Kainic acid-based agonists of glutamate receptors – SAR analysis and guidelines for analogs design

Zhenlin Tian, Brianna L. M. Clark, and Fred Menard*

Department of Chemistry, University of British Columbia, Kelowna, BC, Canada, V1V 1V7

Supporting Information

Table of Contents

1.	Relative activity scale for kainoids	. 2
	Table S1. Qualitative scale of relative activity for kainoid analogs	. 2
2.	Calculated relative activity values of kainoids	. 3
	Table S2. Relative activity values of kainic acid analogues	. 3
	Table S3. Original literature data for the activity of kainic acid analogs in functional assays	. 4
	Table S4. Original literature data for the activity of kainic acid analogs in functional assays. (Continued)	. 5
	Table S5. Agonists activity of Glu, KA and DA at KARs (GluK1-5)	. 7
3.	Effect of aromatic substituents on the binding of kainoids	. 8
	Table S6. Correlation of the binding affinity of analogs of compounds 34, 35, and 36 with the Hammett constants of their aromatic substituents.	. 8
	Figure S1. Plots of kainoid analogs 36's inhibitory constants as a function of the Hammett σ (A) and σ (B) coefficients of	of
	their aromatic substituents	.9
4.	3D structures of domoic acid and isodomoic acids	10
	Figure S2. (A) X-ray crystal structure of GluK2 bound to domoic acid (PDB: 1yae). (B) The protein chains were omitted	
	for clarity	10
	Figure S3. Domoic acid analogs in their energy-minimized, ground state conformation	11
5.	Homology Analysis of kainate receptors	12
	Table S7. Kainate receptors reference sequences for the most commonly used organisms (mouse, rat, and humans)	12
	Table S8. Homology analysis of GluK1 between mouse, rat, and human isoforms	13
	Table S9. Homology analysis of GluK2, GluK3, GluK4, and GluK5 between mouse, rat, and human isoforms	14
	Table S10. Reported crystallized protein structures of ionotropic glutamate receptors: kainate receptors (GluK1-5)	16
	Table S10. Reported crystallized protein structures of ionotropic glutamate receptors: kainate receptors (GluK1-5)	
	(Continued).	17
	Table S10. Reported crystallized protein structures of ionotropic glutamate receptors: kainate receptors (GluK1-5)	
	(Continued).	18
6.	References	19

1. Relative activity scale for kainoids

The literature values of binding, activity or affinity of KAR agonists are reported using a wide range of biochemical and biological assays. In order to compare the activity of kainic acid derivatives presented in different studies, a qualitative scale was established. Glutamate, kainic acid and domoic acid were set as benchmarks for this scale system.

Relative Activity (RA)	Grade	Notes
Inactive		Inactive
0 < RA < 0.065	-	Weaker than L-Glu, but active
0.065 ≤ RA < 1	+	Between L-Glu and KA
1 ≤ RA <2.89	++	Between KA and DA
$2.89 \leq RA$	+++	Being equal as or stronger than DA

Table S1. Qualitative scale of relative activity for kainoid an	alogs
---	-------

The activity of each compound was first normalized to the positive control used in a given study (typically, glutamic acid or kainic acid). Since the activity date were collected from various sources, which were obtained from different assays. Some assays are based on neuron activity, such as effects on neurons, which might be combined consequences of AMPARs and KARs. In this article, we are mainly interested in KARs, when a compound was tested in more than one assay, priority was given to data from KARs (eg. GluK2) binding assay (K_i or IC₅₀). Otherwise, data from [³H]-KA displacement assays was used for calculations. If those data were not available, calculations were performed with the reported activity in neurons or in animal experiments. Data from those experiments might not be only the contribution of KARs. When multiple data were available for a single agonist, the most recent data is used.

Calculation methods:

1. Relative activity =	K_i (or $EC_{50})$ of KA / K_i (or $EC_{50})$ of compounds
2. Relative activity =	Effect of compounds / effect of KA
3. Relative activity (iso-DAs) =	(Ki of DA / Ki of iso-DAs) * RA of DA (Ki of KA / Ki of DA)

2. Calculated relative activity values of kainoids

mpound	Relative activity	Activity	F	lef.	tef Compound	Ref Compound Relative activity	Relative activity Activity
Kainic acid (1) –	(Relative to KA)	Level	nei.		Compound	(Relative to KA)	(Relative to KA) Level
Reference	1	++	1-18		32d	32d 0.03	32d 0.03 -
Domoic acid (2)	2.89	+++	14		32e	32e 1.6	32e 1.6 ++
L-Glu (3)	0.065	+	12		33a	33a 5.67	33a 5.67 +++
4	Inactive		3		33b	33b 0.12	33b 0.12 +
5a	Inactive		3		33c	33c 6.8	33c 6.8 +++
5b	Inactive		3		33d	33d 2.13	33d 2.13 ++
6	Inactive		2		34a	34a Inactive	34a Inactive
7	Inactive		2		34b	34b Inactive	34b Inactive
8a	Inactive		7		35a	35a 0.016	35a 0.016 -
8b	Inactive		7		35b	35b 0.023	35b 0.023 -
9a	Inactive		7		35c	35c 0.017	35c 0.017 -
9b	Inactive		7		35d	35d 0.001	35d 0.001 -
10	0.049	-	14		36a	36a 2.3	36a 2.3 ++
11	0.0063	-	7		36b	36b 1.7	36b 1.7 ++
12a	1	++	9		36c	36c 1.4	36c 1.4 ++
12b	Inactive		9		36d	36d 1.1	36d 1.1 ++
13	0.00063		7		368	36e 0.95	36e 0.95 ±
1/9	Inactive	-	5		36f	36f 0.95	36f 0.95
146	Inactive		5		369	36 14	
140			3		30g 26h	309 1.4	30g 1.4 ++
158	0.013	-	4		300	30H 1.0	30n 1.0 ++
150	0.00065	-	4		361	361 0.40	361 0.40 +
15c	Inactive		4		36j	36j 1.94	36j 1.94 ++
16a	Inactive		5		36k	36k 0.48	36k 0.48 +
16b	Inactive		5		361	36I 1.02	36I 1.02 ++
16c	Inactive		5		36m	36m 1.94	36m 1.94 ++
16d	Inactive		5		36n	36n 0.20	36n 0.20 +
17	Inactive		9		360	360 1.02	360 1.02 ++
18	Inactive		9		36p	36p 0.41	36p 0.41 +
19	Inactive		9		36q	36q 1.76	36q 1.76 ++
20	0.68	+	9		36r	36r 0.41	36r 0.41 +
21	Inactive		9		36s	36s 0.16	36s 0.16 +
22	Inactive		11		36t	36t 1.32	36t 1.32 ++
23	Inactive		9		36u	36u 0.31	36u 0.31 +
24a	Inactive		10		36v	36v 0.23	36v 0.23 +
24b	Inactive		10		36w	36w 0.59	36w 0.59 ±
240	0.22	-	8		36%	36x 0.029	36v 0.020
258	0.22	+	0		30x	36x 0.029	30x 0.029 -
250	0.043	-	0		30y	389 0.018	36y 0.018 -
Acro A (26)	2.2	++	12		362	36z 0.041	36z 0.041 -
Acro B (27)	7.2	+++	12		36aa	36aa 0.41	36aa 0.41 +
MPPA (28)	0.31	+	12		36ab	36ab 0.08	36ab 0.08 +
HMPPA (29)	0.68	+	12		iso DA A (37)	iso DA A (37) 1.62	iso DA A (37) 1.62 ++
CPPA (30)	0.87	+	12		iso DA B (38)	iso DA B (38) 0.001	iso DA B (38) 0.001 -
CNOPA (31)	0.27	+	12		iso DA C (39)	iso DA C (39) 0.040	iso DA C (39) 0.040 -
32a	0.34	+	13		iso DA D (40)	iso DA D (40) 0.004	iso DA D (40) 0.004 -
32b	4.0	+	13		iso DA E (41)	iso DA E (41) 0.004	iso DA E (41) 0.004 -
32c	0.85	+	13		iso DA F (42)	iso DA F (42) 0.10	iso DA F (42) 0.10 +

