A Hydrazine Insertion Route to \mathbf{N}^{\prime}-Alkyl Benzohydrazides by an Unexpected Carbon-Carbon Bond Cleavage

Ajit Kumar Jha, Rajkiran Kumari and Srinivasan Easwar*

Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Rajasthan 305817, India

Ph.: +91-1463-238755
Fax: +91-1463-238722
e-mail: easwar.srinivasan@curaj.ac.in

SUPPORTING INFORMATION

Contents

S. No.	Detail	Page No.
1	General experimental details and procedures	2
2	Tabulated data of the synthesized products	3
3	X-ray crystal structures	19
4	Studies on the reaction mechanism	20
5	References	21
6	${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized products	

General

The aldehydes used in the study were purchased from Sigma-Aldrich. The hydrazine derivatives were either purchased from Sigma-Aldrich or synthesised using a reported protocol. ${ }^{1} \mathrm{Et}_{3} \mathrm{~N}$ was procured from local suppliers. Solvents were distilled prior to use. IBX was synthesised from 2-iodobenzoic acid using a literature protocol. ${ }^{2}$ Silica gel (100-200 mesh) and other common reagents were procured from local suppliers. Proton and carbon nuclear magnetic resonance spectra were recorded on a Bruker Avance 500 MHz NMR spectrometer. Elemental analysis was recorded on Thermo Finnigan FLASH EA 1112 \& Thermo Scientific FLASH 2000 instrument. High resolution mass spectral analysis (HRMS) was performed on a XEVO G2-S QT instrument of Waters Corporation, USA. Melting points were recorded on Buchi, M-560 apparatus and are uncorrected. X-ray crystal data was recorded on a Bruker AXS, Apex II, Source (Mo K α) instrument.

Experimental Section:

General procedure for the synthesis of Morita-Baylis-Hillman (MBH) adducts: ${ }^{3}$

To a solution of the aldehyde (5 mmol) in dioxane:water ($1: 1,0.5 \mathrm{~mL}$) was added methyl acrylate (3 mmol) followed by $\mathrm{DABCO}(5 \mathrm{mmol})$ and the reaction mixture stirred at room temperature. Upon completion (TLC), the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$; the reaction mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$), the combined organic layer dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography using EtOAc:Petroleum ether (1:4) as an eluent to afford the desired MBH adducts.

General procedure for the synthesis of MBH Ketones: ${ }^{4}$

The MBH adduct (1.0 mmol) and IBX (1.5 equiv.) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$ in a 25 mL round-bottom flask and stirred at $70^{\circ} \mathrm{C}$. The reaction progress was monitored by TLC. After complete consumption of the starting material, the mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. The product was then extracted from the residue using EtOAc: Petroleum ether (1:1) and the organic layer was concentrated under reduced pressure. The crude MBH ketone obtained was used as such for the subsequent step without further purification.

General procedure for the synthesis of the benzohydrazides:

Method A: The MBH ketone $\mathbf{1}(0.5 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(500 \mu \mathrm{~L})$. Phenylhydrazine ($\mathbf{2 a}, 0.75$ $\mathrm{mmol})$ was then added to the solution followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(0.25 \mathrm{mmol})$. The reaction mixture was further stirred at room temperature for the time mentioned in Scheme 2 of the manuscript for the respective benzohydrazide derivatives. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography using EtOAc and petroleum ether as an eluent (ratio defined for each derivative in the tabluation below).

Method B: The MBH ketone $\mathbf{1}$ (0.5 mmol) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(500 \mu \mathrm{~L})$. The hydrazine hydrochloride derivative (0.75 mmol) was then added to the solution followed by $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L})$ and $\mathrm{Et}_{3} \mathrm{~N}$ $(1.75 \mathrm{mmol})$. The reaction mixture then stirred at room temperature for the time mentioned in Schemes 2 $\boldsymbol{\&} \mathbf{3}$ of the manuscript for the respective benzohydrazide derivatives. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 8 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography using EtOAc and petroleum ether as an eluent (ratio defined for each derivative in the tabluation below).

Representative example:

Synthesis of Methyl 3-(2-benzoyl-1-phenylhydrazinyl)propanoate (3a):

The MBH ketone 1a ($190 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. Phenylhydrazine ($147.5 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$ was then added to the solution followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$. The reaction mixture was further stirred at room temperature for 15 h . The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuo. The crude residue was purified by silica gel column chromatography (EtOAc: petroleum ether, 2:8) to obtain the benzohydrazide 3a as a light yellow solid. Yield: $216 \mathrm{mg}(73 \%)$; Light yellow solid; mp 106-108 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.78(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88($ masked t, 1 H$), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d} . J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.43(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.93,48.01,51.97,113.08,119.88,127.30,128.81,129.36,132.19,132.58$, 147.62, 166.63, 173.42; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 321.1210$; found: 321.1210.

