Supporting Information

for

Coagulation of Iodide-containing Resorcinol Solution or Natural Water with Ferric Chloride can Produce Iodinated Coagulation Byproducts

Shunke Ding ^{a, b} Yang Deng ^c, Hongwei Li ^{a, b}, Chao Fang ^{a, b}, Naiyun Gao ^a, Wenhai Chu ^{a, b, *}

^a State Key Laboratory of Pollution Control and Resources Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China

^c Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey, 07043, USA

*Corresponding author:

Tel.: +8618721871983; fax: +86 21 65986839 E-mail address: <u>feedwater@126.com</u> (W. Chu) Address: Room 308, Mingjing Building, 1239 Siping Road, Shanghai, 200092, China 17 Pages

1 Text 2 Tables 10 Figures

Contents

Text S1. Quantification of iodide, iodate, iodine and DBPs.	Page S3-4
Table S1. Water quality characteristics of three natural waters.	Page S5
Table S2. Characteristics of DBP standards.	Page S6
Figure S1. Mass spectrum of P254 (a) obtained from GC-MS and iodine (b) obtained	Page S7
from NIST database.	
Figure S2. Total ion chromatogram (GC-MS) of resorcinol after the reaction with	Page S8
ferric chloride in the presence of iodide (Reaction condition: resorcinol = 50 μ M;	
FeCl ₃ =200 μ M and iodide = 200 μ M).	
Figure S3. Mass spectrum of P236 ₁ (a) obtained from GC-EI and 2-iodoresorcinol	Page S9
(b), 4-iodoresorcinol (c), 5-iodoresorcinol (d) obtained from NIST database.	
Figure S4. Mass spectrum of P236 ₂ (a) obtained from GC-EI and 2-iodoresorcinol	Page S10
(b), 4-iodoresorcinol (c), 5-iodoresorcinol (d) obtained from NIST database.	
Figure S5. Mass spectrum of P362 ₁ (a) obtained from GC-EI and 2,6-	Page S11
diiodohydroquinone (b) obtained from NIST database.	
Figure S6. Mass spectrum of P362 ₂ (a) obtained from GC-EI and 2,6-	Page S12
diiodohydroquinone (b) obtained from NIST database.	
Figure S7. $\sum \sigma_{o,p,m}$ calculation for determining the most probable HOI reactive sites	Page S13
on aromatic ring of resorcinol.	
Figure S8. Linear relationship between $P236_1$ and $P236_2$ during coagulation of	Page S14
resorcinol with ferric chloride.	
Figure S9. $\sum \sigma_{o,p,m}$ calculation for determining the most probable HOI reactive sites	Page S15
on aromatic ring of 4-iodoresorcinol.	
Figure S10. $\sum \sigma_{o,p,m}$ calculation for determining the most probable HOI reactive sites	Page S16
on aromatic ring of 2-iodoresorcinol.	
References	Page S17

Text S1. Quantification of iodide, iodate, iodine and DBPs.

Iodide and iodate were analyzed using a Dionex ICS 1000 ion chromatography (Sunnyvale, USA).¹ Separation was achieved by a Dionex AS19-HC anion-exchange analytical column (250×4 mm, I.D.) coupled with a Dionex AG9-HC guard column (50×4.0 mm, I.D.). The detection limits for both iodide and iodate were 0.1 μ M and 0.3 μ M, respectively.

Analysis of HOI is available in detail elsewhere.² The samples containing HOI were quenched with phenol (200 μ M) and analyzed as a summation of 2-iodo- and 4-iodophenol by Shimadzu LC-20A HPLC (Kyoto, Japan) with UV detection at 231 nm. Separation was achieved with the Waters C18 column (150 × 4 mm, 5 μ m particle size, Milford, USA) using a mobile phase consisting of 70% of 10 mM phosphoric acid (pH 2.2) and 30% of methanol at a flow rate of 1.0 mL/min. The detection limit for both 2-iodophenol and 4-iodophenol was 0.05 μ M for a 100 μ L sample injection volume.

