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Theory

We start with a brief summary of the theoretical framework for the calculation of binding

free energies, based on the work of Woo and Roux. However, we present a slightly simplified

derivation. Starting point is the expression of the equilibrium constant in case of a dilute

protein solution:

Keq =
N

[L]

∫
bound

e−βU(x)dx∫
free

e−βU(x)dx
. (1)

Here N and [L] are number and concentration of the ligand and x are the positions of all

atoms of the system and U is the potential energy. By definition bound = {r(x) < rb} and

free = {r(x) ≥ rb} for some value rb. It may be chosen, such that interaction between
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protein and ligand vanishes at rb. We may then write

Keq =
N

[L]

∫ rb
0
p(r)dr∫ r∞

rb
p(r)dr

(2)

by transformation of variables and marginalizing. p(r) is the probability density of the

distance r and r∞ is the largest possible value of r. The key point of Woo and Roux’s method

is to transform the system of interest into one, in which p(r) can be sampled reliably. To

this end, position, orientation and configuration of the ligand are defined using collective

variables as discussed in the Methods section. Quadratic potentials are then imposed on the

collective variables to restrain them to reference values in the bound state. The restraining

potentials read u(z) = k/2(z− z0)2, where k is a force constant, z is the respective collective

variable and z0 is its reference value. In present case, reference values are the values of the

collective variables after 100 ns of unrestrained simulation.

The total potential in the restrained system is given by Ũ = U + uc(RMSD) + ua(φ, θ) +

uo(Θ,Φ,Ψ), where the subscripts indicate restraints on configuration (c), angular part of

position (a) and orientation (o). Note that here the potential on angular part of the position

and orientation comprise of the restraints on θ and φ and Θ, Φ and Ψ respectively. I.e.,

ua(φ, θ) = k/2(φ − φ0)
2 + k/2(θ − θ0)2 and uo(Θ,Φ,Ψ) = k/2(Θ − Θ0)

2 + k/2(Φ − Φ0)
2 +

k/2(Ψ − Ψ0)
2, while uc(RMSD) = k/2(RMSD)2. In the following discussion this reduced

notation is used. Therefore contributions of the angular and orientational restraints are

actually the contributions of the 2 and 3 angles mentioned above. We then define

K̃eq =
N

[L]

∫
bound

e−βŨ(x)dx∫
free

e−βŨ(x)dx
=

N

[L]

∫ rb
0
p̃(r)dr∫ r∞

rb
p̃(r)dr

(3)

and introduce shorthand notations

I−1b (ur,W ) =

∫
bound

e−βWdx∫
bound

e−β(W+ur)dx
(4)
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If (ur,W ) =

∫
free

e−β(W+ur)dx∫
free

e−βWdx
(5)

for some potentialW and r ∈ {a, o, c}. It is then easy to see that for the relationship between

Keq and K̃eq one obtains

Keq = I−1b (uc, U)× I−1b (uo, U + uc)× I−1b (ua, U + uc + uo)×

K̃eq × If (ua, U + uc + uo)× If (uo, U + uc)× If (uc, U).

(6)

Here the underlined terms are accessible by numerical integration (see below). For reasons

of brevity we rewrite this as

Keq = K−1b,c ×K
−1
b,o ×K

−1
b,a × K̃eq ×Kf,a ×Kf,o ×Kf,c. (7)

In this sense, introducing the restraints is related to an additional binding constant or free

energy change ∆Gf
r = −RT log(Kf,r) and ∆Gb

r = −RT log(K−1b,r ) respectively. We start by

evaluating K̃eq. For r ≥ rb we may write

p̃(r) =
p̃(rb)

r2b
r2. (8)

Plugging this in into the expression for K̃eq and using N/[L] = V , where V is the system

volume we obtain:

K̃eq = V

∫ rb
0
p̃(r)dr∫ r∞

rb
p̃(r)dr

=
V r2b
p̃(rb)

∫ rb
0
p̃(r)dr∫ r∞

rb
r2dr

=
4πr2b
p̃(rb)

∫ rb

0

p̃(r)dr (9)

We proceed with the remaining factors. As an example, consider the term If (uc, U).

