0058				
193	0,0025	0,088	0,078	0,0066				
223	0,0025	0,085	0,075	0,0074				
253	0,0025	0,082	0,072	0,0081				
283	0,0025	0,080	0,070	0,0088				
313	0,0025	0,079	0,069	0,0095				

343	0,0025	0,076	0,066	0,0101			
373	0,0025	0,075	0,065	0,0106			
403	0,0025	0,073	0,063	0,0112			
433	0,0025	0,071	0,061	0,0117			
463	0,0025	0,069	0,059	0,0122			
493	0,0025	0,068	0,058	0,0127			
523	0,0025	0,067	0,057	0,0131			
553	0,0025	0,064	0,054	0,0135			
583	0,0025	0,063	0,053	0,0139			
613	0,0025	0,061	0,051	0,0143			
643	0,0025	0,061	0,051	0,0146			
673	0,0025	0,060	0,050	0,0150			
703	0,0025	0,059	0,049	0,0153			
733	0,0025	0,058	0,048	0,0156			
763	0,0025	0,057	0,047	0,0160			
793	0,0025	0,056	0,046	0,0163			
823	0,0025	0,054	0,044	0,0165			
853	0,0025	0,054	0,044	0,0168			
883	0,0025	0,054	0,044	0,0171			
913	0,0025	0,052	0,042	0,0173			
973	0,0025	0,050	0,040	0,0178			
1033	0,0025	0,049	0,039	0,0182			
1093	0,0025	0,047	0,037	0,0186			
1153	0,0025	0,045	0,035	0,0190			
1213	0,0025	0,044	0,034	0,0193			
1273	0,0025	0,043	0,033	0,0197			
1393	0,0025	0,041	0,031	0,0203			
1513	0,0025	0,040	0,030	0,0208			
1633	0,0025	0,038	0,028	0,0213			
1753	0,0025	0,037	0,027	0,0217			
1873	0,0025	0,035	0,025	0,0221			
a) Due	to inaccuracy i	in the inter	gration of	the signals of 1a in the ¹ H-NMR, [1a] was			
calculat	ed using Black	mond's "e	xcess" me	thod ([1a] = [2a]–[e]). ^{32, 33} [e] is defined as			
the dif	the difference of concentration of the two reactants, which can be seen as the						
stoichiometry of the reactants and remains constant during the reaction.							

K3, Diff	K3, Difference in [1a]							
Time	[C1b-Cu*]	[1a] ^{a)}	[2A]	$\sum [c_1 + c_2 + \frac{3}{2}] [(1 - \frac{3}{2}) - \frac{3}{2}] [2 - \frac$				
/min	/mol/L	/mol/L	/mol/L	$\sum [c_1 b - c_u]^{\sim} [1a]^{\rho} [2A]^{\rho} \Delta t$				
0	0,005	0,150	0,100	0,0000				
12	0,005	0,148	0,098	0,0013				
42	0,005	0,138	0,088	0,0041				
72	0,005	0,130	0,080	0,0065				
102	0,005	0,124	0,074	0,0085				
132	0,005	0,117	0,067	0,0102				
162	0,005	0,113	0,063	0,0117				
192	0,005	0,108	0,058	0,0131				
222	0,005	0,104	0,054	0,0143				
252	0,005	0,101	0,051	0,0153				
282	0,005	0,098	0,048	0,0163				
312	0,005	0,095	0,045	0,0172				
342	0,005	0,092	0,042	0,0180				
372	0,005	0,090	0,040	0,0187				
402	0,005	0,087	0,037	0,0193				
432	0,005	0,085	0,035	0,0199				
462	0,005	0,084	0,034	0,0205				
492	0,005	0,081	0,031	0,0210				
522	0,005	0,080	0,030	0,0214				
552	0,005	0,078	0,028	0,0219				
582	0,005	0,076	0,026	0,0222				
612	0,005	0,076	0,026	0,0226				
642	0,005	0,074	0,024	0,0229				
672	0,005	0,073	0,023	0,0232				
702	0,005	0,072	0,022	0,0235				
732	0,005	0,071	0,021	0,0238				
762	0,005	0,070	0,020	0,0240				
792	0,005	0,069	0,019	0,0243				
822	0,005	0,069	0,019	0,0245				
852	0,005	0,068	0,018	0,0247				
882	0,005	0,067	0,017	0,0249				
912	0,005	0,066	0,016	0,0251				

972	0,005	0,065	0,015	0,0254	
1032	0,005	0,064	0,014	0,0258	
1092	0,005	0,063	0,013	0,0260	
1152	0,005	0,062	0,012	0,0263	
1212	0,005	0,061	0,011	0,0265	
a) Due to inaccuracy in the integration of the signals of 1a in the ¹ H-NMR, [1a]					
was calculated using Blackmond's "excess" method ([1a] = [2a]–[e]). ^{32, 33} [e] is					
defined as the difference of concentration of the two reactants, which can be					
seen as the stoichiometry of the reactants and remains constant during the					
reaction.					