Table S2. Relative activity values of kainic acid analogues.

*These relative activity values were calculated based on the original data listed in Tables S3 and S4.

					F	otency					
Compound	Potenc y relative to L-Glu ¹	Mimimu concentr	im effective ration (μ M) 2	к	Potency relative A neurotoxicity	e to (%) ³	Potenc y relative to L- Glu ⁴	Effect in r si (KA in	at cerebellar lices I 1 mM) ⁵	Binding to GluK2 ⁶	[3H] kainate binding to KA Receptor s Ki (μΜ) 7
		Depolariz ation	Potentiation	Retina	Striatum	Electrophy siology		EC 50 (mM)	KA Antagonis t IC ₅₀ (mM)		
KA (1)	8 -80	0.3	0.05	1.0	1.0	1.0	8.0	1.0	_		0.01
DA (2)		0.006	0.003								
L-Glutamic acid (3)	1	0.03	Inactivea	0.3	< 0.1	1.0	1.0				
Kainic acid dimethyl ester (4)		Inactivea	Inactivea	< 1.0	< 2.0	Inactivea					
N-acetyl kainic acid (5a)		Inactivea	Inactivea	< 1.0	< 2.0	Inactivea					
N-Boc kainic acid (5b)		Inactivea	Inactivea								
<i>allo</i> – KA (6)		Inactivea	Inactivea								
β-KA (7)		Inactivea	Inactivea								
8a										Inactiv e	
8b										Inactiv e	
9a										Inactiv e	
9b										Inactiv e	
Pyroglutamic acid (10)	0.7 – 0.8										1.0
CPAA (11) Kainia aaid											1.6
methyl ketone (12a)		0.01	0.003				5.2				
methyl ketone (12b)							4.6				
DHK (13)	0.06 - 0.6	Inactivea	Inactivea	< 1.0	< 2.0	Inactivea					16
Carboxyl kainic acid (14a)							2.5	Inactive	Inactive		
Carboxyl <i>allo</i> – kainic acid (14b)							2.3	Inactive	Inactive		
Hydroxyl kainic acid (15a)							0.2				
Dihydroyl kainic acid (15b)							0.1				
Phenylthio- hydroxyl kainic acid (15c)							0.1				
Kainic acid lactone (16a)		Inactivea	Inactivea						3 (KA 0.1 mM) ⁶		
Kainic acid hydroxy-lactone (mixed isomers)								Inactive	2.0 ^b		
Kainic acid iodolactone (16c)								Isomer A Very weak Isomer B Inactive	Isomer A Inactive Isomer B 0.3		
Kainic acid phenylthiolacton								Inactive	0.5		

Notes: (a) Inactive at a concentration less than 1 $\mu M.\,$ (b) Isomer mixture.

Table S4. Original literature data for the activity of kainic acid analogs in functional assays. (Continued)

	nalogue of MI) ⁸	Effect o	n neurons ⁹		11	Mean molar ratios, relative	potency to KA ¹²	late receptors ¹³	[3H] kainate (nM)	binding Ki)15	In viv	o potenci	es ^{16,17}	nM) ¹⁸
Compou nds	IC50 (Displacement by kainate bound [3H] KA (20 nm)	Minimum effective or used concentration (mM)	Effects	Insecticidal Activity ¹⁰	II Secucidat Activity IC ₅₀ for KA receptors (Dorsal root fibers	Moton euron es	Ki (μ M) against kair	HumGluK 2 receptors	Rat forebrain receptor s	Binding to Gluk2 Ki (nM	Spike amplitude EC50 (nM)	Spike area EC50 (nM)	Gluk2 binding assay Ki (nM)	Synaptosomal KA BRA Ki (
KA (1)	17.8	0.3 - 0.03	Effective			1	1		53.0 ± 23.6	3.7 ± 0.20					
DA (2)		0.3 – 0.03	Effective			34 ± 2.4	2.2 ± 0.08		18.3 ±10.2		4.9 ± 0.29	228	237	3.35	2.4
L-Glu (3)		0.68	Inactive			0.11 ± 0.01	0.02 ± 0.003								
allo-KA (6)		0.47	Inactive												
12a		0.3 – 0.03	Effective												
12b		0.47	Inactive												
DHKA (13)	645.6	0.47	Inactive			< 0.01	< 0.01								
17		0.28	Inactive												
18 19		0.26	Inactive												
20		0.24	Inactive												
21		0.24	Inactive												
22					> 10 0										
23 Domoile		0.19	Inactive												
ctone A (24a)				Inactiv e											
ctone B				Inactiv e											
(240) 25a	79.4														
25b	416.8						27+								
(26)						1.7 ± 0.08	0.1								
ACTO B (27)						13 ± 0.7	0.04 ±								
MPPA (28)						0.045 ± 0.006	0.57 ± 0.05								
HMPPA (29)						0.45 ± 0.04	0.91 ± 0.04								
CPPA (30)						0.91 ± 0.12	0.82 ±								
CNOPA						0.29 ± 0.06	0.22 ±								
(31) 32a						0.22 ± 0.03	0.02 0.45 ±	0.006							
32b						4.2 ± 0.29	0.33 3.8 ±	0.29							
32c							0.12	0.005							
32d							10.	0.016							
32e						1.3 ± 0.13	0.12								
33a								0.1							
33D 33C								0.04							
33d								1.3							

