Supporting Information

Significance of activated carbon fiber as cathode in electro/Fe³⁺/peroxydisulfate oxidation process for removing carbamazepine in aqueous environment

Shiqiang Han^{a,b,c&}, Shabi Ul Hassan^{b,c&}, Yunhua Zhu^{b,c}, Shuai Zhang^{b,c}, Hongguang Liu^{a*}, Sen Zhang^{a,b,c}, Junfeng Li^a, Zhaoyang Wang^a, Chun Zhao^{a, b,c*}

^aCollege of Water & Architectural Engineering, Shihezi University, Shihezi 832000, PR China

^bState Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University), Chongqing 400044, PR China

^cKey Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China [&]These authors contributed equally to this work and should be considered co-first authors

*Corresponding author

Email addresses: pureson@cqu.edu.cn, pureson@163.com (Chun Zhao), liuhongguang-521@163.com (Hongguang Liu) Text S1 The specific operation of different processes and effects of some parameters

In this study, method of controlling a single variable was adopted in exploring the effects of parameters in ACF-E/Fe³⁺/PDS process. When one variable changed, the others kept constant. The initial conditions in ACF-E/Fe³⁺/PDS process were as follows: $[CBZ]_0=0.04 \text{ mM}, \text{ pH}_0=3, [PDS]=2 \text{ mM}, [Fe^{3+}]=0.4 \text{ mM}, \text{ Current density}=7.14 \text{ mA/cm}^2, T=25 \text{ °C}, [Na_2SO_4]=50 \text{ mM}$ unless otherwise specified. And keeping the other parameters unchanged when exploring the effects of one parameter.

In the effect of initial pH, the reaction conditions in ACF-E/Fe³⁺/PDS process were as follows: $[CBZ]_0=0.04$ mM, [PDS]=2 mM, $[Fe^{3+}]=0.4$ mM, Current density=7.14 mA/cm², T=25 °C, $[Na_2SO_4]=50$ mM. And initial pH was adjusted to 3, 5, 7, 9, 11 by 0.1 M H₂SO₄ and NaOH.

In the effect of PDS concentration, the reaction conditions in ACF-E/Fe³⁺/PDS process were as follows: $[CBZ]_0=0.04$ mM, $pH_0=3$, $[Fe^{3+}]=0.4$ mM, Current density=7.14 mA/cm², T=25 °C, $[Na_2SO_4]=50$ mM. And PDS concentration was 0.5, 1, 2, 4, 8 mM.

In the effect of Fe³⁺ concentration, the reaction conditions in ACF-E/Fe³⁺/PDS

process were as follows: $[CBZ]_0=0.04$ mM, pH₀=3, [PDS]=2 mM, Current density=7.14 mA/cm², T=25 °C, $[Na_2SO_4]=50$ mM. And Fe³⁺ concentration was 0.1, 0.2, 0.4, 0.8, 1.6 mM.

In the effect of current density, the reaction conditions in ACF-E/Fe³⁺/PDS process were as follows: $[CBZ]_0=0.04 \text{ mM}$, $pH_0=3$, [PDS]=2 mM, $[Fe^{3+}]=0.4 \text{ mM}$, T=25 °C, $[Na_2SO_4]=50 \text{ mM}$. And current density was 3.57, 7.14, 10.71, 14.28 mA/cm², which was controlled by the DC power.

In the effect of temperature, the reaction conditions in ACF-E/Fe³⁺/PDS process were as follows: $[CBZ]_0=0.04 \text{ mM}$, $pH_0=3$, [PDS]=2 mM, $[Fe^{3+}]=0.4 \text{ mM}$, Current density=7.14 mA/cm², $[Na_2SO_4]=50 \text{ mM}$. And the temperature was 15, 25, 35, 45 °C, which was controlled by constant temperature water bath

In the effect of electrolyte concentration (Na₂SO₄), the reaction conditions in ACF-E/Fe³⁺/PDS process were as follows: $[CBZ]_0=0.04 \text{ mM}$, pH₀=3, [PDS]=2 mM, $[Fe^{3+}]=0.4 \text{ mM}$, Current density=7.14 mA/cm², T=25 °C. And the electrolyte concentration (Na₂SO₄) was 25, 50, 100, 200 mM.

Na ₂ SO ₄ (mM)	25	50	100	200
Voltage (V)	4.4	3.5	2.9	2.4
EE/O(kWh/m ³)	0.2427	0.2123	0.2367	0.2386

Table S1 Average voltage and EE/O values at different Na_2SO_4 concentrations

Figure S1. A scheme of the experimental apparatus: (1) DC power supply, (2) pH meter, (3) Constant-temperature water bath, (4) Magnetic stirrer, (5) Magnetic rotor, (6) Pt/Ti anode, (7) ACF cathode, (8) pH meter probe.

Figure S2. First order dynamics fitting for the removal of CBZ in different processes.

Figure S3. UV-vis spectral analysis of CBZ in (a) $E/Fe^{3+}/PDS$ and (b) ACF-

E/Fe³⁺/PDS process.

Figure S4. Effect of initial pH on removal of CBZ by ACF adsorption

([CBZ]₀=0.04 mM, T=25 °C).

Figure S5. Fe²⁺ concentration on CBZ removal in ACF-E/Fe³⁺/PDS process ([CBZ]₀=0.04 mM, pH₀=3, [PDS]=2 mM, Current density=7.14 mA/cm², T=25 °C,

[Na₂SO₄]=50 mM).

Figure S6. Effect of anodic (Ti/Pt electrode) oxidation on removal of CBZ

([CBZ]₀=0.04 mM, pH₀=3, [PDS]=100 mM, Current density=28.6 mA/cm², T=25 °C,

[Na₂SO₄]=50 mM).

Figure S7. Effect of temperature on CBZ removal by PDS oxidation ([CBZ]₀=0.04

mM, [PDS]=2 mM, pH₀=3).