K4, Difference in [2A]						
Time	[C1b-Cu*] ₀	[1a] ^{a)}	[2A]	[2A] (vertical shifted)	$\frac{1}{2}$	
/min	/mol/L	/mol/L	/mol/L	/mol/L	$\sum [c_{1b} - c_{u}]^{n} [1a]^{r} [2A]^{r} \Delta t$	
0	0,005	0,110	0,150	0,101	0,0000	
12	0,005	0,107	0,147	0,098	0,0016	
42	0,005	0,094	0,134	0,085	0,0050	
72	0,005	0,084	0,124	0,075	0,0078	
102	0,005	0,076	0,116	0,067	0,0101	
132	0,005	0,070	0,110	0,061	0,0121	
162	0,005	0,064	0,104	0,055	0,0139	
192	0,005	0,060	0,100	0,051	0,0154	
222	0,005	0,054	0,094	0,045	0,0168	
252	0,005	0,052	0,092	0,043	0,0180	
282	0,005	0,048	0,088	0,039	0,0191	
312	0,005	0,044	0,084	0,035	0,0201	
342	0,005	0,041	0,081	0,032	0,0210	
372	0,005	0,038	0,078	0,029	0,0217	
402	0,005	0,037	0,077	0,028	0,0225	
432	0,005	0,034	0,074	0,025	0,0231	
462	0,005	0,033	0,073	0,024	0,0238	
492	0,005	0,031	0,071	0,022	0,0243	
522	0,005	0,029	0,069	0,020	0,0249	
552	0,005	0,027	0,067	0,018	0,0253	

582	0,005	0,027	0,067	0,018	0,0258
612	0,005	0,025	0,065	0,016	0,0262
642	0,005	0,023	0,063	0,014	0,0266
a) Due to inaccuracy in the integration of the signals of 1a in the ¹ H-NMR, [1a] was calculated using					
Blackmond's "excess" method ([1a] = [2a]–[e]). ^{32, 33} [e] is defined as the difference of concentration of the					
two reactants, which can be seen as the stoichiometry of the reactants and remains constant during the					
reaction.					

Investigation of Possible Non-Linear-Effects

For determining the linear-effect behavior of the reaction, catalytic reactions were performed as described in **GP6-standard**, on a 0.050 mmol scale (0.050 mmol trans- β -nitrostyrene **2A**, 0.055 mmol ethyl 2oxocyclopentanecarboxylate **1a**, 5 mol% catalyst **C1b-Cu***). Catalysts **C1b-Cu*** with 6 different enantiomeric excesses were used (see **Table S7**), which were prepared by mixing the corresponding amounts of pure enantiomers of the catalysts **C1b-Cu***.

Table S7: Enantiomeric excess of the catalyst and the different product diastereomers 3aA-D1 and				
<i>ee</i> (C1b-Cu*) /%	ee (3aA-D2) /%	ee (3aA-D1) /%		
catalyst	product	product		
0	2	2		
19	19	13		
38	39	25		
58	58	39		
79	75	52		
100	99	69		

Figure S14: Linear effect plot of the catalytic reaction with different *ee*-values of the catalyst C1b-Cu*.

Beer's Law Plot

The UV-Vis measurements for the concentration dependence of the highly colored complex **C1b-Cu*** (12.9 mg, 0.0138 mmol) were performed in a cuvette (b = 1.0 mm, Quartz SUPRASIL[®] from HellmaAnalytics). Initially, the solid was dissolved in THF (0.3 mL) and the stock solution diluted by defined amounts of THF to measure the concentration-absorbance dependence of complex **C1b-Cu***. The measured and calculated data is shown in **Table S8**. Plotting the absorbance vs. concentration leads to an overall linear curve in the relevant concentrations range of up to 0.05 mol/L of the complex **C1b-Cu*** (**Figure S15**). The catalytic reactions in THF were performed at a concentration of 0.025 mol/L in the linear region of the Beer's law plot in **Figure S15**. This represents that no aggregation to dimers or oligomers at the concentration of the catalytic reaction takes place and supports the monomeric nature of the active catalyst in the catalyzed reactions.

Table S8. Measured and calculated data for the concentration and UV-Vis absorbance dependence of				
complex C1b-Cu* .				
[C1b-Cu *] / mol/L	Absorb. at 780 nm	Absorb/b / mm ⁻¹		
0,04732	0,05955832	0,59558321		
0,03785	0,04878504	0,48785038		
0,04506	0,05480639	0,54806389		

0,03605	0,04632853	0,46328532
0,03004	0,03918400	0,39184002
0,03948	0,04880679	0,48806787
0,02632	0,03182365	0,31823647
0,01974	0,02392687	0,23926868
0,00966	0,01236153	0,12361533
0,00644	0,00820574	0,08205741

Titration Experiments in the UV-Vis

Catalyst **C1b-Cu*** (9.55 mg, 0.0104 mmol, 1 equiv) was dissolved in THF (3 mL) and filled in a cuvette (d = 10 mm, Quartz SUPRASIL[®] from HellmaAnalytics). The β -ketoester **1a** was added directly to the cuvette and after shaking the cuvette, the UV-Vis spectra was measured of the reaction mixtures at room temperature. In the titration experiment different equivalents (0, 20, 50, 100, 150, 200, 300 and 350 equiv) of **1a** were used.