Tabulated Data of the synthesized products:

Methyl 3-(2-(4-methylbenzoyl)-1-phenylhydrazinyl)propanoate (3b):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $136 \mathrm{mg}(87 \%)$; Off white solid; mp $145-147^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.78$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86($ masked $\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 21.54,32.00,48.05,51.91,113.07,119.83,127.26,129.33,129.45,129.76$, 142.73, 147.77, 166.51, 173.35; Anal. calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 69.21 ; \mathrm{H}, 6.45 ; \mathrm{N}, 8.97$; found C, 69.32; H, 6.42; N, 8.89.

Methyl 3-(2-(4-chlorobenzoyl)-1-phenylhydrazinyl)propanoate (3c):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $131 \mathrm{mg}(79 \%)$; Off white solid; mp $163-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\operatorname{masked} \mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.57(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 31.89,48.04,52.03,113.10,120.03,128.73,129.08,129.40,130.97,138.48,147.38,165.56$, 173.56; Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3}: \mathrm{C}, 61.36 ; \mathrm{H}, 5.15 ; \mathrm{N}, 8.42$; found $\mathrm{C}, 61.45 ; \mathrm{H}, 5.12 ; \mathrm{N}, 8.49$.

Methyl 3-(2-(4-bromobenzoyl)-1-phenylhydrazinyl)propanoate (3d):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 1.5:8.5)
Yield: 157 mg (83%); Orange solid; mp 157-160 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.78(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\operatorname{masked} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5,2 \mathrm{H}), 8.64(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 31.89,48.03,52.07,113.11,120.06,126.99,128.89,129.42,131.40,132.07,147.34,165.70$, 173.63; HRMS (ESI-TOF): m/z [M + Na] ${ }^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}$: 399.0315; found: 399.0327.

Methyl 3-(2-(4-fluorobenzoyl)-1-phenylhydrazinyl)propanoate (3e):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 3:7)
Yield: 155 mg (98\%); Off white solid; mp 112-115 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 2.76$ (t, $J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\operatorname{masked} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{dd}, J=5.5 \& 8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.61(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 31.90,48.02,52.04,113.06,115.91\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 119.98,128.73\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0\right.$ $\mathrm{Hz}), 129.40,129.73\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 147.45,165.14\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=252.0 \mathrm{~Hz}\right), 165.60,173.61$; Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{3}: \mathrm{C}, 64.55 ; \mathrm{H}, 5.42 ; \mathrm{N}, 8.86$; found $\mathrm{C}, 65.10 ; \mathrm{H}, 5.76 ; \mathrm{N}, 8.45$.

Methyl 3-(2-(4-methoxybenzoyl)-1-phenylhydrazinyl)propanoate (3f): ${ }^{\text {\# }}$

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $103 \mathrm{mg}(63 \%)$; Yellow solid; mp 157-160 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.80(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\operatorname{masked} \mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.33(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 32.04,48.07,51.90,55.46,113.05,114.04,119.80,124.84,129.11,129.32$, 147.83, 162.77, 166.08, 173.40; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}: 329.1496$; found: 329.1495.
\# Corresponding pyrazole obtained as the minor product; see end of this section for structure, yield and tabulated data.

Methyl 3-(2-(4-nitrobenzoyl)-1-phenylhydrazinyl)propanoate (3g):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $120 \mathrm{mg}(70 \%)$; Light orange solid; $\mathrm{mp} 129-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.78(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d} . J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.02(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta 31.78,48.12,52.17,113.21,120.34,123.97,128.58,129.51,138.19,146.88,149.96,164.60$, 173.84; Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 59.47; H, 4.99; N, 12.24; found C, 59.70; H, 5.08; N, 11.60.

Methyl 3-(2-(3-chlorobenzoyl)-1-phenylhydrazinyl)propanoate (3h):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)

Yield: 125 mg (75%); Brown semi-solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.78$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.66 (s, $3 \mathrm{H}), 3.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (masked $\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), $7.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{bs}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.88,48.05,52.04,113.16,120.09,125.30,127.71,129.40,130.13$, 132.21, 134.40, 135.02, 147.33, 165.38, 173.52; HRMS (ESI-TOF): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{3}$: 333.1000; found: 333.1002.

Methyl 3-(2-(furan-2-carbonyl)-1-phenylhydrazinyl)propanoate (3i):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: 114 mg (79\%); Orange solid; mp $105-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.53-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.87(\operatorname{masked} \mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21-7.28 (m, 3H), 7.50-7.54 (unresolved m, 1H), 8.32 (bs, 1 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 31.86,48.36,51.93,112.31,113.30,115.98,120.18,129.36,144.63,146.56,147.64,157.61$, 173.03; Anal. calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $62.49 ; \mathrm{H}, 5.59 ; \mathrm{N}, 9.72$; found $\mathrm{C}, 62.37 ; \mathrm{H}, 5.53 ; \mathrm{N}, 9.78$.