34a		> 100 000	ΝΔ					
046		> 100,000	NA					
340		> 100,000	NA .					
35a		0909.0 ± 1330.8	230.0 ±					
		2303.3 ±	230.0 ±					
35b		802.5	38.3					
350		3109.2 ±	ΝΔ					
000		934.3	N/A					
35d		> 100, 000	3000 ±					
			16+					
36a		29.8 ± 6.9	0.25					
36b		122.5 ±	2.2 ±					
000		40.9	0.25					
36c		41.1 ±1.8	2.6					
			3.5 +					
36d		93.5 ± 21.5	0.45					
36e		57 4 + 15 4	3.9					
000		57.4 ± 15.4	±1.61					
36f		31.7 ± 5.4	3.9 ±					
			2.7 ±					
36g		38.4 ± 21.7	0.49					
36h		107.8 ±	2.3 ±					
		20.4	0.90					
36i		169.3 ±	9.5 ±					
		20.0	1.9 ±					
36j		54.3 ± 16.2	0.63					
36k		82 2 + 24 3	7.7 ±					
		02.2 2 2 1.0	3.02					
361		146.8 ±46.4	3.0					
		145.6 ±	1.9					
36m		26.2	±0.63					
36n		262.7 ±	18.5 ±					
		59.7	12.75					
360		46.2	3.0 ± 0.59					
00-		288.0 ±	9.0 ±					
зөр		105.0	0.83					
36g		90.6 ± 10.9	2.1 ±					
		120.6 +	0.57					
36r		29.8	3.18					
260		275.3 ±	23.3 ±					
305		498.5	0.47					
36t		146.6 ±	2.8 ±					
		209.6 +	0.64					
36u		60.9	2.29					
361		667.0 ±	16.0 ±					
500		259.8	6.52					
36w		126.2 ±	6.2 ±					
		1295.7 ±	126.0 ±					
36x		272.2	34.9					
36v		2423.3 ±	210.3 ±					
,		300.2	59.3					
36z		1284 ±	NA					
00		129.3 ±	NIA					
36aa		13.6	NA					
36ab		663.3 ±	NA					
	Efforti	300.1						
(37)	Ve				887	939	130	4.4
Iso-DA B	Effecti							5000
(38)	ve							5000
Iso-DA C	Effecti			1176 ±	3712	462	1176	171
(39) Iso-DA D	Ve			70		6		
(40)								600
Iso-DA E								600
(41)								000
150-DA F (42)								67
\· - /	1							

	Glu	IK1	GluK2		GluK3	GluK4	GluK5
Glu	EC ₅₀ = 917 μM	K _i = 140 nm	$EC_{50}=9\pm1~\mu M$	K _i = 331 nm	K _i = 494 nm	_	_
KA	EC ₅₀ = 51 μM	K _i = 75.9 nm	$EC_{50}=1.1\pm0.1~\mu M$	K _i = 12.7 nm	K _i = 32.8 nm	K _d = 1.9 nm	K _i = 15 nm
DA	$EC_{50} = 13 \ \mu M$	K _i = 1.11 nm	$EC_{50} = 0.07 \pm 0.01 \ \mu M$	K _i = 6.04 nm	K _i = 3.84 nm	K _i = 25 nm	_
Ref	Neurochem. Int. 2012, 61, 536.	J. Med. Chem. 2008 , 51, 4093	Neuropharmacology. 2004, 46, 793.	J. Med. Chem. 2008 , 51, 4093	J. Med. Chem. 2008 , 51, 4093	Structure, 2016 , 24, 1582.	Nature, 1992 , 8, 775.

Table S5. Agonists activity of Glu, KA and DA at KARs (GluK1–5).

3. Effect of aromatic substituents on the binding of kainoids

Hammett and electrophilic coefficients were tabulated for each aromatic compound reported.^{19,20} These constants are only available for *meta* and *para* substituents, consequently, some kainoids were ignored in the graphs presented in the manuscript.

Table S6. Correlation of the binding affinity of analogs of compounds 34, 35, and 36 with the Hammett constants of their aromatic substituents.

Compound	$\Sigma \sigma$ (Hammett	$\Sigma \sigma$ (Electrophilic	[H] Kainate binding K	Log ₁₀ Ki
-	substituent constants)	substituent constants)	(nM)	17.14
1	-	-	53 ± 23.6	1.7 ± 1.4
2	-	-	18.3 ± 10.2	1.3 ± 1.0
34a	-	-	>100,000	> 5
34b	-	-	>100,000	> 5
35a	-	-	$6,969 \pm 1331$	3.8 ± 3.1
35b	-	-	$2,303 \pm 802$	3.4 ± 2.9
35c	-	-	$3,109 \pm 934$	3.5 ± 3.0
35d	-	-	>100,000	
36a	0	0	29.8 ± 6.9	1.5 ± 0.8
36b	-0.069	-0.066	122.5 ± 40.9	2.1 ± 1.6
36c	-0.170	-0.311	41.1 ± 1.8	1.6 ± 0.3
36d	0.115	0.047	93.5 ± 21.5	2.0 ± 1.3
36e	-0.268	-0.778	57.4 ± 15.4	1.8 ± 1.2
36f	0.277	0.114	31.7 ± 5.4	1.5 ± 0.7
36g	0.062	-0.073	38.4 ± 21.7	1.6 ± 1.3
36h	-0.239	-0.377	107.8 ± 20.4	2.0 ± 1.3
36i	-0.138	-0.132	169.3 ± 23.6	2.2 ± 1.4
36j	-0.007	-0.139	54.3 ± 16.2	1.7 ± 1.2
36k	-0.151	-0.295	82.2 ± 24.3	1.9 ± 1.4
361	-	-	146.8 ± 46.4	2.2 ± 1.7
36m	-	-	145.6 ± 26.2	2.2 ± 1.4
36n	-	-	262.7 ± 59.7	2.4 ± 1.8
360	-	-	131.5 ± 46.2	2.1 ± 1.7
36p	-	-	288.0 ± 105.0	2.5 ± 2.0
36q	-0.010	0.109	90.6 ± 10.9	2.0 ± 1.0
36r	0.060	-0.179	130.6 ± 29.8	2.1 ± 1.5
36s	0.100	-	275.3 ± 598.5	2.4 ± 2.8
36t	-0.320	-	146.6 ± 52.0	2.2 ± 1.7
36u	-0.320	-0.500	209.6 ± 60.9	2.3 ± 1.8
36v	-	-	667 ± 259	2.8 ± 2.4
36w	-	-	126.2 ± 40.3	2.1 ± 1.6
36x	-	-	$1,296 \pm 272$	3.1 ± 2.4
36y	-	-	$2,423 \pm 300$	3.4 ± 2.5
36z	-	-	1,284 ± 131	3.1 ± 2.1
36aa	-	-	129.3 ± 13.6	2.1 ± 1.1
36ab		-	663 ± 300	2.8 ± 2.5

Figure S1. Plots of kainoid analogs 36's inhibitory constants as a function of the Hammett σ (A) and σ^+ (B) coefficients of their aromatic substituents. Potential trends are manually indicated by a dashed line. Reference K_i values of kainic acid and domoic acid are shown as red and green lines, respectively.