Figure S16. UV-Vis spectra of the titration experiment using β -ketoester 1a.
Titration Experiments in the EPR

Catalyst **C1b-Cu*** (4.99 mg, 0.00535 mmol, 1 equiv) was dissolved in THF (0.2 mL) and filled in an EPR-tube. The β -ketoester **1a** (0, 100 and 400 equiv) was added directly to the tube and after shaking for 1 minute at room temperature, the reaction mixture in the tube was frozen in liquid nitrogen. The EPR-measurement was performed at 108 K.

Spectra were fitted using the "Pepper" model in a least-squares fitting of EPR spectra using EasySpin.³⁷

Figure S17. EPR-spectra of C1b-Cu

Lw = 8.1970

g_{II} = 2.1303 A_{II} (63,65Cu) = 523.26 MHz

g_l = 1.9692 A₁ (63,65Cu) = 32.63 MHz

Figure S18. EPR-spectra of C1b-Cu*

LW = 5.93

g_{II} = 2.257 A_{II} (63,65Cu) = 526.52 MHz

g_l = 2.0592 A₁ (63,65Cu) = 38.063 MHz

Figure S19. EPR-spectra of C1b-Cu* + 20 equiv nitrolefin 2A

LW = 5.5 $g_{II} = 2.264$ $A_{II} (63,65Cu) = 549.97$ MHz $g_{I} = 2.0504$ $A_{\perp} (63,65Cu) = 41.96$ MHz

Figure S20. EPR-spectra of C1b-Cu* + 100 equiv β-ketoester 1a

A suitable fit could not be generated.

Figure S21. EPR-spectra of C1b-Cu* + 400 equiv β -ketoester 1a

LW = 1.7

g_{II} = 2.2406 A_{II} (63,65Cu) = 589.93 MHz 14N 42, 29

g<u>i</u> = 2.0432 A<u>i</u> (63,65Cu) = 46.3445 MHz 14 N 47, 34

Epimerization Experiment of Third Stereocenter with Base

3aE-Me (10.2 mg, 0.029 mmol, 1.0 equiv) was dissolved in 0.4 mL CDCl₃, added to an NMR-tube and treated with DBU (6.45 μ L, 6.6 mg, 0.043 mmol, 1.5 equiv). The reaction mixture was analyzed by ¹H-NMR and then filtrated over silica gel after reaching the equilibria (at 30 minutes reaction time at room temperature). The silica pad was washed with 5.0 ml dichloromethane and the solvent was removed under reduced pressure to yield epimerized **epi-3aE-Me** (9.6 mg, 0.027 mmol, 94%).

Figure S22. ¹H-NMR-Spectra of an epimerization experiment of 3aE-Me with an equilibrium ratio of 36 : 64 of the diastereomers (15,1'5,2'R) : (15,1'5,2'S).

Before epimerization

After 30 minutes epimerization

Retention Time	Area	Area %	Retention Time	Area	Area %
19.4	54893	0.02	18.9	163329876	64.30
31.4	233275559	99.98	31.7	90665329	35.70

Retention Time	Area	Area %		
19.0	6267947	2.25		
20.5	6135987	2.20		
21.3	92560009	33.19		
23.1	109689136	39.34		
25.9	16424042	5.89		
29.9	23282247	8.35		
31.8	24489484	8.78		
Column: IB, <i>n</i> -heptane/ <i>i</i> PrOH (95/5), 0.5 mL/min, 210 nm				

Control Experiments Regarding the Formation of the Third Stereocenter

C2 (1.65 mg, 5.0 mol%) and sodium acetylacetonate (0.18 mg, 2.5 mol%) was added to a catalysis tube and dissolved in THF (0.05 mL). Afterwards the nitroolefin **2E-Me** (9.88 mg, 0.050 mmol, 1.0 equiv), the β -ketoester **1a** (8.59 mg, 8.15 μ L, 0.055 mmol, 1.1 equiv) and THF (0.05 ml) were added. The reaction mixture was stirred for 3 days at room temperature. Then the reaction mixture was diluted with a solvent mixture of petroleum ether/ethyl acetate (1/1, 1 mL), filtered through a small pad of silica and the crude product was eluted with additional petroleum ether/ethyl acetate (1/1, 5 mL). After the removal of the solvent under reduced pressure the crude product (12%, determined with ¹H NMR with mesitylene as internal standard) was analyzed using HPLC and ¹H NMR spectroscopy.