Methyl 3-(2-(4-chlorobenzoyl)-1-(4-chlorophenyl)hydrazinyl)propanoate (3j):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield:110 mg (60\%); White solid; mp 163-168 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.74(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.83,48.13,52.14$, 114.27, 124.91, 128.72, 129.14, 129.25, 130.68, 138.70, 146.07, 165.49, 173.49; HRMS (ESI-TOF): m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 389.0430$; found: 389.0432 .

Methyl 3-(1-(4-chlorophenyl)-2-(furan-2-carbonyl)hydrazinyl)propanoate (3k):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $113 \mathrm{mg}(70 \%)$; Mustard solid; $\mathrm{mp} 83-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.74(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.55-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.87,48.47$, $51.92,112.33,114.50,116.09,116.12,125.06,129.18,144.69,146.43,157.46,172.80$; Anal. calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4}$: C, 55.82; H, 4.68; N, 8.68; found C, $55.73 ; \mathrm{H}, 4.62 ; \mathrm{N}, 8.75$.

Methyl 3-(1-(4-chlorophenyl)-2-(4-methylbenzoyl)hydrazinyl)propanoate (31):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8) Yield: 116 (67\%); White solid; mp 179-182 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.58,31.91$, 48.09, 52.04, 114.23, 124.66, 127.26, 129.17, 129.40, 129.50, 142.97, 146.46, 166.49, 173.27; Anal. calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 62.34; H, $5.52 ; \mathrm{N}, 8.08$; found C, $62.74 ; \mathrm{H}, 5.73 ; \mathrm{N}, 7.75$.

Methyl 3-(2-benzoyl-1-(4-chlorophenyl)hydrazinyl)propanoate (3m):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8) Yield: $126 \mathrm{mg}(76 \%)$; White solid; $\mathrm{mp} 135-137{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.75(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=$ $2 \mathrm{H}), 7.58(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.50(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 31.87, 48.09, 52.04, 114.24, 124.68, 127.29, 128.83, 129.17, 132.29, 132.35, 146.36, 166.60, 173.24; Anal. calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 61.36; H, 5.15; $\mathrm{N}, 8.42$; found $\mathrm{C}, 61.93 ; \mathrm{H}, 5.39 ; \mathrm{N}, 8.23$.

Methyl 3-(2-benzoyl-1-(tert-butyl)hydrazinyl)propanoate (3n):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $84 \mathrm{mg}(60 \%)$; White solid; $\mathrm{mp} 123-125{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17(\mathrm{~s}, 9 \mathrm{H}), 2.56(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{bs}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{bs}, 1 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ 7.0 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 25.44,32.94,45.88,51.58,58.69,126.98,128.60,131.55$, 133.84, 167.01, 173.71; HRMS (ESI-TOF): m/z [M + Na] calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 301.1523$; found: 301.1521.

Methyl 3-(1-(tert-butyl)-2-(4-chlorobenzoyl)hydrazinyl)propanoate (3o):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: 108 mg (69\%); White solid; $\mathrm{mp} 114-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.17(\mathrm{~s}, 9 \mathrm{H}), 2.57(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 6.64(\mathrm{bs}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 25.45,32.95,45.79,51.62,58.74,128.44,128.85,132.17$, 137.81, 165.95, 173.74; Anal. calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}: \mathrm{C}, 57.60 ; \mathrm{H}, 6.77 ; \mathrm{N}, 8.96$; found $\mathrm{C}, 57.68$; H , 6.72; N, 8.91.

Methyl 3-(2-(4-bromobenzoyl)-1-(tert-butyl)hydrazinyl)propanoate (3p):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield:134 mg (75\%); White solid; mp 108-112 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.18(\mathrm{~s}, 9 \mathrm{H}), 2.58(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{bs}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 6.64(\mathrm{bs}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 25.44,32.93,45.79,51.67,58.78,126.27,128.61,131.87,132.58,166.08$, 173.81; HRMS (ESI-TOF): m/z [M + Na] calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}: 379.0628$; found: 379.0627.

Methyl 3-(1-(tert-butyl)-2-(4-fluorobenzoyl)hydrazinyl)propanoate (3q):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $101 \mathrm{mg}(68 \%)$; White solid; $\mathrm{mp} 117-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19(\mathrm{~s}, 9 \mathrm{H}), 2.59(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{bs}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 6.58(\mathrm{bs}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=5.5 \& 9.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.42,32.90,45.81,51.69,58.78,115.73\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right.$), $129.33\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 129.86\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 164.78\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251.0 \mathrm{~Hz}\right), 166.00,173.92$; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{Na}: 319.1428$; found: 319.1429.