If (uc, U) =

∫
free

e−β(U(x)+uc(RMSD(x))dx∫
free

e−βU(x)dx
=

∫
free

e−βur(RMSD)pfree(RMSD)dRMSD, (10)
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where p(RMSD) is the probability density of the RMSD in the free state. We remark

that it is common to work with the PMF of a reaction coordinate z, w(z) = −RT log(p(z)),

instead of working directly with the probability density. In general the probability densities

of the collective variables have to be estimated from simulation data. For the contributions

of the angles in the free state however, no simulation is needed, since it is natural to assume

that φ(x), θ(x),Θ(x),Φ(x) and Ψ(x) are uniformly distributed in the free state. Change of

variables then results in the probability densities

pfree(θ, φ) =
1

4π
sin(θ), pfree(Θ,Φ,Ψ) =

1

8π2
sin(Θ). (11)

The contribution of restraining these angles is then accessible via numerical integration, for

example:

Kf,a =

∫
free

e−β(U+uc+u0+ua)dx∫
free

e−β(U+uc+u0)dx
=

∫ π

0

∫ 2π

0

e−βua(θ,φ)
1

4π
sin(θ)dφdθ (12)

We remark that Woo and Roux denote K̃eqKf,a by I∗S∗. If we now partition the bound

state into two regions, one that we assign to the parallel (p) and one that we assign to the

antiparallel (a) orientation, we may write

Keq =
N

[L]

∫
bound

e−βU(x)dx∫
free

e−βU(x)dx
=

N

[L]

(∫
bound,p

e−βU(x)dx∫
free

e−βU(x)dx
+

∫
bound,a

e−βU(x)dx∫
free

e−βU(x)dx

)
. (13)

We could now proceed with the forgoing analysis for both summands and get the result

shown in equation (6). The difference would be that instead of defining Ib(ur, Uee) we would

now define Ib,p(ur, Uee) and Ib,a(ur, Uee), i.e. we would condition on the set bound ∩ parallel

(p) and bound ∩ antiparallel (a).
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Supporting figures

Figure 1: The potential of mean force of the distance of protein and ligand in parallel
orientation in units of kcal/mol. The inset shows the resulting effective potential in the
window at 1.25 nm also in units of kcal/mol.
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Figure 2: The potential of mean force of the distance of protein and ligand in antiparallel
orientation in units of kcal/mol. The inset shows the resulting effective potential in the
window at 1.25 nm also in units of kcal/mol.

6



Figure 3: The consistency coefficient for the umbrella sampling of the distance of protein
and ligand for parallel orientation (upper figure) and antiparallel orientation (bottom figure)
for different simulation times. Blue: 4 ns per window. Green: 40 ns for the critical windows
and 20 ns for the remaining windows. Purple: Full trajectories. The coefficient measures
the consistency between adjacent windows, the point at 0.8 nm refers to windows at 0.8 and
0.9 nm and so on.
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Figure 4: Potentials of mean force of the collevtive variables in parallel orientation. From
top left to bottom: RMSD in the bound state, position angles θ and φ, orientation angles
Φ, Ψ and Θ and RMSD in the free state.
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Figure 5: Potentials of mean force of the collevtive variables in antiparallel orientation. From
top left to bottom: RMSD in the bound state, position angles θ and φ, orientation angles
Φ, Ψ and Θ and RMSD in the free state.
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Figure 6: The potential energy differences for each residue of the PIAS1 between bound and
free state in antiparallel orientation. We include non bonded interactions to SUMO3, PIAS1
residues and solute.
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Figure 7: Lennard jones interaction (top), coloumb interaction (middle) and the sum of the
former (bottom) between PIAS1 residues (y axis) and SUMO3 residues (x axis) in kcal/mol.
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