The analogs series **36** make it tempting to analyze the electronic density of the aromatic substituents to reveal the extent of a π - π interaction. However, plotting the potency of derivatives **36** against their Hammett constants shows no clear trend in terms of electronic factors (Fig. S1). Yet, compounds with K_i's lower than KA have substituents only in the *para* position. In contrast, compounds with *meta* substituents are less potent than KA. A slightly lower activity can be detected for more electron-rich aromatic compounds (suggesting a potential destabilizing interaction with a tyrosine)—however, this is admittedly a weak correlation. A similar weak correlation is also observed when the electrophilic constant parameters are used (Figure S1b). This analysis rules out a cation– π interaction, but may still support a π - π stacking contribution. On the other hand, the relatively bulky and hydrophobic aromatic groups favor the hydrophobic interactions with KARs. This was confirmed by higher thermal stability of KA with GluK4 compared to that of Glu since thermal stability is highly correlated with hydrophobic forces. ²¹ But agonists with hydrophilic groups on aromatic ring stills display high affinity, such as **26**, **27** and **31**. Thus, we believe that the activity of agonists might be a sum of all these factors (π - π stacking and hydrophobic force).

4. 3D structures of domoic acid and isodomoic acids

3D structures of domoic acid are presented bound to the GluK2 kainate receptor. The coordinate files were obtained from the protein data bank (GluK2, 1yae).²² 3D structures of domoids were created with Chemdraw3D, then their conformational energies were minimized to generate sets of plausible poses (Figure S2). All structures were visualized in Pymol.

Figure S2. (A) X-ray crystal structure of GluK2 bound to domoic acid (PDB: 1yae). (B) The protein chains were omitted for clarity.

Figure S3. **Domoic acid analogs in their energy-minimized, ground state conformation.** 3D structures of domoic acid analogs were produced by Chemdraw in ground state to provide visual comparison. Rotatable *sp*³ C-C bond on C4 sidechain were highlighted with red since the rotation may led to configuration change of C4 side chain.

5. Homology Analysis of kainate receptors

Table S7. Kainate receptors reference sequences for the most commonly used organisms (mouse, rat, and humans).

lonotropic glutamate receptor	organism	Catalogued name	Accession number	Protein size (# a.a.)
GluK1	mus musculus	m.m.	Q60934.2	836
(GluR5)		m.m. isoform a	NP_666184.2	934
		m.m. isoform b	NP_034478.1	905
		m.m. isoform c	NP_001333893.1	903
	rattus norvegicus	r.n.	P22756.3	949
		r.n. isoform 1	NP_001104587.1	949
		r.n. isoform 2	NP_058937.1	920
		r.n. isoform 3	NP_001104584.1	905
	homo sapiens	h.s.	P39086.1	918
		h.s. isoform 1	NP_000821.1	918
		h.s. isoform 2	NP_783300.1	905
		h.s. isoform 3	NP_001307545.1	920
		h.s. isoform 4	NP_001307547.1	781
		h.s. isoform 5	NP_001307550.1	763
		h.s. isoform 7	NP_001317922.1	934
		h.s. isoform 8	NP_001317923.1	949
GluK2	mus musculus	m.m. isoform 1	NP_001104738.1	908
(GluR6)		m.m. isoform 2	NP_034479.2	869
	ratus norvegicus	r.n.	P42260.2	908
		r.n.	NP_062182.1	908
	homo sapiens	h.s. isoform 1	NP_068775.1	908
		h.s. isoform 2	NP_786944.1	869
		h.s. isoform 3	NP_001159719.1	892
GluK3	mus musculus	m.m.	NP_001074566.1	919
(GluR7)	rattus norvegicus	r.n.	P42264.1	919
		r.n. isoform 1	NP_001106187.1	919
		r.n. isoform 2	NP_852038.2	910
	homo sapiens	h.s.	NP_000822.2	919
GluK4	mus musculus	m.m	NP_780690.2	956
(KA1)	rattus norvegicus	r.n.	Q01812.1	956
		r.n.	NP_036704.1	956
	homo sapiens	h.s. isoform 1	NP_001269399.1	956
		h.s. isofrom 2	NP_001269402.1	956
GluK5	mus musculus	m.m.	NP_032194.2	979
(KA2)	rattus norvegicus	r.n.	NP_113696.1	979
	homo sapiens	h.s. isoform 1	NP_001287959.1	981
		h.s. isoform 2	NP_002079.3	980

Notes: The GluK2 protein reference that is used throughout this review to number the amino acids is highlighted in yellow.