Methyl 3-(1-(tert-butyl)-2-(3-chlorobenzoyl)hydrazinyl)propanoate (3r):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $97 \mathrm{mg}(62 \%)$; White solid; mp 121-123 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.20(\mathrm{~s}, 9 \mathrm{H}), 2.59(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 6.59(\mathrm{bs}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.45,32.92,45.82$, 51.67, 58.80, 124.96, 127.40, 129.97, 131.65, 134.89, 135.62, 165.76, 173.76 Anal. calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 57.60; H, 6.77; N, 8.96; found C, 57.68; H, 6.72; N, 8.87.

Methyl 3-(1-(tert-butyl)-2-(furan-2-carbonyl)hydrazinyl)propanoate (3s):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $54 \mathrm{mg}(40 \%)$, Light yellow solid; mp 113-115 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.18(\mathrm{~s}, 9 \mathrm{H})$, $2.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 6.49-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{bs}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.34,32.97,46.22,51.57,58.70,112.15$, 115.19, 144.01, 147.00, 157.86, 173.48; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$: 291.1315; found: 291.1317.

Methyl 3-(1-(tert-butyl)-2-(4-methylbenzoyl)hydrazinyl)propanoate (3t):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $61 \mathrm{mg}(42 \%)$; White solid; $\mathrm{mp} 114-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.19(\mathrm{~s}, 9 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 6.57(\mathrm{bs}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.43,25.43,32.95,45.93,51.58,58.70,126.97$, 129.26, 130.93, 142.00, 166.89, 173.80; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 65.73; $\mathrm{H}, 8.27$; $\mathrm{N}, 9.58$; found C, 65.78; H, 8.23; N, 9.65.

Methyl 3-(1-(tert-butyl)-2-(4-methoxybenzoyl)hydrazinyl)propanoate (3u):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $73 \mathrm{mg}(47 \%)$; White solid; $\mathrm{mp} 124-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.18(\mathrm{~s}, 9 \mathrm{H}), 2.58(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{bs}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.55(\mathrm{bs}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 25.42,32.92,45.91,51.64,55.43,58.71,113.82,125.89$, 128.79, 162.27, 166.49, 173.93; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 62.32 ; \mathrm{H}, 7.84 ; \mathrm{N}, 9.08$; found C , 62.48; H, 7.93; N, 8.85.

Ethyl 3-(2-benzoyl-1-phenylhydrazinyl)propanoate (5a):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $120 \mathrm{mg}(77 \%)$; Off white solid; mp $117-119^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (masked $\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89(\mathrm{~d} . J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.10,32.21,48.02,60.90,113.09$, $119.85,127.27,128.79,129.34,132.15,132.68,147.68,166.52,172.97$; HRMS (ESI-TOF): m/z [M + $\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$: 335.1366; found: 335.1362.

Ethyl 3-(2-(4-methylbenzoyl)-1-phenylhydrazinyl)propanoate (5b):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: 98 mg (60%); Light orange solid; $\mathrm{mp} 123-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21$ (t, J=7.0 $\mathrm{Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (masked t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{bs}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 14.12,21.57,32.20,47.97,60.92,113.06,119.78,127.28,129.33$, $129.45,129.72,142.74,147.76,166.55,173.02$; Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 69.92 ; \mathrm{H}, 6.79 ; \mathrm{N}$, 8.58; found C, 70.27; H, 6.37; N, 8.21.

Ethyl 3-(2-(4-chlorobenzoyl)-1-phenylhydrazinyl)propanoate (5c):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $156 \mathrm{mg}(90 \%)$; Light orange solid; $\mathrm{mp} 117-119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21$ (t, $J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 2.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87$ (masked $\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d} . J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 8.70(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.11,32.13,48.00,61.00,113.10,119.95$, $128.76,129.03,129.37,130.98,138.44,147.44,165.59,173.13$; Anal. calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 62.34; H, 5.52; N, 8.08; found C, 62.88; H, 5.75; N, 7.50.

Ethyl 3-(2-(4-bromobenzoyl)-1-phenylhydrazinyl)propanoate (5d):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $150 \mathrm{mg}(77 \%)$; Yellow solid; mp 132-136 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.75(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.87 (masked t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$,), $7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.60(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.10,32.14,48.02,61.28,113.11,120.00,126.95$, 128.88, 129.39, 131.47, 132.05,147.38, 165.62, 173.20; HRMS (ESI-TOF): m/z [M + H ${ }^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{3}: 391.0652$; found: 391.0654 .