At pre-determined time interval, 10 mL aliquot of sample containing iodinated halomethanes (I-HMs) was quenched with ascorbic acid at the same initial iodide molar concentration and extracted with 2 mL of MTBE, and then the mixed solution was shaken for 5 min with a multi-tube vortex mixer (DMT-2500, Shanghai, China) at 2300 rpm before a 5-min settling. Lastly, 1 mL supernatant was withdrawn and analyzed by Shimadzu QP2010plus gas chromatography equipped with electron capture detection (GC/ECD, Kyoto, Japan). The column used was a RTX-5MS silica capillary column (30 m × 0.25 mm, I.D. with 0.25 μ m film thickness, Restek). The GC temperature program consisted of an initial temperature of 40 °C for 10 min, ramping to 200 °C at 20 °C/min and holding for 5 min. The carrier gas was nitrogen and the flow rate was 1 mL/min. The injection port was controlled at 165 °C and the ECD detector temperature at 300 °C. The detection limits for DIM and TIM were 0.4 nM (0.1 μ g/L) and 0.05 nM (0.02 μ g/L), respectively.

At pre-determined time, 20 mL aliquot of sample was quenched with ascorbic acid at the same molar concentration as the initial iodide concentration and the pH of I-HAA sample was adjusted to < 0.5 with 1 mL of sulfuric acid (95%-98%), followed by the addition of 3 g of sodium sulfate and 4 mL of MTBE. The mixed solution was shaken for 5 min with a multi-tube vortex mixer at 2300 rpm before a 5-min sedimentation. Then 2 mL extracted I-HAA sample was taken and derivatized to their corresponding esters with 1 mL 10% acidic methanol (sulfuric acid/methanol (v/v) = 10%)

at 50 °C for 2 h. Cooled mixtures were neutralized with 4 mL saturated sodium bicarbonate solution, and then were shaken for 5 min and settled for 5 min. Lastly, 1 mL supernatant was withdrawn and analyzed using a Shimadzu QP2010plus GC-ECD (Kyoto, Japan). The column used was a RTX-5MS silica capillary column (30 m × 0.25 mm, I.D. with 0.25 μ m film thickness, Restek). The GC temperature program consisted of an initial temperature of 34 °C for 8 min, ramping to 74 °C at 20 °C/min and holding for 1 min, and then increased to 200 °C at 50 °C/min and held for 2 min. The carrier gas was nitrogen and the flow rate was 1 mL/min. The injection port was controlled at 165 °C and the ECD temperature at 300 °C. The limits of detection for MIAA and DIAA were 2.7 nM (0.5 μ g/L) and 1.0 nM (0.3 μ g/L), respectively.

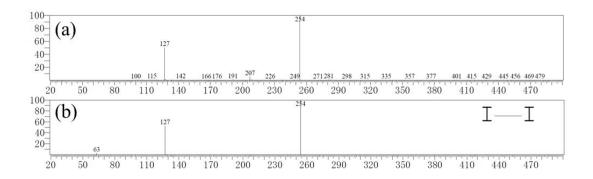
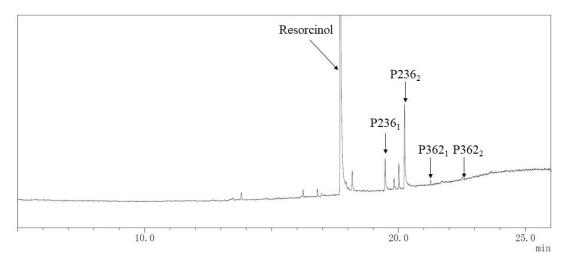

Parameters	QCS	HP	HA
DOC (mg/L)	5.84	7.48	5
UV ₂₅₄ (cm ⁻¹)	0.113	0.172	0.338
SUVA (L×mg ⁻¹ ×m ⁻¹)	1.93	2.23	6.76
Iodide (µg/L)	ND	ND	ND
TOX (µg/L as I)	6.4	13.2	ND

Table S1. Water quality characteristics of three natural waters.


ND = Not detected.