6																
	mus musculus				rattus norvegicus				homo sapiens							
GluK1	m.m. Q60934.2 836 aa	m.m. isoform a NP_666184.2 934 aa	m.m. isoform b NP_034478.1 905	m.m. isoform c NP_001333893.1 903	r.n. P22756.3 949 aa	r.n. isoform 1 NP_001104587.1 949	r.n. isoform 2 NP_058937.1 920	r.n. isoform 3 NP_001104584.1 905	h.s. P39086.1 918 aa	h.s. isoform 1 NP_000821.1 918	h.s. isoform 2 NP_783300.1 905	h.s. isoform 3 NP_001307545.1 920	h.s. isoform 4 NP_001307547.1 781	h.s. isoform 5 NP_001307550.1 763	h.s. isoform 7 NP_001317922.1 934	h.s. isoform 8 NP_001317923.1 949
Q60934.2		89.2% (89.4%)	86.1% (86.3%)	88.3% (88.4%)	86.5% (87.5%)	86.9% (87.8%)	84.0% (84.8%)	85.3% (86.2%)	85.2% (86.8%)	85.2 (86.8%)	84.7% (86.2%)	83.4% (84.8%)	71.5% (72.9%)	81.9% (83.0%)	87.4% (89.1%)	86.0% (87.7%)
NP_666184.2	89.2% (89.4%)	numbering reference	96.9% (96.9%)	91.4% (91.4%)	96.9% (97.9%)	97.4% (98.2%)	94.4% (95.3%)	95.9% (96.8%)	96.1% (98.2%)	96.1% (98.2%)	94.8% (96.8)	93.3% (95.3%)	81.6% (83.5%)	94.4% (96.1%)	97.4% (9.7%)	95.9% (98.1%)
NP_034478.1	86.1% (86.3%)	96.9% (96.9%)		99.7% (99.8%)	94.0% (94.9%)	94.4% (95.3%)	97.4% (98.3%)	99.0% (99.9%)	95.8% (97.9%)	95.8% (97.9%)	97.8% (99.9%)	96.2% (98.3%)	84.2% (86.2%)	98.2% (100.0%)	94.8% (96.8%)	93.3% (95.3%)
NP_001333893.1	88.3% (88.4%)	91.4% (91.4%)	99.7% (99.8%)		96.8% (97.8%)	97.2% (98.2%)	96.9% (97.9%)	98.6% (99.7%)	95.8% (98.0%)	95.8% (98.0%)	97.4% (99.7%)	95.8% (97.9%)	83.1% (85.2%)	97.8% (99.7%)	97.8% (99.9%)	96.1% (98.2%)
P22756.3	86.5% (87.5%)	96.9% (97.9%)	94.0% (94.9%)	96.8% (97.8%)		99.6% (99.7%)	96.5% (96.6%)	94.9% (95.0%)	96.7% (99.4%)	96.7% (99.4%)	92.3% (94.8%)	93.8% (96.4%)	79.5% (81.8%)	91.7% (93.8%)	95.0% (97.8%)	96.5% (99.4%)
NP_001104587.1	86.9% (87.8%)	97.4% (98.2%)	94.4% (95.3%)	97.2% (98.2%)	99.6% (99.7%)		96.9% (96.9%)	95.4% (95.4%)	97.1% (99.8%)	97.1% (99.8%)	92.7% (95.2%)	94.2% (96.7%)	79.8% (82.1%)	92.2% (94.1%)	95.5% (98.1%)	96.9% (99.7%)
NP_058937.1	84.0% (84.8%)	94.4% (95.3%)	97.4% (98.3%)	96.9% (97.9%)	96.5% (96.6%)	96.9% (96.9%)		98.4% (98.4%)	96.8% (99.5%)	96.8% (99.5%)	95.7% (98.2%)	97.2% (99.8%)	82.3% (84.7%)	95.8% (97.8%)	92.7% (95.2%)	94.2% (96.7%)
NP_001104584.1	85.3% (86.2%)	95.9% (96.8%)	99.0% (99.9%)	98.6% (99.7%)	94.9% (95.0%)	95.4% (95.4%)	98.4% (98.4%)		95.2% (97.8%)	95.2% (97.8%)	97.2% (99.8%)	95.7% (98.2%)	83.6% (86.1%)	97.8% (99.9%)	94.2% (96.7%)	92.7% (95.2%)
P39086.1	85.2% (86.8%)	96.1% (98.2%)	95.8% (97.9%)	95.8% (98.0%)	96.7% (99.4%)	97.1% (99.8%)	96.8% (99.5%)	95.2% (97.8%)		21.9% (62.5%) ???	97.9% (98.1%)	99.7% (99.8%)	83.7% (83.8%)	95.0% (95.9%)	98.3% (98.3%)	100.0% (100.0%)
NP_000821.1	85.2 (86.8%)	96.1% (98.2%)	95.8% (97.9%)	95.8% (98.0%)	96.7% (99.4%)	97.1% (99.8%)	96.8% (99.5%)	95.2% (97.8%)	21.9% (62.5%) ???		97.9% (98.1%)	99.7% (99.8%)	83.7% (83.8%)	95.0% (95.9%)	98.3% (98.3%)	100.0% (100.0%
NP_783300.1	84.7% (86.2%)	94.8% (96.8)	97.8% (99.9%)	97.4% (99.7%)	92.3% (94.8%)	92.7% (95.2%)	95.7% (98.2%)	97.2% (99.8%)	97.9% (98.1%)	97.9% (98.1%)		98.4% (98.4%)	86.3% (86.3%)	97.6% (98.4%)	96.9% (96.9%)	95.4% (95.4%)
NP_001307545.1	83.4% (84.8%)	93.3% (95.3%)	96.2% (98.3%)	95.8% (97.9%)	93.8% (96.4%)	94.2% (96.7%)	97.2% (99.8%)	95.7% (98.2%)	99.7% (99.8%)	99.7% (99.8%)	98.4% (98.4%)		84.9% (84.9%)	95.7% (96.5%)	95.4% (95.4%)	96.9% (96.9%)
NP_001307547.1	71.5% (72.9%)	81.6% (83.5%)	84.2% (86.2%)	83.1% (85.2%)	79.5% (81.8%)	79.8% (82.1%)	82.3% (84.7%)	83.6% (86.1%)	83.7% (83.8%)	83.7% (83.8%)	86.3% (86.3%)	84.9% (84.9%)		81.9% (81.9%)	83.6% (83.6%)	82.3% (82.3%)
NP_001307550.1	81.9% (83.0%)	94.4% (96.1%)	98.2% (100.0%)	97.8% (99.7%)	91.7% (93.8%)	92.2% (94.1%)	95.8% (97.8%)	97.8% (99.9%)	95.0% (95.9%)	95.0% (95.9%)	97.6% (98.4%)	95.7% (96.5%)	81.9% (81.9%)		94.0% (94.7%)	92.2% (92.9%)
NP_001317922.1	87.4% (89.1%)	97.4% (9.7%)	94.8% (96.8%)	97.8% (99.9%)	95.0% (97.8%)	95.5% (98.1%)	92.7% (95.2%)	94.2% (96.7%)	98.3% (98.3%)	98.3% (98.3%)	96.9% (96.9%)	95.4% (95.4%)	83.6% (83.6%)	94.0% (94.7%)		98.4% (98.4%)
NP_001317923.1	86.0% (87.7%)	95.9% (98.1%)	93.3% (95.3%)	96.1% (98.2%)	96.5% (99.4%)	96.9% (99.7%)	94.2% (96.7%)	92.7% (95.2%)	100.0% (100.0%)	100.0% (100.0%	95.4% (95.4%)	96.9% (96.9%)	82.3% (82.3%)	92.2% (92.9%)	98.4% (98.4%)	

Table S8. Homology analysis of GluK1 between mouse, rat, and human isoforms.

Homology Analysis of GluK1 between mouse, rat, and human isoforms

Table S9. Homology analysis of GluK2, GluK3, GluK4, and GluK5 between mouse, rat, and human isoforms.

	mus musculus		ratus norvegicus		homo sapiens		
GluK2	m.m. isoform 1	m.m. isoform 2	r.n.	r.n.	h.s. isoform 1	h.s. isoform 2	h.s. isoform 3
	NP_001104738.1	NP_034479.2	P42260.2	NP_062182.1	NP_068775.1	NP_786944.1	NP_001159719.1
	908	869	908	908	908	869	892
NP_001104738.1	numbering reference	99.9% (100.0%)	99.6% (99.9%)	99.9% (100.0%)	98.7% (99.6%)	98.5% (99.5%)	98.5% (99.5%)
NP_034479.2	99.9% (100.0%)		99.4% (99.9%)	99.8% (100.0%)	98.5% (99.5%)	98.6% (99.5%)	97.7% (99.0%)
P42260.2	99.6% (99.9%)	99.4% (99.9%)	numbering reference	99.7% (99.9%)	99.1% (99.7%)	98.9% (99.6)	98.9% (99.6%)
NP_062182.1	99.9% (100.0%)	99.8% (100.0%)	99.7% (99.9%)		98.8% (99.6%)	98.6% (99.5%)	98.6% (99.5%)
NP_068775.1	98.7% (99.6%)	98.5% (99.5%)	99.1% (99.7%)	98.8% (99.6%)		99.9% (100.0%)	99.9% (100.0%)
NP_786944.1	98.5% (99.5%)	98.6% (99.5%)	98.9% (99.6)	98.6% (99.5%)	99.9% (100.0%)	numbering reference	99.9% (100.0%)
NP_001159719.1	98.5% (99.5%)	97.7% (99.0%)	98.9% (99.6%)	98.6% (99.5%)	99.9% (100.0%)	99.9% (100.0%)	

Homology Analysis of **GluK2** between mouse, rat, and human isoforms

Note: The amino acid numbering reference used in this review is highlighted in yellow (GluK2_rat, P42260).