Ethyl 3-(2-(4-fluorobenzoyl)-1-phenylhydrazinyl)propanoate (5e):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $149 \mathrm{mg}(90 \%)$; White solid; $\mathrm{mp} 90-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.74(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (masked t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.95(\mathrm{~m}, 2 \mathrm{H}), 8.62(\mathrm{bs}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.11,32.13,47.99,60.99,113.07,115.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}\right), 119.90$, $128.79\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 129.37,129.73\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 147.49,165.12\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251.0 \mathrm{~Hz}\right), 165.53$, 173.16; Anal. calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{3}$: C, $65.44 ; \mathrm{H}, 5.80 ; \mathrm{N}, 8.48$; found $\mathrm{C}, 65.79 ; \mathrm{H}, 6.05 ; \mathrm{N}, 8.08$

Ethyl 3-(2-(4-methoxybenzoyl)-1-phenylhydrazinyl)propanoate (5f): ${ }^{\text {\# }}$

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $103 \mathrm{mg}(60 \%)$; Light yellow solid; mp $120-124{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (masked t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.39(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.12,32.21,47.97,55.48,60.90$, 113.03, 113.99, 119.70, 124.81, 129.16, 129.31, 147.84, 162.72, 166.10, 173.04; HRMS (ESI-TOF): m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$: 365.1472; found: 365.1473.

* Corresponding regioisomeric pyrazoles obtained as the minor products; see end of this section for structures, yields and tabulated data.

Ethyl 3-(2-(4-nitrobenzoyl)-1-phenylhydrazinyl)propanoate (5g):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 1.5:8.5)
Yield: $125 \mathrm{mg}(70 \%)$; Yellow solid; mp $129-131{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.78(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.09(\mathrm{bs}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.11,32.03,48.09,61.22,113.23,120.29,123.97,128.58,129.49$, $138.24,146.89,149.95,164.54,173.51$; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}$: 380.1217; found: 380.1216.

Ethyl 3-(2-(3-chlorobenzoyl)-1-phenylhydrazinyl)propanoate (5h):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $113 \mathrm{mg}(65 \%)$; Orange red gum; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.72(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{masked} \mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d} . J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.85-7.91(\mathrm{~m}, 1 \mathrm{H}), 8.71(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.11,32.11,47.96,61.01$, $113.16,120.01,125.35,127.72,129.36,130.09,132.16,134.42,134.95,147.41,165.41,173.08$; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{3}: 347.1157$; found: 347.1152.

Ethyl 3-(2-(furan-2-carbonyl)-1-phenylhydrazinyl)propanoate (5i):

Synthesized using Method A; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: 95 mg (63\%); Orange solid; mp $100-103{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.87$ (masked t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 14.10,32.07,48.28,60.89,112.31,113.29,115.95,120.13,129.34,144.62$, 146.58, 147.67, 157.61, 172.64; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 63.56 ; \mathrm{H}, 6.00 ; \mathrm{N}, 9.27$; found C, 63.45; H, 6.08; N, 9.23.

Ethyl 3-(2-(4-chlorobenzoyl)-1-(4-chlorophenyl)hydrazinyl)propanoate (5j):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)

Yield: $116 \mathrm{mg}(61 \%)$; Yellow solid; $\mathrm{mp} 110-112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.71(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.78(\mathrm{bs}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.11,32.06,48.08,61.14,114.27,124.82,128.74,129.10,129.22,130.68,138.66$, 146.12, 165.54, 173.06; Anal. calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 57.71; H, 4.76; N, 7.35; found C, 57.03; H, 4.91; N, 7.42.

Ethyl 3-(1-(4-chlorophenyl)-2-(furan-2-carbonyl)hydrazinyl)propanoate (5k):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: 106 mg (63%); Orange solid; $\mathrm{mp} 78-81{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $2.72(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.50-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.10,32.04,48.36,60.97,112.35,114.47,116.13,124.95,129.16,144.75,146.39$, 146.41, 157.53, 172.49; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4}$: C, 57.06; H, 5.09; N, 8.32; found C, 57.12; H, 5.15; N, 8.26.

Ehyl 3-(1-(4-chlorophenyl)-2-(4-methylbenzoyl)hydrazinyl)propanoate (5l):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $122 \mathrm{mg}(67 \%)$; Light yellow solid; $\mathrm{mp} 154-157{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{bs}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.12,21.58,32.15,48.07,61.01,114.22,124.62,127.25,129.16,129.45$, 129.50, 142.94, 146.47, 166.42, 172.87; Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}: \mathrm{C}, 63.24 ; \mathrm{H}, 5.87 ; \mathrm{N}, 7.76$; found C, 63.79; H, 5.96; N, 7.35.