	CAC N-	CAEN	Molecular			
DBP species	CAS No. formula				weight	Source and purity
DIM	75-11-6	CH ₂ I ₂	267.84	Aladdin Industrial Inc., 98%		
TIM	75-47-8	CHI ₃	393.73	Aladdin Industrial Inc., 99%		
MIAA	64-69-7	CH ₂ ICOOH	185.95	Aladdin Industrial Inc., 98%		
DIAA	598-89-0	CHI ₂ COOH	311.84	CanSyn Chem. Corp., 99%		

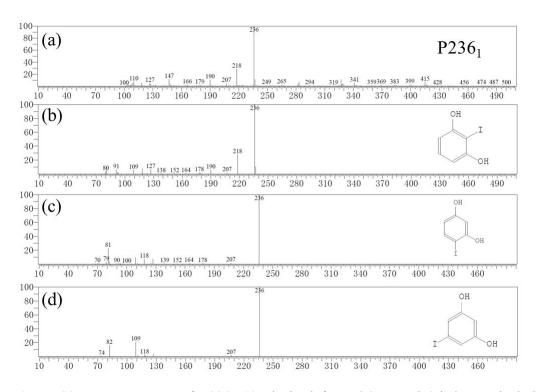
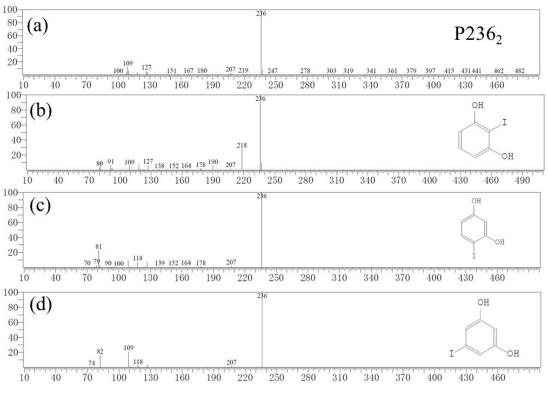
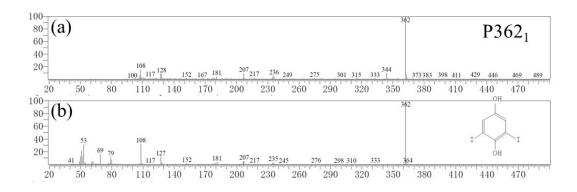
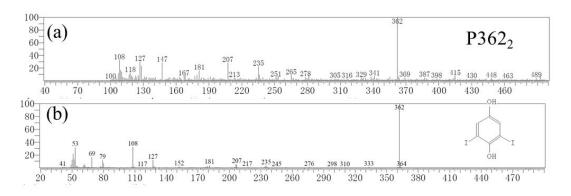

Table S2. Characteristics of DBP standards.

Figure S1. Mass spectrum of P_{254} (a) obtained from GC-MS and iodine (b) obtained from NIST database.

Figure S2. Total ion chromatogram (GC-MS) of resorcinol after the reaction with ferric chloride in the presence of iodide (Reaction condition: resorcinol = 50 μ M; FeCl₃ =200 μ M and iodide = 200 μ M).

Figure S3. Mass spectrum of P236₁ (a) obtained from GC-EI and 2-iodoresorcinol (b), 4-iodoresorcinol (c), 5-iodoresorcinol (d) obtained from NIST database.

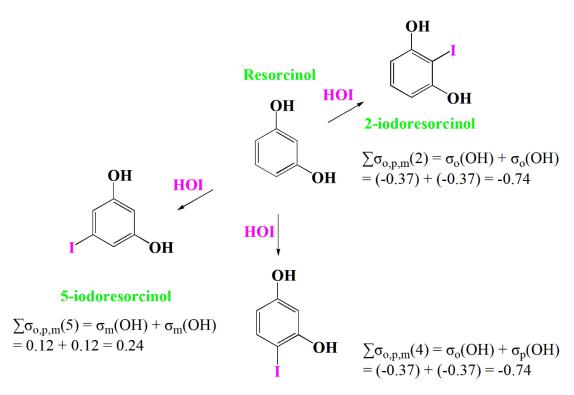

Figure S4. Mass spectrum of $P236_2$ (a) obtained from GC-EI and 2-iodoresorcinol (b), 4-iodoresorcinol (c), 5-iodoresorcinol (d) obtained from NIST database.