Homology Analysis of GluK3 between mouse, rat, and human isoforms

GluK3	<i>mus musculus</i> m.m. NP_001074566.1 919	<i>rattus norvegicus</i> r.n. P42264.1 919	r.n. isoform 1 NP_001106187.1 919	r.n. isoform 2 NP_852038.2 910	<i>homo sapiens</i> h.s. NP_000822.2 919
NP_001074566.1		99.5% (99.7%)	99.8% (100.0%)	99.8% (100.0%)	99.0% (99.9%)
P42264.1	99.5% (99.7%)		99.7% (99.7%)	99.6% (99.6%)	98.7% 99.6%
NP_001106187.1	99.8% (100.0%)	99.7% (99.7%)	[REF]	100.0% (100.0%)	99.0% 99.9%
NP_852038.2	99.8% (100.0%)	99.6% (99.6%)	100.0% (100.0%)		99.2% (99.9%)
NP_000822.2	99.0% (99.9%)	98.7% 99.6%	99.0% 99.9%	99.2% (99.9%)	

GluK4	mus musculus m.m NP_780690.2 956	<i>rattus norvegicus</i> r.n. Q01812.1 956	r.n. NP_036704.1 956	<i>homo sapiens</i> h.s. isoform 1 NP_001269399.1 956	h.s. isofrom 2 NP_001269402.1 956
NP_780690.2		99.5% (99.9%)	99.6% (100.0%)	97.9% (99.7%)	98.3% (99.6%)
Q01812.1	99.5% (99.9%)		99.9% (99.9%)	97.8% (99.6%)	98.2% (99.5%)
NP_036704.1	99.6% (100.0%)	99.9% (99.9%)		97.9% (99.7%)	98.3% (99.6%)
NP_001269399.1	97.9% (99.7%)	97.8% (99.6%)	97.9% (99.7%)		99.5% (99.6%)
NP_001269402.1	98.3% (99.6%)	98.2% (99.5%)	98.3% (99.6%)	99.5% (99.6%)	

Homology Analysis of GluK4 between mouse, rat, and human isoforms

Homology Analysis of GluK5 between mouse, rat, and human isoforms

GluK5	mus musculus m.m. NP_032194.2 979	<i>rattus norvegicus</i> r.n. NP_113696.1 979	<i>homo sapiens</i> h.s. isoform 1 NP_001287959.1 981	h.s. isoform 2 NP_002079.3 980
NP_032194.2		100.0% (100.0%)	99.5% (99.9%)	98.9% (99.6%)
NP_113696.1	100.0% (100.0%)		99.5% (99.9%)	98.9% (99.6%)
NP_001287959.1	99.5% (99.9%)	99.5% (99.9%)		100.0% (100.0%)
NP_002079.3	98.9% (99.6%)	98.9% (99.6%)	100.0% (100.0%)	

Table S10. Reported crystallized protein structures of ionotropic glutamate receptors: kainate receptors (GluK1-5). GluKs with Glu, KA or DA complex are highlight with grey. PDB IDs of dimer crystal structures are shown in blue, tetramers are in red and monomers are in black.

			PDB #	Amino acids	Resolution (Å)	Year	Lab	Citation
KAINATE	E r	eceptors						
GluK1		GluR5 + drug	6fz4	257	1.85	2019	Johansen	ACS Chem. Neurosci. 2019, 10, 1814.
		GluR5 + drug	5nf5	514	2.85	2017	Kastrup	ACS Chem. Neurosci. 2017, 8, 2056.
		GluR5 + drug	5neb	514	2.05	2017	Kastrup	ACS Chem. Neurosci. 2017, 8, 2056.
		GluR5 + drug + KA	5mfq	514	1.90	2017	Mulle	Mol. Pharmacol. 2017 , 91, 576.
		GluR5 + drug + KA	5mfv	514	2.18	2017	Mulle	Mol. Pharmacol. 2017 , 91, 576.
		GluR5 + drug + KA	5mfw	514	2.10	2017	Mulle	Mol. Pharmacol. 2017 , 91, 576.
		GluR5 + drug	5m2v	514	3.18	2017	Bunch	J.Med. Chem. 2017, 60, 441.
		GluR5 + drug	4YMB	514	1.93	2015	Kastrup	J.Med. Chem. 2015, 58, 6163.
		GluR5 + drug	4QF9	771	2.28	2015	Kastrup	ACS Chem. Neurosci. 2015, 6, 845
	h	GluR5 + drug	4MF3	522	3.00	2014	Ornstein	Bioorg. Med. Chem. Lett. 2013, 23, 6463.
		GluR5 + KA	4E0X	514	2.00	2012	Kastrup	Neurochem. Int. 2012, 61, 536.
		GluR5 + drug	4DLD	514	2.00	2012	Kastrup	ChemMedChem. 2012, 7, 1793.
		GluR5 + drug	3s2v	514	2.50	2011	Kastrup	J.Med. Chem. 2011, 54, 4793.
	h	GluR5 + drug	3FV0	256	1.50	2010	Ikeda-Saito	To be published
	h	GluR5 + drug	3FVN	512	1.50	2010	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
	h	GluR5 + drug	3FVK	512	1.50	2010	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
	h	GluR5 + drug	3FVG	512	1.50	2010	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
	h	GluR5 + toxin	3FV2	512	1.50	2010	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
	h	GluR5 + toxin	3FV1	512	1.50	2010	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
	h	GluR5 + Glu	3FUZ	512	1.65	2010	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
		GluR5 + drug	3gbb	514	2.10	2009	Kastrup	J. Biol. Chem. 2009, 284, 14219.
		GluR5 + toxin	3gba	1028	1.35	2009	Kastrup	J. Biol. Chem. 2009, 284, 14219.
	h	GluR5 + toxin	2ZNU	256	1.80	2009	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
	h	GluR5 + toxin	2ZNT	256	1.60	2009	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
	h	GluR5 + Glu	2ZNS	256	2.00	2009	Ikeda-Saito	J. Mol. Biol. 2011, 413, 667.
		GluR5 + drug	2wky	516	2.20	2009	Kastrup	J. Med. Chem. 2009 , 52, 4911.
		GluR5 + KA + drug	3C36	516	1.68	2008	Mayer	Neuron, 2008 , 58, 720.
		GluR5 + KA + drug	3C35	516	1.97	2008	Mayer	Neuron, 2008 , 58, 720.
		GluR5 + KA + drug	3C34	516	1.82	2008	Mayer	Neuron, 2008 , 58, 720.
		GluR5 + KA + drug	3C33	516	1.72	2008	Mayer	Neuron, 2008 , 58, 720.
		GluR5 + KA + drug	3C32	516	1.72	2008	Mayer	Neuron, 2008 , 58, 720.
		GluR5 + KA + drug	3C31	516	1.49	2008	Mayer	Neuron, 2008 , 58, 720.
		GluR5 + drug	2qs4	1032	1.58	2008	Mayer	Neuropharmacology, 2011, 60, 126.
		GluR5 + drug	2qs3	516	1.76	2008	Mayer	Neuropharmacology, 2009 , 56, 121.
		GluR5 + drug	2qs2	516	1.80	2008	Mayer	Neuropharmacology, 2011 , 60, 126.
		GluR5 + drug	2qs1	516	1.80	2008	Mayer	Neuropharmacology, 2011, 60, 126.
		GluR5 + DA	2PBW	514	2.50	2007	Kastrup	J. Biol. Chem. 2007, 282, 25726
		GluR5 + drug	1VS0	257	1.85	2007	Kastrup	J. Biol. Chem. 2007, 282, 25726
		GluR5 + Glu	2f36	1032	2.11	2006	Mayer	J. Neurosci. 2006, 26, 2852.
		GluR5 + drug	2f35	516	1.87	2006	Mayer	J. Neurosci. 2006, 26, 2852.
		GluR5 + drug	2f34	516	1.74	2006	Mayer	J. Neurosci. 2006, 26, 2852.
		GluR5 + Glu	1ycj	514	1.95	2005	Kastrup	Febs Lett. 2005, 579, 1154.
		GluR5 + Glu	1txf	258	2.10	2005	Mayer	Neuron, 2005 , 45, 539.