Control experiment

Column: IB, n-heptane/iPrOH (95/5), 0.5 mL/min, 210 nm

Racemic mixture

Computational Methods

The crystal structure of **C6** (Figure 3, see manuscript) served as a starting point to calculate optimized minimum energy structures of **C6** and the betaine catalyst in its naphthol form **C1b-Cu** (Figure 6. see manuscript). Having identified these structures, we explored the reaction mechanism of the catalytic cycle (Scheme 4, see manuscript) by calculating stationary points along the reaction pathway (minima as well as transition state structures; Figures 7, see manuscript). The density functional theory (DFT) calculations were performed at the B3LYP³⁸ level of theory using the cc-pVDZ³⁹ basis set as implemented in the Gaussian 16 program package⁴⁰. All Structures were preoptimized in the gas phase and confirmed to be either true minima or true transition states structures by frequency calculations (zero or one imaginary frequency, respectively). We searched for the most stable conformers as a function of the binding motifs and torsion angles of the ligand. The structures were reoptimized using the IEF-PCM model⁴¹ to include the self-consistent reaction field of the solvent (tetrahydrofurane, THF). We extracted and compared relative free Gibbs energies at 250 K. The presented structures are neutral (except **C1b-Cu**, which is a cation) and exhibit a multiplicity of 2. All calculations were performed in the electronic ground states.

Control System C6:

Figure S23: Optimized structures of C6 by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. ΔEGS is the relative electronic energy in the ground state at 0 K. ΔGGS is the relative electronic energy corrected for the free energy in the ground state at 250 K. The dotted blue lines indicate hydrogen bonding. Light gray: H; dark gray: C; dark blue: N; orange: P; orange: Cu; light blue F; yellow: S.

The most stable structure of **C6** (Figure S23, right) exhibits two stabilizing hydrogen bonds: 1) between the naphthol OH and the water ligand on the and 2) between the water ligand and the sulfonyl moiety. A rotation of the binaphthol moiety results in the breaking of one hydrogen bond a destabilization of 6 kJ/mol (Figure S23, left).

Precatalyst C1b-Cu

Figure S24: Optimized structures of C1b-Cu by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. Δ EGS is the relative electronic energy in the ground state at 0 K. Δ GGS is the relative electronic energy corrected for the free energy in the ground state at 250 K. The dotted blue lines indicate hydrogen bonding. Same color code as in Figure S23.

The most stable structure of **C1b-Cu** (Figure S24, middle) exhibits two stabilizing hydrogen bonds: 1) between the naphthol OH and the water ligand on the and 2) between the water ligand and the sulfonyl moiety. Similar to **C6**, a rotation of the binaphthol moiety results in the breaking of one hydrogen bond a destabilization of 14 kJ/mol (Figure S24, left). Furthermore, rotating the sulfonyl moiety also destabilizes the complexes (9 kJ/mol, Figure S24, left). While the hydrogen bonding is intact, the H₂O ligand is pulled away from the planar coordination sphere of the copper center.

Intermediate structure II within the catalytic cycle

Figure S25: Optimized structures of II within the catalytic cycle (see Scheme 4): optimized structures by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. ΔEGS is the relative electronic energy in the ground state at 0 K. ΔGGS is the relative electronic energy corrected for the free energy in the ground state at 300 K. The dotted blue lines indicate hydrogen bonding. Same color code as in Figure S23.

The most stable structure of **II** (Figure S25, right) exhibits intramolecular hydrogen bonding between the naphthol OH and the coordinated ketoester. Note that the copper center adopts a square pyramidal coordination sphere (coordination number of 5). A rotation of the bidentate ketoester distorts and destabilizes the complex significantly leading to a trigonal bipyramidal coordination sphere (48 kJ/mol, Figure S25, left).

<u>TS I(keto) / II</u>

Figure S26: Optimized structures of the intermediate structure TS I(keto) / II within the catalytic cycle (see Scheme 4 of the main manuscript): optimized structures by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. Same color code as in Figure S23. The blue arrow is the displacement vector of the virtual frequency vibration.

<u>TS III / III.1</u>

Figure S27: Optimized structures of the intermediate structure TS III / III.1 within the catalytic cycle (see Scheme 4 of the main manuscript): optimized structures by DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. Same color code as in Figure S23. The blue arrow is the displacement vector of the virtual frequency vibration.

Overview of the Optimized Minimum and Transition State Structures of the Catalytic Cycle

Figure S28. Optimized minimum and transition state structures of the proposed catalytic cycle (cf. Scheme 4, see manuscript). The structures arise from DFT calculations at the B3LYP/cc-pVDZ/IEF-PCM (THF) level of theory. The dotted blue lines indicate hydrogen bonding. Same color code as in Figure S23. For energetics refer to Figure 7, see manuscript.

