Alternative electron transport layer based on Aldoped ZnO and SnO_2 for perovskite solar cells: impact on microstructure and stability

Manon SPALLA ^{a,b}, Emilie PLANES ^{a,*}, Lara PERRIN ^a, Muriel MATHERON ^b, Solenn BERSON ^b, Lionel FLANDIN ^a

^a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France

^b Univ. Grenoble Alpes, CEA, LITEN, INES, 73375 Le Bourget du Lac, France

*emilie.planes@univ-smb.fr

Supporting Information

	10s	1min	10min	35min	60min
AZO					
SnO ₂				1	

Figure S1: Photographs of substrates showing the influence of the annealing time (100°C) for the perovskite layer formation and decomposition depending on the ETL underlying layer used (AZO or SnO_2) – red squares indicate chosen optimized conditions.

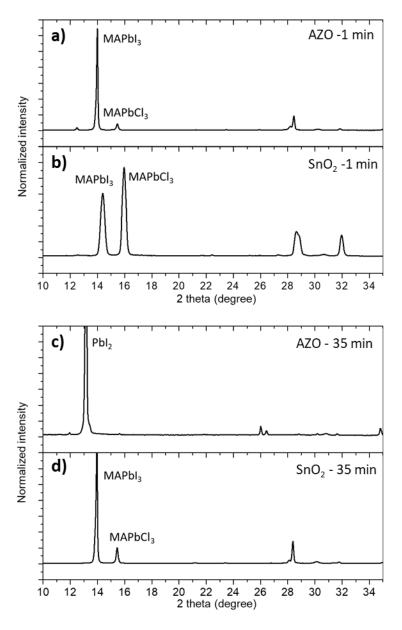


Figure S2: XRD diffractograms of perovskite annealed at 100° C : for 1 min on a) AZO and b) SnO₂ and for 35 min on c) AZO and d) SnO₂ (intensity normalized with ITO).

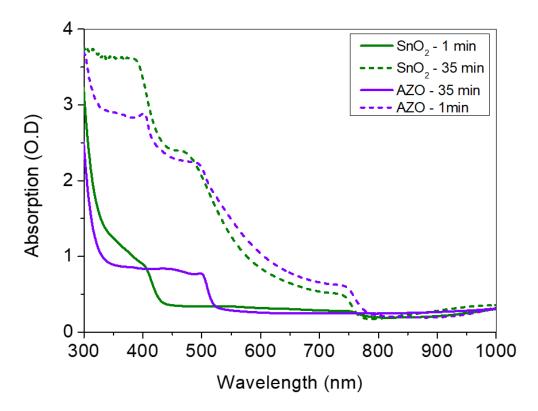


Figure S3: UV-visible absorption spectra of perovskite on AZO and SnO_2 layers after 100°C annealing for both 1 and 35 min.

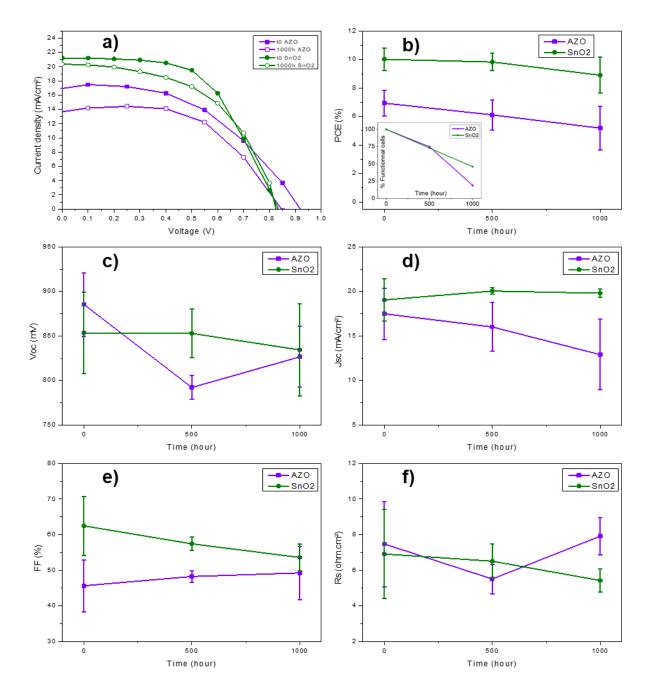


Figure S4: a) J-V curves for both architectures before and after 1000 h aging; b) PCE (%) for functional cells and quantification (%) of remaining functional cells; c) V_{oc} (mV), d) J_{sc} (mA.cm⁻²), e) FF (%) and f) R_s (ohm.cm²) parameters for both architectures during aging campaigns.