Figure S5. Mass spectrum of $P362_1$ (a) obtained from GC-EI and 2,6-diiodohydroquinone (b) obtained from NIST database.

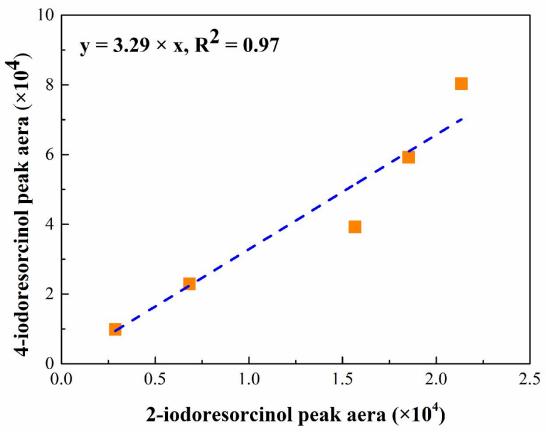
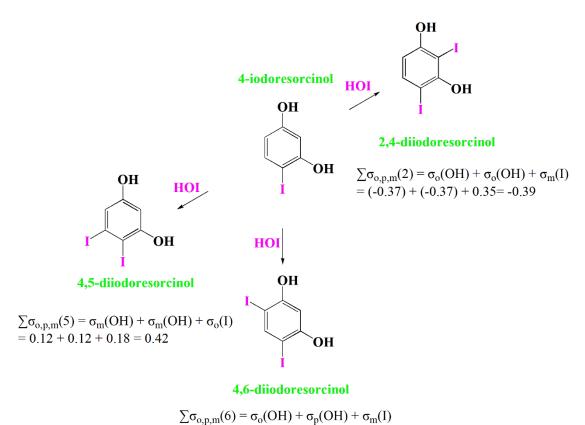


Figure S6. Mass spectrum of $P362_2$ (a) obtained from GC-EI and 2,6-diiodohydroquinone (b) obtained from NIST database.



4-iodoresorcinol

Figure S7. $\sum \sigma_{o,p,m}$ calculation for determining the most probable HOI reactive sites on aromatic ring of resorcinol.

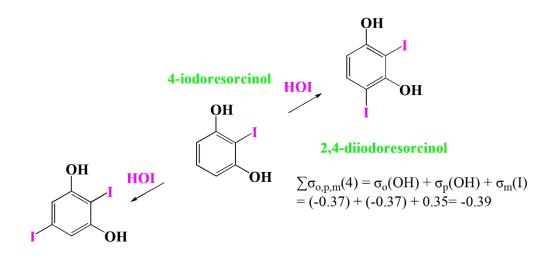


Figure S8. Linear relationship between P236₁ and P236₂ during coagulation of resorcinol with ferric chloride.

Figure S9.
$$\sum \sigma_{o,p,m}$$
 calculation for determining the most probable HOI reactive sites on aromatic

ring of 4-iodoresorcinol.

2,5-diiodoresorcinol

$$\sum \sigma_{o,p,m}(5) = \sigma_m(OH) + \sigma_m(OH) + \sigma_p(I)$$

= 0.12 + 0.12 + 0.18 = 0.42

Figure S10. $\sum \sigma_{o,p,m}$ calculation for determining the most probable HOI reactive sites on aromatic

ring of 2-iodoresorcinol.

References

(1) Ding, S. K.; Chu, W. H.; Bond, T.; Cao, Z. Q.; Xu, B.; Gao, N. Y., Contribution of amide-based coagulant polyacrylamide as precursors of haloacetamides and other disinfection by-products. *Chem. Eng. J.* **2018**, *350*, 356-363.

(2) Bichsel, Y.; Gunten, U. V., Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters. *Environ. Sci. Technol.* **2000**, *34*, (13), 2784-2791.