NMR-Data

S131

S133

200 180 160 140 120 100 80 60 40 20 0 ppm

HPLC-Data

230427794

9384522

94.643

3.854

3aA, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Racemic:

22.2

	74.64	/ 1 2 4 / 5
15.4	13609290	21.9
18.5	17762810	28.6
22.0	13598914	21.9
26.5	17055328	27.5

3aB, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
20.2	125904894	29.408
27.6	85391052	19.945
33.1	127005792	29.665
41.4	86892779	20.296

3aC, Column: ASH, n-hexane/iPrOH (91/9), 0.7 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
21.9	71926238	26.209
26.8	65805111	23.978
29.7	66039477	24.064
62.8	70667364	25.750

389610198

90.139

3aD, Column: ODH, n-hexane/iPrOH (91/9), 0.7 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
16.5	1356510	37.675
18.1	888076	24.665
25.8	1355926	37.659

3aE, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Racemic:

4935469

1.878

3aF, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Racemic

Retention Time	Area	Area %
16.7	14325587	3.715
19.8	170405921	44.191
23.6	14383879	3.730
26.5	170720491	44.273

3aG, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Retention Time	Area	Area %
15.1	1421475	0.475
16.7	7148087	2.388
17.6	12231275	4.086
22.3	278555313	93.051

Racemic:

Retention Time	Area	Area %
14.3	31006198	6.379
15.5	206158507	42.414
16.4	220461047	45.357
21.8	28435541	5.850
16.4 21.8	220461047 28435541	45.357 5.850

3aH, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
50.5	13215248	23.740
59.3	15073085	27.077
91.4	12068267	21.679
101.1	15190034	27.287

3al, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
40.1	36646767	21.248
47.4	48449422	28.091
55.1	37866240	21.955
60.2	49512853	28.707

3aJ, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 220 nm

Racemic:

Retention Time	Area	Area %
30.1	26629613	7.283
33.7	151332492	41.388
36.9	31578801	8.637
93.7	156099978	42.692

3aK, Column: ASH, n-hexane/iPrOH (95/5), 0.7 mL/min, 220 nm

Racemic:

3aL, Column: ODH, n-hexane/iPrOH (90/10), 0.7 mL/min, 214 nm

Retention Time	Area	Area %
12.7	1664907	0.516
15.6	1192160	0.369
16.6	309593085	95.891
20.7	10409043	3.224

Racemic:

Retention Time	Area	Area %
12.9	46737154	29.680
15.8	28504447	18.101
17.7	47181287	29.962
20.9	30884682	19.613

3aM, Column: ODH, n-hexane/iPrOH (91/9), 0.7 mL/min, 214 nm

Racemic:

3aN, 2xODH-Columns connected in series, n-hexane/iPrOH (85/15), 0.3 mL/min, 213 nm

Racemic:

Retention Time	Area	Area %
69.3	97889825	30.798
92.9	60494423	19.033
99.4	97820152	30.776
125.6	61637665	19.393

3aO, Column: ASH, n-hexane/iPrOH (80/20), 1.0 mL/min, 220 nm

Racemic:

Retention Time	Area	Area %
14.3	29183194	30.097
17.7	20737927	21.388
47.0	20286679	20.922
142.1	26754656	27.593

3aP, Column: ODH, n-hexane/iPrOH (95/5), 0.5 mL/min, 220 nm

Racemic:

Retention Time	Area	Area %
30.4	26664725	34.412
32.9	24797161	32.001
41.7	26025719	33.587

3aQ, Column: ASH, n-hexane/iPrOH (70/30), 1.0 mL/min, 214 nm

Racemic:

3aR, Column: ODH, n-hexane/iPrOH (91/9), 0.7 mL/min, 214 nm

Racemic:

25.0

125874162

3aS, Column: ODH, n-hexane/iPrOH (91/9), 0.7 mL/min, 214 nm

Racemic:

3aT, Column: 2xODH-Columns connected in series, n-hexane/iPrOH (85/15), 0.3 mL/min, 213 nm

Retention TimeAreaArea %66.142576181.37987.8100021283.23992.226537703085.92998.3291975499.454

Retention Time	Area	Area %
66.5	172728948	17.541
88.0	304657581	30.938
91.8	188265952	19.119
96.9	319076021	32.402

3aU, Column: ASH, n-hexane/iPrOH (91/9), 0.7 mL/min, 214 nm

Racemic:

3aV, Column: ASH, n-hexane/iPrOH (91/9), 0.7 mL/min, 214 nm

Aled 70
9 0.167
4 0.076
96 99.234
5 0.523

Racemic:

3aW, Column: ODH, n-hexane/iPrOH (97/3), 0.5 mL/min, 220 nm

Retention Time	Area	Area %
36.6	1421139	3.109
40.2	302826	0.662
45.4	39925709	87.333
56.7	4067173	8.896

Racemic:

36.2 10.766 37121588 42.7 36542765 10.598 51.7 136373328 39.551

3aX, 2xODH-Columns connected in series, n-hexane/iPrOH (90/10), 0.3 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
39.8	31943671	47.842
41.2	1395155	2.090
45.5	1313109	1.967
50.7	32117383	48.102

3aY, Column: ODH, n-hexane/iPrOH (97/3), 0.3 mL/min, 214 nm

Racemic:

3aZ, Column: ODH, n-hexane/iPrOH (95/5), 0.7 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
37.8	8531261	12.602
40.9	25029049	36.971
44.4	8737328	12.906
56.3	25401927	37.522