Ethyl 3-(1-(4-chlorophenyl)-2-(4-methoxybenzoyl)hydrazinyl)propanoate (5m):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $126 \mathrm{mg}(67 \%)$; White solid; $\mathrm{mp} 143-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.73(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.42(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 14.11,32.19,48.09,55.48,60.98,114.05,114.20,124.55,124.57,129.14$ (2 C's), 146.58, 162.86, 165.99, 172.88; Anal. calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{4}: \mathrm{C}, 60.56 ; \mathrm{H}, 5.62 ; \mathrm{N}, 7.43$; found C, $60.61 ; \mathrm{H}, 5.67$; N, 7.24.

Ethyl 3-(2-benzoyl-1-(tert-butyl)hydrazinyl)propanoate (5n):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $105 \mathrm{mg}(72 \%)$; Light yellow solid; $\mathrm{mp} 105-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.13(\mathrm{t}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 2.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{bs}$, $1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta 14.03,25.46,33.14,45.79,58.73,60.51,126.97,128.61,131.55,133.91,166.93,173.33$; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 65.73; H, 8.27; N, 9.58; found C, $65.63 ; \mathrm{H}, 8.31 ; \mathrm{N}, 9.52$.

Ethyl 3-(1-(tert-butyl)-2-(4-chlorobenzoyl)hydrazinyl)propanoate (50):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $123 \mathrm{mg}(75 \%)$; White solid; mp $115-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 2.57(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{bs}, 2 \mathrm{H}), 3.96(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=9.0 \& 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.06$,
$25.44,33.09,45.64,58.80,60.61,128.44,128.88,132.16,137.86,165.92,173.44$; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3}: \mathrm{C}, 58.80 ; \mathrm{H}, 7.09 ; \mathrm{N}, 8.57$; found C, $58.85 ; \mathrm{H}, 7.18 ; \mathrm{N}, 8.40$.

Ethyl 3-(2-(4-bromobenzoyl)-1-(tert-butyl)hydrazinyl)propanoate (5p):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $111 \mathrm{mg}(60 \%)$; Light green solid; $\mathrm{mp} 112-115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.13(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.19 (s, 9H), 2.57 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.11(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ (bs, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.07,25.44$, 33.07, 45.61, 58.81, 60.64, 126.28, 128.64, 131.85, 132.56, 166.08, 173.45; HRMS (ESI-TOF): m/z [M + $\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Na}$: 393.0784; found: 393.0784.

Ethyl 3-(1-(tert-buty)-2-(4-fluorobenzoyl)hydrazinyl)propanoate (5q):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $90 \mathrm{mg}(58 \%)$; White solid; mp $68-71{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18(\mathrm{~s}, 9 \mathrm{H}), 2.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{bs}, 2 \mathrm{H}), 3.94(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{bs}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=8.0 \& 5.5 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.05,25.43,33.07,45.63$, $58.78,60.61,115.68\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 129.33\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 129.90\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 164.77\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=251.0 \mathrm{~Hz}$), 165.96, 173.48; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{3}: \mathrm{C}, 61.92 ; \mathrm{H}, 7.47$; N, 9.03; found C , 61.85; H, 7.41; N, 9.08.

Ethyl 3-(1-(tert-butyl)-2-(3-chlorobenzoyl)hydrazinyl)propanoate(5r):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $88 \mathrm{mg}(54 \%)$; White solid; mp $100-103{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 2.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.1(\mathrm{bs}, 2 \mathrm{H}), 3.96(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{bs}, 1 \mathrm{H}), 7.35(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 14.06,25.44,33.05,45.61,58.82,60.67,124.99,127.41,129.96,131.65,134.81,135.56$, 165.83, 173.41; Anal. calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 58.80 ; H, 7.09; N, 8.57; found C, 59.39; H, 7.30; N, 8.22.

Ethyl 3-(1-(tert-butyl)-2-(furan-2-carbonyl)hydrazinyl)propanoate (5s):

Synthesized using Method B; Purified by silica gel chromatography (EtOAc: petroleum ether, 2:8)
Yield: $47 \mathrm{mg}(33 \%)$; Red gum; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 2.55$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.48-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{bs}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.01,25.32,33.11,46.03,58.71$, 60.51, 112.16, 115.21, 144.03, 146.95, 157.90, 173.10; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$: 283.1652 ; found: 283.1654

Methyl 1,3-diphenyl-4,5-dihydro-1H-pyrazole-4-carboxylate (4):

Purified by silica gel chromatography (EtOAc: petroleum ether, 1:9)
Yield: $70 \mathrm{mg}(50 \%)$; Mustard solid; $\mathrm{mp} 96-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.72$ (s, 3H), 4.04-4.12 $(\mathrm{m}, 1 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=10.0 \mathrm{~Hz} \& 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=12.5 \mathrm{~Hz} \& 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 50.36,52.81,53.11,113.19,119.85,125.93,128.57,128.65,129.17,131.86$, 144.87, 144.99, 171.18; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$: 281.1285; found: 281.1286.

