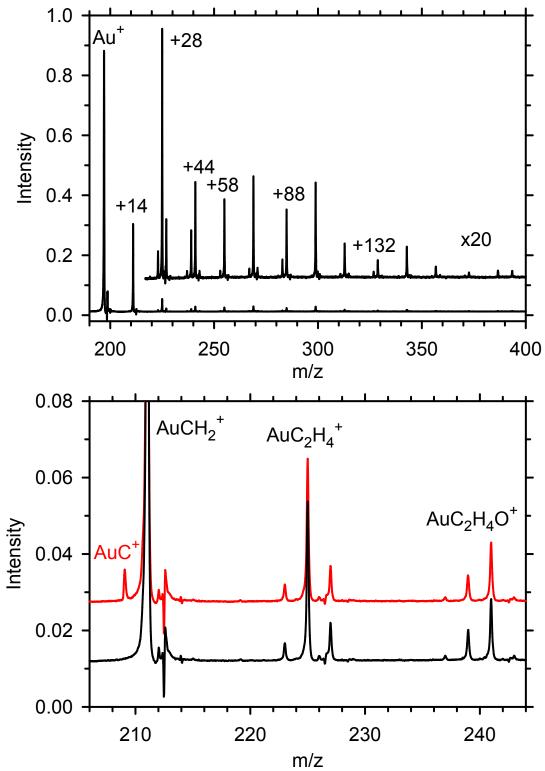
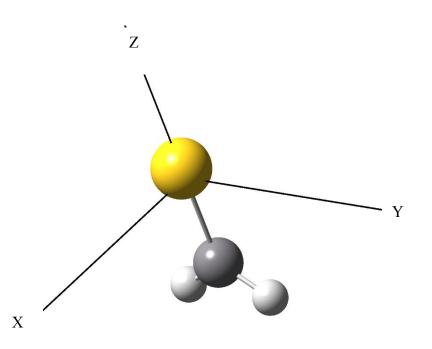
Supporting Information for

Infrared Spectroscopy of Gold Carbene Cation (AuCH₂⁺): Covalent or Dative Bonding?

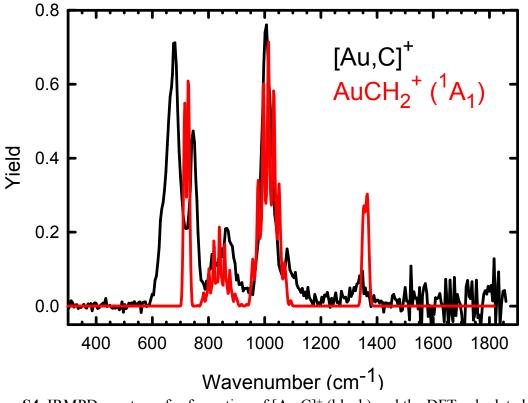
P. B. Armentrout,^{†,*} Brandon C. Stevenson,[†] Fan Yang,[†] Frank J. Wensink,[‡] Olga V. Lushchikova,[‡] and Joost M. Bakker[‡]