3aA-Me, Column: IB, n-heptane/iPrOH (98/2), 0.3 mL/min, 210 nm, dr (D1:D2:D3:D4): 94:3:2:1

Diasteroemer	Retention Time	Area	Area %
D3	44.7	5158480	1.88
D3	47.8	293326	0.11
D2	49.8	1165160	0.42
D4	52.9	182071	0.07
D2	61.9	7084044	2.58
D4	63.0	1860482	0.68
D1 (1 <i>R</i> ,1' <i>R</i> 2'S)	67.3	720299	0.26
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	69.1	258039188	94.00

D3	43.9	45364393	14.42
D3	46.2	46536697	14.79
D2	48.7	18639923	5.92
D4	51.1	47049378	14.95
D2	60.6	9341157	2.97
D4	61.2	53785410	17.09
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	64.6	47403752	15.06
D1 (15,1'S, 2'R)	69.9	46577975	14.80

Area %

3aB-Me, Column: IB, n-heptane/iPrOH (98/2), 0.5 mL/min, 210 nm, dr (D1:D2:D3:D4): 94:3:2:1

Diastereomer	Retention Time	Area	Area %
D2	31.6	4616552	2.53
D2	34.6	179480	0.10
D4	39.8	603820	0.33
D3	40.6	91902	0.05
D3	42.7	4228622	2.32
D4	46.6	895286	0.49
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	56.9	27570	0.02
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	60.9	171937201	94.17

Diastereomer	Retention Time	Area	Area %
D2	30.8	40544282	17.51
D2	33.3	40839276	17.63
D4	38.4	19134108	8.26
D3	34.0	22280337	9.62
D3	41.9	22319279	9.64
D4	45.4	21054095	9.09
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	58.2	29096431	12.56
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	63.2	36321463	15.68

3aC-Me, Column: ADH, n-heptane/iPrOH (97/3), 0.3 mL/min, 210 nm, dr (D1:D2:D3:D4): 97:2:1:0.2

Diastereomer	Retention Time	Area	Area %
D3	39.6	4677800	1.09
D2	43.1	494718	0.12
D4	44.8	561076	0.13
D3	47.7	870391	0.20
D2	50.9	7633546	1.79
D4	55.7	93909	0.02
D1 (1 <i>R</i> ,1' <i>R</i> 2'S)	57.9	2120124	0.50
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	61.1	410931984	96.15

Diastereomer	Retention Time	Area	Area %
D3	39.4	64124237	10.57
D2	42.9	37625158	6.20
D4	44.6	51554322	8.49
D3	47.4	64268476	10.59
D2	50.7	42857466	7.06
D4	55.3	45705306	7.53
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	60.9	143770512	23.69
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	64.3	156993971	25.87

3aE-Me, Column: IB, *n*-heptane/*i*PrOH (95/5), 0.3 mL/min, 210 nm, *dr* (D1:D2:D3:D4): 94:3:3:0.4

Diastereomer	Retention Time	Area	Area %
D2 (1 <i>S</i> ,1'S 2' <i>S</i>)	19.8	1779946	2.84
D2 (1 <i>R</i> ,1' <i>R</i> , 2' <i>R</i>)	21.3	70790	0.11
D3	22.5	229562	0.37
D3	24.1	1582400	2.52
D4	25.2	6154	0.01
D4	26.7	210488	0.34
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	30.7	124266	0.20
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	31.8	58711258	93.62

Diastereomer	Retention Time	Area	Area %
D2 (1 <i>S</i> ,1'S 2' <i>S</i>)	19.6	3888410	2.41
D2 (1 <i>R</i> ,1' <i>R</i> , 2' <i>R</i>)	21.1	3579281	2.22
D3	22.0	52228352	32.34
D3 + D4	23.7	62726132	38.84
D4	26.4	9378557	5.81
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	30.4	14631829	9.06
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	32.3	15046706	9.32

3al-Me, Column: ADH, n-heptane/iPrOH (95/5), 0.7 mL/min, 220 nm, dr (D1:D2:D3:D4): 92:5:2:1

Diastereomer	Retention Time	Area	Area %
D4	28.4	1517130	1.05
D4	38.0	389136	0.27
D3	39.8	2264939	1.57
D2	43.6	7017561	4.88
D3	45.0	885332	0.62
D2	51.1	68266	0.05
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	58.7	131375948	91.35
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	70.5	305494	0.21

Diastereomer	Retention Time	Area	Area %
D4	27.7	15756445	9.38
D4	36.5	15042786	8.95
D3	38.5	33422375	19.89
D2	42.1	10632508	6.33
D3	43.7	21021615	12.51
D2	49.1	16261459	9.68
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	56.7	27760058	16.52
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>)	68.2	28102240	16.73

3aK-Me, Column: ADH, *n*-heptane/*i*PrOH (98/2), 0.5 mL/min, 210 nm, *dr* (D1:D2:D3:D4): 93:4:2:0.1