Methyl 3-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-4-carboxylate (6):*

Purified by silica gel chromatography (EtOAc: petroleum ether, 1:9)

Yield: $20 \mathrm{mg}(13 \%)$; Brown solid; mp $115-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.33(\mathrm{~m}, 3 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 51.24,55.22,113.15,113.59,120.68,125.37,127.85,128.87,131.89,139.38,142.46,145.53$, 160.19, 163.51; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}: 309.1234$; found: 309.1235.
\#Formed alongside the benzohydrazide $\mathbf{3 f}$.

Ethyl 3-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-4-carboxylate (7a):*

Purified by silica gel chromatography (EtOAc: petroleum ether, 1:9)
Yield: $19 \mathrm{mg}(12 \%)$; Brown semi solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.81$ (s, $3 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 3 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 14.26,55.22,60.04,113.51,113.54,120.81,125.36,127.80,128.86$, 131.93, 139.41, 142.47, 145.38, 160.13, 163.10; HRMS (ESI-TOF): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}: 323.1390$; found: 323.1389 .
\#Formed alongside the benzohydrazide $\mathbf{5 f}$.

Ethyl 5-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-4-carboxylate (7b):\#

Purified by silica gel chromatography (EtOAc: petroleum ether, 1:9)
Yield: 24 mg (15%); Brown solid; $\mathrm{mp} 124-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 14.33,55.31,60.29,113.36,113.46,119.49,124.68,127.37,129.54,130.73,132.23,139.34,153.80$, 160.09, 163.07; HRMS (ESI-TOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}: 323.1390$; found: 323.1391. \#Formed alongside the benzohydrazide $\mathbf{5 f}$.

$\underline{\text { X-ray crystal structures of } \mathbf{3 b} \text { \& } \mathbf{3 r}}$

Crystal data and structure refinement for $\mathbf{3 b} \& \mathbf{3 r}$

Compound	$\mathbf{3 b}$	$\mathbf{3 r}$
Identification code (CCDC	1905377	1905374
Number)	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}$
Empirical formula	312.36	312.79
Formula weight	293.15	100
Temperature $/ \mathrm{K}$	monoclinic	orthorhombic
Crystal system	$\mathrm{P} 2{ }_{1} / \mathrm{c}$	$\mathrm{Pca21}$
Space group	$10.790(18)$	$15.994(12)$
a / \AA	$17.43(3)$	$10.296(8)$
b / \AA	$9.827(16)$	$9.623(7)$
c / \AA	90	90
$\alpha /{ }^{\circ}$	$113.583(19)$	90
$\beta /{ }^{\circ}$	90	90
$\gamma /{ }^{\circ}$	$1694(5)$	$1585(2)$
$\mathrm{Volume} / \AA^{3}$	4	4
Z	1.225	1.311
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	0.084	0.252
$\mathrm{~m} / \mathrm{mm}^{-1}$		

F(000)
Crystal size $/ \mathrm{mm}^{3}$
2θ Theta range for data
collection

664
$0.230 \times 0.220 \times 0.200$
4.118 to 49.994°

$$
-12 \leq h \leq 12,-20 \leq k \leq 20,-\quad-18 \leq h \leq 18,-11 \leq k \leq 11,-
$$

$$
11 \leq 1 \leq 11
$$

26023

$$
2980[\mathrm{R}(\mathrm{int})=0.0735]
$$

2980/0/212
1.135

$$
\begin{aligned}
& \mathrm{R}_{1}=0.0571, \mathrm{wR}_{2}=0.1658 \\
& \mathrm{R}_{1}=0.0775, \mathrm{wR}_{2}=0.1781
\end{aligned}
$$

664
$0.150 \times 0.130 \times 0.090$
3.956 to 48.508°

$$
11 \leq 1 \leq 10
$$

22252

$$
\begin{gathered}
2513[\mathrm{R}(\mathrm{int})=0.0707] \\
2513 / 1 / 194 \\
1.043
\end{gathered}
$$

Final R indexes $[I>2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
0.287/-0.315
0.120/-0.238

Studies on the Reaction Mechanism:

${ }^{1}$ H NMR spectra recorded at various stages of the reaction of MBH ketone 1a with phenylhydrazine (2a)

References:

1. Zhao, D.; Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12426.
2. Frigerio, M.; Santagostina, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537.
3. Latorre, A.; Saez. J, A.; Rodríguez, S.; Gonzalez, V. F. Tetrahedron Lett. 2014, 70, 97.
4. Santos, S. M.; Coelho, F. RSC Adv. 2012, 2, 3237.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized products
ES-AKJ-160; 1H; CDC13; 27 FEB 18

BRUKER

ES-AKJ-160, CDC13; 27 FEB 18

ES-AKJ-178-3-LB1; 19/05/2018

mirtrarito óo.