Table S10. Reported crystallized protein structures of ionotropic glutamate receptors: kainate receptors (GluK1-5) (Continued). GluKs with Glu, KA or DA complex are highlight with grey. PDB IDs of dimer crystal structures are shown in blue, tetramers are in red and monomers are in black.

GluK2		GluR6 full length + drug	5kuf	3508	3.8	2016	Subramaniam	Nature 2016 , 537, 567.
		GluR6 + drug	5kuh	3028	11.6	2016	Subramaniam	Nature 2016 , 537, 567.
		GluR6 + glu	5cmk	518	1.8	2016	Subramaniam	Nature 2016 , 537, 567.
		GluR6 + drug	5cmm	259	1.27	2016	Subramaniam	Nature 2016 , 537, 567.
		GluR6 full length + glu	4UQQ	3528	7.60	2014	Mayer	Nature 2014 , 514, 328
		GluR6 mut + glu	4BDL	522	1.75	2013	Green	Open Biol. 2013 , 3, 0051.
		GluR6 mut + KA	4BDM	1044	3.40	2013	Green	Open Biol. 2013 , 3, 0051.
		GluR6 mut + Glu	4BDN	1044	2.50	2013	Green	Open Biol. 2013, 3, 0051.
		GluR6 mut + KA	4BDO	1044	2.55	2013	Green	Open Biol. 2013, 3, 0051.
		GluR6 mut + Glu	4BDQ	522	1.90	2013	Green	Open Biol. 2013, 3, 0051.
		GluR6 mut + KA	4BDR	522	1.65	2013	Green	Open Biol. 2013, 3, 0051.
		GluR6 + Azobenzene-Glu	4H8I	518	2.00	2013	Trauner / Schiefer	Biochemistry, 2013, 52, 8972.
	h	GluR6 + toxin	3QXM	516	1.65	2011	Ikeda-Saito	J. Mol. Biol. 2011 , 413, 667.
		GluR6 + Glu	2XXR	522	1.60	2011	Green	J. Neurosci. 2011 , 31, 2916.
		GluR6 + KA	2XXT	522	1.90	2011	Green	J. Neurosci. 2011 , 31, 2916.
		GluR6 mut + Glu	2XXU	522	1.50	2011	Green	J. Neurosci. 2011 , 31, 2916.
		GluR6 mut + KA	2XXV	522	1.70	2011	Green	J. Neurosci. 2011 , 31, 2916.
		GluR6 mut + Glu	2XXW	522	2.30	2011	Green	J. Neurosci. 2011, 31, 2916.
		GluR6 mut + Glu	2XXX	1044	2.10	2011	Green	J. Neurosci. 2011, 31, 2916.
		GluR6 mut + KA	2XXY	700	3.00	2011	Green	J. Neuros 2011, 31, 2916.
			3QL I	790	2.99	2011	Wayer	
		GluR6 / KA2 dimer	3qlu	1576	2.91	2011	Mayer	Neuron. 2011, 71, 319.
		GluR6 / KA tetramer	3qlv	3940	3.94	2011	Mayer	Neuron. 2011 , 71, 319.
		GluR6 + Glu	3g3f	518	1.38	2009	Mayer	Embo J. 2009 , 28, 1518.
		GluR6 mut + Glu	3g3g	518	1.30	2009	Mayer	Embo J. 2009 , 28, 1518.
		GluR6 mut + Glu	3g3h	518	1.50	2009	Mayer	Embo J. 2009 , 28, 1518.
		GluR6 mut + Glu	3g3i	518	1.37	2009	Mayer	Embo J. 2009 , 28, 1518.
		GluR6 mut + Glu	3g3j	518	1.32	2009	Mayer	Embo J. 2009 , 28, 1518.
		GluR6 mut + Glu	3g3k	518	1.24	2009	Mayer	Embo J. 2009 , 28, 1518.
		GluR6	3h6g	790	2.70	2009	Mayer	Nat. Struct. Mol. Biol. 2009, 16, 631.
		GluR6	3h6h	790	2.90	2009	Mayer	Nat. Struct. Mol. Biol. 2009, 16, 631.
		GluR6 mut	210B	777	1.96	2007	Mayer	Nat. Struct. Mol. Biol. 2006, 13, 1120.
		GluR6 mut	210C	518	2.25	2006	Mayer	Nat. Struct. Mol. Biol. 2006, 13, 1120.
		GluR6 + Glu	1s50	259	1.65	2005	Mayer	Neuron. 2005, 45, 539.
		GluR6 + Glu	1s7y	518	1.75	2005	Mayer	Neuron. 2005 , 45, 539.
		GluR6 + drug	1s9t	518	1.80	2005	Mayer	Neuron. 2005 , 45, 539.
		GluR6 + Glu	1sd3	518	1.80	2005	Mayer	Neuron. 2005, 45, 539.
		GluR6 mut + DA	1tt1	518	1.93	2005	Mayer	Neuron. 2005 , 45, 539.
		GluR6 mut + DA	1YAE	1872	3.11	2005	Heinemann	PNAS. 2005, 102, 1708

Table S10. Reported crystallized protein structures of ionotropic glutamate receptors: kainate receptors (GluK1-5) (Continued). GluKs with Glu, KA or DA complex are highlight with grey. PDB IDs of dimer crystal structures are shown in blue, tetramers are in red and monomers are in black.