Diastereomer	Retention Time	Area	Area %
D2	37.3	38920184	6.12
D3	41.4	48292313	7.60
D2	46.1	35738361	5.62
D3	49.5	46528172	7.32
D4	53.8	31468096	4.95
D1 (1 <i>R</i> ,1' <i>R</i> 2' <i>S</i>) + D4	57.5	232056785	36.51
D1 (1 <i>S</i> ,1' <i>S</i> , 2' <i>R</i>)	62.5	202675029	31.88

Confirming the *dr* of **3aK-Me** by reversed phase HPLC: Column (performed by Moritz Sinast, University of Stuttgart, Laschat Group): LiChrosorb[®] RP-18 (150 mm x 4.6 mm), Acetonitril/H₂O (40/60), 0.5 mL/min, 254 nm

Catalytic Reaction:

Diastereomer	Retention Time	Area	Area %
D4 (not found)	-	-	-
D1	92.1	13113320	94.960
D3	95.4	235596	1.706
D2	103.3	460394	3.334

Mixture of diastereoemers

Diastereomer	Retention Time	Area	Area %
D4	77.5	1592754	9.030
D1	98.0	12591604	71.384
D3	102.0	1439914	8.163
D2	109.5	2014983	11.423

3bA, Column: ODH, *n*-hexane/*i*PrOH (90/10), 1.0 mL/min, 214 nm

Racemic:

Retention Time	Area	Area %
14.5	26481236	18.183
17.3	46090247	31.647
21.2	26776669	18.386
26.8	46288836	31.784

3cA, Column: ODH, n-hexane/iPrOH (95/5), 0.3 mL/min, 220 nm

Racemic:

3dA, Column: ODH, n-hexane/iPrOH (80/20), 1.0 mL/min, 220 nm

Racemic:

3eA, Column: ASH, n-hexane/iPrOH (95/5), 0.5 mL/min, 220 nm

Racemic:

84.5

7481259

6.491

3fA, Column: ODH, n-hexane/iPrOH (95/5), 1.0 mL/min, 220 nm

Retention Time	Area	Area %
11.6	948531	0.289
12.6	1229664	0.374
20.3	295890371	90.070
23.3	30443608	9.267

3gA, Column: ODH, n-hexane/iPrOH (95/5), 0.7 mL/min, 214 nm

Retention Time	Area	Area %
13.5	28063820	78.036
17.3	3823218	10.631
23.9	3888332	10.812

Retention Time	Area	Area %
20.5	58829776	29.825
21.8	32332725	16.392
30.8	35351487	17.922
65.3	61137668	30.995

3iA, Column: ODH, *n*-hexane/*i*PrOH (70/30), 0.5 mL/min, 254 nm

Racemic:

Retention Time	Area	Area %
23.9	57323510	49.453
26.6	58592092	50.547

3jA, Column: ODH, *n*-hexane/*i*PrOH (90/10), 0.5 mL/min, 214 nm

Retention TimeAreaArea %49.5146306313.85354.150989281.34357.729892930778.72366.76106185716.081

Racemic:

Retention Time	Area	Area %
50.1	94138173	26.369
54.7	83847562	23.486
60.5	94321912	26.420
68.9	84699156	23.725

3kA, Column: ODH, n-hexane/iPrOH (80/20), 1.0 mL/min, 220 nm

Racemic:

Retention Time	Area	Area %
20.7	26600079	38.309
26.1	7861077	11.321
30.3	7890896	11.364
59.4	27082916	39.005

4-D2, Column: ODH, n-hexane/iPrOH (95/5), 0.7 mL/min, 220 nm

Racemic

Retention Time	Area	Area %
44.2	2222275	3.743
48.5	2266339	3.817
58.2	26837210	45.205
62.0	28042536	47.235