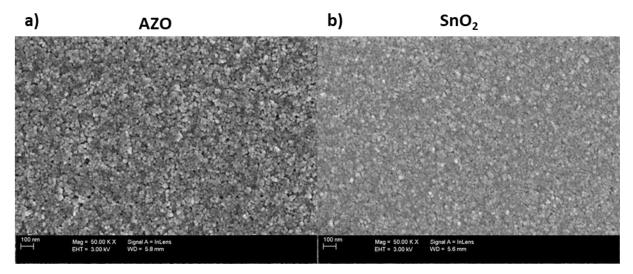


Figure S5: SEM surface images of a) AZO and b) SnO_2 layers.

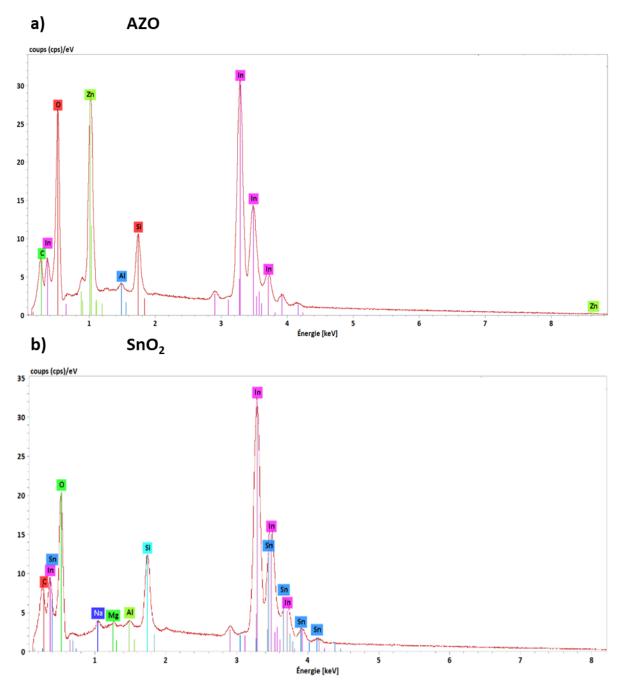


Figure S6: EDX analyses of a) AZO and b) SnO_2 layers.

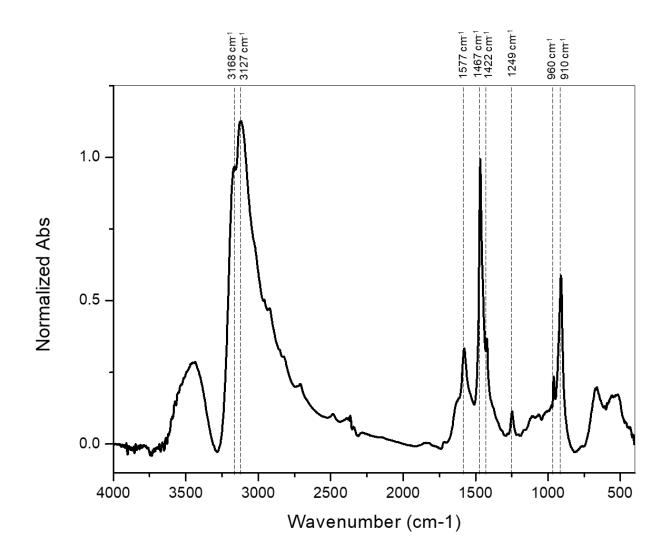


Figure S7: Full range FTIR spectrum of a $MAPbI_{3-x}CI_x$ layer (on SnO_2) with bands assignment.

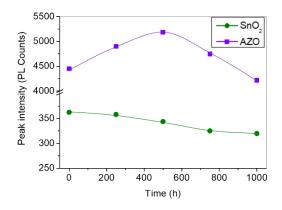


Figure S8: Variation of PL intensity with aging time on both AZO and SnO₂ perovskite half cells.