BRUKER

ES-AKJ-178-3-LB1; 21/05/2018

BRUKER
\rightarrow

Page 24 of 108

ES-AKJ-MC-50; 10/11/2018

BRUKER

ES-RK-EXP-64,13C, 02/09/18

BRUKER

ES-RK-EXP-67P,13C, CDCL3, 08/09/18

ES-AKJ-219; 09/11/2018

BRUKER

ES-AKJ-219; 09/11/2018

娖囟

Page 34 of 108

ES-AKJ-198-3; 09/11/2018

BRUKER

Page 36 of 108

BRUKER

Page 38 of 108

Page 39 of 108

Page 40 of 108

BRUKER

ES-AKJ-236; 31/08/2018

$\stackrel{\text { ® }}{ }$	$\stackrel{-6}{\square}$		
ヘ	$\stackrel{\sim}{0}$	¢ู	
]]	VI	1] V/]

BRUKER

BRUKER
We

ES-AKJ-241; 30/10/2018

BRUKER

BRUKER
1

3m

Page 45 of 108

ES-RK-EXP-77P; 31/10/2018

BRUKER

BRUKER

ES-MC-58-3; 27/04/2018

$\stackrel{\infty}{\circ}$	N	
$\stackrel{N}{\sim}$	$\begin{aligned} & \hat{0} \\ & -1 \end{aligned}$	$\underset{\sim}{M} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\circ} \underset{\sim}{\circ}$
		111

BRUKER

ES-RK-EXP-60P, 1H, CDCL3, 31/08/18

$\stackrel{-1}{\stackrel{-}{\infty}} \stackrel{+}{7}$

BRUKER

ES-AKJ-196-4-LB1; 06/07/2018

BRUKER

ES-AKJ-196-4-LB1; 06/07/2018

ES-AKJ-231; 24/08/2018

ES-AKJ-176-3-LB1; 19/05/2018

BRUKER

BRUKER

Page 60 of 108

ES-RK-EXP-66-1H; CDC13; 26 OCT 2018

BRUKER

Page 61 of 108

ES-RK-EXP-66P; 29/10/2018

BRUKER

ES-AKJ-T; 28/11/2017

BRUKER

Page 64 of 108

Page 66 of 108

ES-AKJ-190-3LB1; 14/06/2018

BRUKER

BRUKER

Page 68 of 108
\underbrace{n}

్NN․․․
ジ～
BRUKER

BRUKER

ES-AKJ-202-3; 10/11/2018

BRUKER

orrririo ó óo.

BRUKER
$\underset{\sim}{x}$

ES-AKJ-MC-49; 10/11/2018

Page $\mathbf{7 4}$ of 108

BRUKER
(x)

5g

ES-RK-EXP-91P, 13C, CHCL3; 31/10/18

Page $\mathbf{7 6}$ of 108

 $r 0000_{\infty}^{\infty} \infty$

ヘ N N
\underbrace{N}

BRUKER

ES-AKJ-216; 09/11/2018

BRUKER
Cスx

BRUKER

ES-AKJ-233; 27/08/2018

Page 80 of 108

ES-AKJ-242; 29/10/2018

Page 82 of 108

5k
BRYKER

ES-AKJ-237; 01/09/2018

BRUKER

ES-AKJ-239; CDCl3; 20/02/2019

BRUKER

ES-AKJ-MC-54; CDC13; 25/02/2019

5n

BRUKER
C.

Page 89 of 108

ES-AKJ-MC-54; CDCl3; 25/02/2019

Page 90 of 108

Page 92 of 108

ES－RK－86P，1H，CDCL3／21／2／19

か～が

BRUKER

$\begin{array}{ll}\text { N } & \text { N } \\ \underset{\sim}{n} & 0 \\ & 0 \\ \underset{\sim}{1} & 0 \\ \mid & 1\end{array}$

BRUKER

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

BRUKER

ES-AKJ-200-4 LB1; 05/07/2018

BRUKER

 rancnarano

BRUKER

Page 98 of 108

BRUKER

ES-AKJ-234; 29/08/2018

BRUKER

4

Page 101 of 108

ES-AKJ-191-1-LB1; 20/06/2018

ES-RK-67(3), 1H.CDC13, 19/2/19

BRUKER

ES-RK-67 (3) -DEPT, 19/219

BRUKER

ES-AKJ-MC-49-2; CDCl3; 13/07/2019

Page 106 of 108

Page 108 of 108