GluK3	GluR7 full length	6jfy	3236	7.40	2019	Kumar	Sci. Rep. 2019, 9, 10254.
	GluR7 full length + drug	6jfz	3236	7.60	2019	Kumar	Sci. Rep. 2019, 9, 10254.
	GluR7 + drug	6jmv	514	1.83	2019	Kumar	Sci. Rep. 2019, 9, 10254.
	GluR7 + drug	6f28	516	2.40	2018	Pickering	J. Med. Chem. 2018, 61, 2124.
	GluR7 + drug	6f29	258	2.60	2018	Pickering	J. Med. Chem. 2018, 61, 2124.
	GluR7 + drug	5nf6	516	2.55	2017	Kastrup	ACS Chem. Neurosci. 2017, 8, 2056.
	GluR7 + drug	504f	516	2.10	2017	Kastrup	ACS Chem. Neurosci. 2017, 8, 2056.
	GluR7 + drug	4NWC	258	2.01	2014	Kastrup	ChemMedChem, 2014, 9, 2254
	GluR7 + drug	4NWD	258	2.60	2014	Kastrup	ChemMedChem, 2014, 9, 2254
	GluR7 + glu	4MH5	258	1.65	2013	Kastrup	J. Struct. Biol. 2011, 176, 307.
	GluR7 + drug	4IGR	258	2.65	2013	Kastrup	J. Med. Chem. 2013, 56, 1614.
	GluR7 + KA	3U92	514	1.90	2012	Mayer	Neuron, 2012 , 76, 565.
	GluR7 + glu	3U93	514	1.88	2012	Mayer	Neuron, 2012 , 76, 565.
	GluR7 + glu	3U94	1028	1.96	2012	Mayer	Neuron, 2012 , 76, 565.
	GluR7 + drug	4G8N	258	2.30	2012	Kastrup	J. Struct. Biol. 2012, 180, 39.
	GluR7 + KA	4eow	258	2.35	2012	Kastrup	Biochem. J. 2012, 447, 205.
	GluR7 + glu	3s9e	516	1.60	2011	Kastrup	J. Struct. Biol. 2011, 176, 307.
	GluR7	3olz	796	2.75	2010	Mayer	J. Mol. Biol. 2010, 404, 680.
GluK4	GluK4 + KA	5ikb	257	2.05	2016	Kastrup	Structure, 2016, 24, 1582.
GluK5	KA2 dimer	3qlz	796	2.91	2011	Mayer	J. Mol. Biol. 2010, 404, 680.
	KA2 / GluR6 dimer	3qlu	1576	2.91	2011	Mayer	Neuron. 2011 , 71, 319.
	KA2 / GluR6 tetramer	3qlv	3940	3.94	2011	Mayer	Neuron. 2011, 71, 319.
	KA2	3om0	393	1.40	2010	Mayer	J. Mol. Biol. 2010, 404, 680.
	KA2	3om1	786	1.68	2010	Mayer	J. Mol. Biol. 2010, 404, 680.
1							

6. References

- (1) Johnston, G. A.; Curtis, D. R.; Davies, J.; McCulloch, R. M. Nature 1974, 248 (5451), 804.
- (2) Shinozaki, H.; Shibuya, I. Neuropharmacology 1976, 15 (2), 145.
- (3) Schwarcz, R.; Scholz, D.; Coyle, J. T. *Neuropharmacology* **1978**, *17*(2), 145.
- (4) Teichberg, V. I.; Goldberg, O.; Luini, A. *Mol. Cell. Biochem.* **1981**, *39* (1), 281.
- (5) Foster, G. A.; Roberts, P. J.; Teichberg, V. I.; Goldberg, O. Neuroscience Letters 1982, 29 (2), 169.
- (6) Collado, I.; Ezquerra, J.; Mateo, A. I.; Pedregal, C.; Rubio, A. J. Org. Chem. 1999, 64 (12), 4304.
- (7) Sonnenberg, J. D.; Koch, H. P.; Willis, C. L.; Bradbury, F.; Dauenhauer, D.; Bridges, R. J.; Chamberlin, A. R. *Bioorg. Med. Chem. Lett.* **1996**, *6* (13), 1607.
- (8) Conway, G. A.; Park, J. S.; Maggiora, L.; Mertes, M. P.; Galton, N.; Michaelis, E. K. J. Med. Chem. 1984, 27 (1), 52.
- (9) Takeuchi, H.; Watanabe, K.; Nomoto, K.; Ohfune, Y.; Takemoto, T. Eur. J. Pharmacol. 1984, 102 (2), 325.
- (10) Maeda, M.; Kodama, T.; Tanaka, T.; Yoshizumi, H.; Takemoto, T.; Nomoto, K.; Fujita, T. *Tetrahedron Lett.* **1987**, *28* (6), 633.
- (11) Kozikowski, A. P.; Fauq, A. H. Tetrahedron Lett. 1990, 31 (21), 2967.
- (12) Ishida, M.; Shinozaki, H. Br. J. Pharmacol. 1991, 104 (4), 873.
- (13) Jack E Baldwin; Andrew M Fryer, A.; Pritchard, G. J. J. Org. Chem. 2001, 66 (8), 2588.
- (14) Cantrell, B. E.; Zimmerman, D. M.; Monn, J. A.; Kamboj, R. K.; Hoo, K. H.; Tizzano, J. P.; Pullar, I. A.; Farrell, L. N.; Bleakman, D. *J. Med. Chem.* **1996**, *39* (19), 3617.
- Holland, P. T.; Selwood, A. I.; Mountfort, D. O.; Wilkins, A. L.; McNabb, P.; Rhodes, L. L.; Doucette, G. J.;
 Mikulski, C. M.; King, K. L. *Chem. Res. Toxicol.* **2005**, *18* (5), 814.
- (16) Sawant, P. M.; Weare, B. A.; Holland, P. T.; Selwood, A. I.; King, K. L.; Mikulski, C. M.; Doucette, G. J.; Mountfort, D. O.; Kerr, D. S. *Toxicon* **2007**, *50* (5), 627.
- (17) Sawant, P. M.; Holland, P. T.; Mountfort, D. O.; Kerr, D. S. Neuropharmacology 2008, 55 (8), 1412.
- (18) Sawant, P. M.; Tyndall, J. D. A.; Holland, P. T.; Peake, B. M.; Mountfort, D. O.; Kerr, D. S. *Neuropharmacology* **2010**, *59* (3), 129.
- (19) McDANIEL, D. H.; Brown, H. C. J. Org. Chem. 1958, 23 (3), 420.
- (20) Lewis, E. S.; Johnson, M. D. J. Am. Chem. Soc. 1959, 81 (9), 2070.
- (21) Kristensen, O.; Kristensen, L. B.; Møllerud, S.; Frydenvang, K.; Pickering, D. S.; Kastrup, J. S. *Structure* **2016**, *24* (9), 1582.
- (22) Nanao, M. H.; Green, T.; Stern-Bach, Y.; Heinemann, S. F.; Choe, S. *Proc. Natl. Acad. Sci. U.S.A.* 2005, 102 (5), 1708.