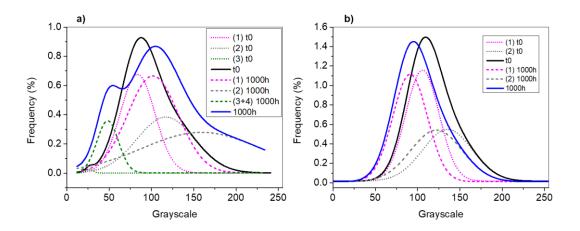


Figure S9: Evolution with time of the grayscale distribution of SEM images on both (a) AZO and (b) SnO_2 systems.

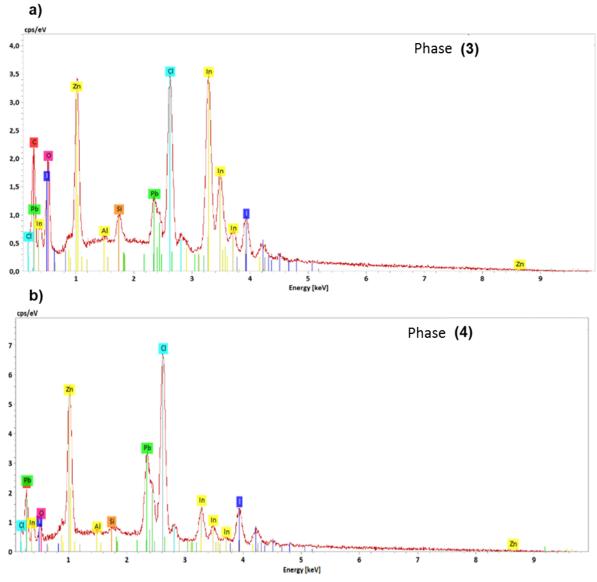


Figure S10: Raw EDS spectra with precise attributions for phases a) (3) and b) (4)

	Time (hour)	Voc (mV)	Jsc (mA/cm²)	FF (%)	PCE (%)	Rs (ohm.cm²)
AZO	0	885 ± 36	17.4 ± 2.9	46 ± 7	6.9 ± 0.9	7.4 ± 2.4
	500	792 ± 13	16 ± 2.8	48 ± 2	6.1 ± 1.1	5.5 ± 0.8
	1000	826 ± 34	12.9 ± 4.0	49 ± 7	5.2 ± 1.5	7.9 ± 1.1
SnO ₂	0	853 ± 46	19 ± 2.4	62 ± 8	10 ± 0.8	6.9 ± 2.5
	500	853 ± 27	20 ± 0.4	57 ± 2	9.8 ± 0.6	6.5 ± 1.0
	1000	834 ± 52	19.8 ± 0.5	53 ± 4	8.9 ± 1.3	5.4 ± 0.7

Table S1: PV parameters for both architectures during aging tests.

Wavenumbers (cm ⁻¹)	Peaks assignment	
910	CH_3 - NH_3^+ rock v_{12}	
960	C – N stretch v ₅	
1249	$CH_3 - NH_3^+ \text{ rock } v_{11}$	
1376	Sym. CH_3 bend v_4	
1422	Asym. CH_3 bend v_{10}	
1467	Sym. NH_3^+ bend v_3	
1577	Asym. NH_3^+ bend v_9	
3127	Sym NH_3^+ stretch v_1	
3168	Asym NH_3^+ stretch v_7	

Table S2: Assignment of $MAPbI_{3-x}CI_x$ FTIR vibration bands.

Material	Orientation	Position (°)	
Pbl ₂		12.46	
MAPbl ₃	(110) (002)	13.94	
MAPbCl ₃	(100)	15.46	
ІТО		21.30	
PbCl ₂		23.47	
Pbl ₂		25.89	
MAPbl ₃	(220) (004)	28.19 ; 28.39	
ІТО		30.24	
MAPbCl ₃	(200)	31.86	

Table S3: XRD peaks assignment (according Cu source equivalent values).

		(1) MAPbl _{3-x} Cl _x	(2) MAPbl _{3-x} Cl _x + Pbl ₂	(3) MACI + porosity	(4) PbX2 + porosity
AZO	t0	52 %	46 %	2 %	
	1000h	45 %	45 %	10 %	
SnO ₂	t0	100%			
	1000h	100%			

Table S4: Repartition of the different identified phases depending on both aging time and ETL layer nature, determined according to the surface grayscale analysis of SEM images (see Figure S9) and EDS analyses.