References

- ⁷ Werner, T.; Rößler, U.; Christoffers, J.; *Eur. J. Org. Chem.* **2000**, 701-705.
- ⁸ Arredondo, V.; Hiew, S. C.; Gutman, E. S.; Premachandra, I. D. U. A.; Van Vranken, D. L.; *Angew. Chem. Int. Ed.* **2017**, *56*, 4156 –4159.
- ⁹ Darses, B.; Michaelides, I. N.; Sladojevich, F.; Ward, J. W.; Rzepa, P. R.; Dixon, D. J.; *Org. Lett.* **2012**, *14*, 1684–1687. ¹⁰ Geibel, I.; Christoffers, J.; *Eur. J. Org. Chem.* **2016**, 918–920.
- ¹¹ Jakubec, P.; Helliwell, M.; Dixon, D. J.; Org. Lett. **2008**, *10*, 4267-4270.
- ¹² Shi, S.; Szostak, M.; Org.Lett. **2015**, *17*, 5144–5147.
- ¹³ Yahata, K.; Minami, M.; Watanabe, K.; Fujioka, H.; Org. Lett. **2014**, *16*, 3680–3683.
- ¹⁴ Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W.; Angew. Chem. Int. Ed. **2013**, 52, 4235 –4238.
- ¹⁵ Xue, D.; Chen, Y.; Cui, X.; Wang, Q.; Zhu, J.; Deng, J.; *J. Org. Chem.* **2005**, *70*, 3584–3591.
- ¹⁶ Martins, J. E. D.; Wills, M.; *Tetrahedron* **2009**, *65*, 5782–5786.
- ¹⁷ Chianese, A. R.; Crabtree, R. H. *Organometallics* **2005**, *24*, 4432-4436.
- ¹⁸ Hong, F.; Xia, Z.; Zhu, D.; Wu, H.; Liu, J.; Zeng, Z. *Tetrahedron* **2016**, *72*, 1285-1292.
- ¹⁹ Aspin, S.; López-Suárez, L.; Larini, P.; Goutierre, A.; Jazzar, R.; Baudoin O.; Org. Lett., **2013**, *15*, 5056–5059
- ²⁰ Pratt, D. A.; Pesavento, R. P.; van der Donk, W. A.; Org. Lett. **2005**, *7*, 2735-2738.
- ²¹ Qin, X.; Ding, G.; Wang, Z.; Gong, Y.; Gao, F.; Zhang, S.; Luo, Z.; Li, H.; *Tetrahedron* **2017**, *73*, 403-410.
- ²² Mechler, M.; Latendorf, K.; Frey, W.; Peters, R.; Organometallics 2013, 32, 112–130.
- ²³ Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L.; *Angew. Chem. Int. Ed.* 2005, 44, 105–108.
 ²⁴ Ji, J.; Barnes, D. M. Zhang, J.; King, S. A.; Wittenberger, S. J.; Morton, H. E., *J. Am. Chem. Soc.* 1999, *121*, 10215-10216.
- ²⁵ Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y.; J. Am. Chem. Soc. **2005**, 127, 119-125.

²⁶ The reaction order for **C1b-Cu*** is determined as 0.91, when the mixture of diastereomers (**3aA-D1** and **D2**) is used for the kinetic analysis.

- ²⁷ Eitel, S. H.; Jautze, S.; Frey, W.; Peters, R.; *Chem. Sci.*, **2013**, *4*, 2218–2233.
- ²⁸ Atkins, P. W.; de Paula, J., Atkins' Physical Chemistry, 8th ed., Oxford University Press: Oxford, **2006**, 797-798.
- ²⁹ Pilling, M. J.; Seakins, P. W., *Reaction Kinetics, Oxford University Press:* Oxford, 1995; 16-19.
- ³⁰ The reaction order for **1a** is determined as 0.67, when the mixture of diastereomeres (**3aA-D1** and **D2**) is used for the kinetic analysis.

³¹ The reaction order for **2A** is determined as 0.96, when the mixture of diastereomeres (**3aA-D1** and **D2**) is used for the kinetic analysis.

- ³² Blackmond, D. G., J. Am. Chem. Soc., **2015**, 137, 10852–10866.
- ³³ Baxter, R. D.; Sale, D.; Engle, K. M.; Yu, J.-Q.; Blackmond, D. G., J. Am. Chem. Soc., **2012**, 134, 10, 4600-4606.
- ³⁴ Burés, J., Angew. Chem. Int. Ed., **2016**, 55, 16084-16087.
- ³⁵ Nielsen, C. D.-T., Burés, J., *Chem. Sci.*, **2019**, *10*, 348–353.

³⁷ Stoll, S.; Schweiger, A.; J. Magn. Reson. 2006, 178, 42-55.

¹ Bhatt, S.; Nayak, S. K.; *Tetrahedron Lett.* **2009**, *50*, 5823–5826.

² Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M.; J. Am. Chem. Soc. **2005**, 127, 15028-15029.

³ Masaki, E.; Ikehara, H.; Hara, S.; Yoshida, M.; Org. Biomol. Chem. **2012**, 10, 5289-5297.

⁴ Bungard, C. J.; Converso, A.; De, L. P.; Hanney, B.; Hartingh, T. J.; Manikowski, J. J.; Manley, P. J.; Meissner, R.; Meng,

Z.; Perkins, J. J.; Rudd, M. T.; Shu, Y.; Patent WO 2013066736.

⁵ Worrall, D. E.; *Org. Synth.* **1929**, *9*, 66.

⁶ Noble, A.; Torres, P. R.; Anderson, J. C.; *Tetrahedron Lett.* **2012**, *53*, 5707–5710.

³⁶ Matviitsuk, A.; Greenhalgh, M. D.; Antúnez, D-J. B.; Slawin, A. M. Z.; Smith, A. D.; *Angew. Chem. Int. Ed.*, **2017**, *56*, 12282–12287.

³⁸ a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. *Chem. Phys. Lett.* **1989**, **157**, 200; b) Becke, A. D.; *J. Chem. Phys.* **1993**, **98**, 5648.

³⁹ Dunning, T. H. J. Chem. Phys. **1989**, **90**, 1007.

⁴⁰ Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian, Inc.*, Wallingford CT, **2016**.

⁴¹ Tomasi, J.; Mennucci, B.; Cammi, R. *Chem. Rev.* **2005**, *105*, 2999.