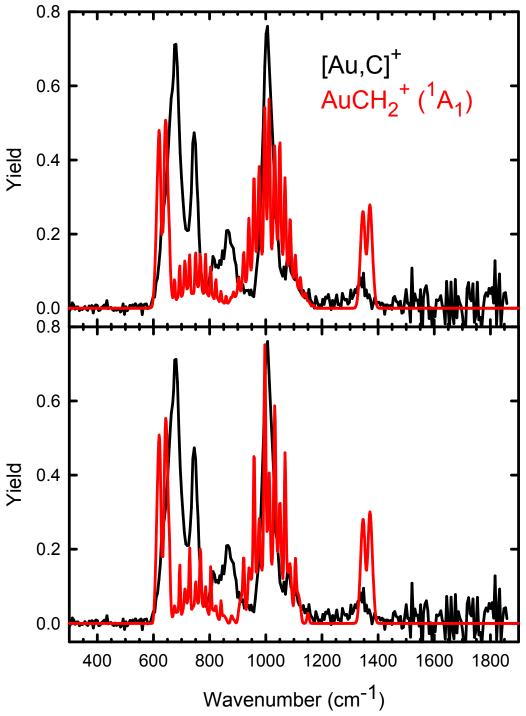

[†]Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, USA

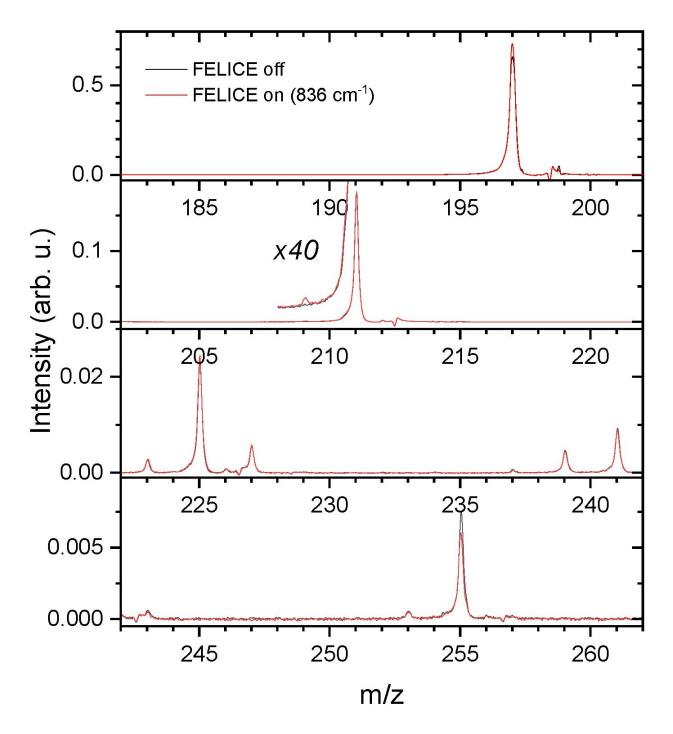
[‡]Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands

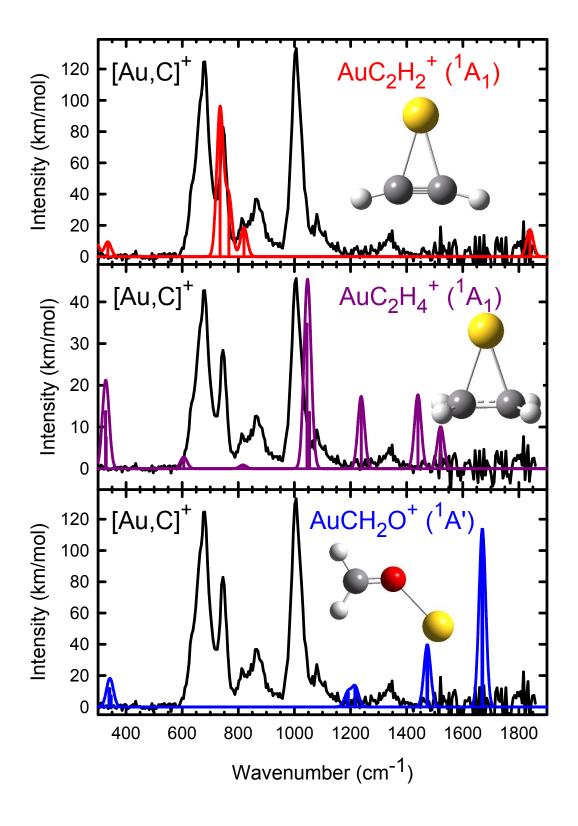

Table S1 provides information needed to calculate the rotational contours: dipole derivatives, principle axes, and moments of inertia of $[Au,C,2H]^+$. Figure S1 shows representative mass spectra of the ionic species formed from gold laser ablation in a flow of ethylene oxide mixed with He with and without laser irradiation at 1010 cm⁻¹. Figure S2 illustrates the geometric orientation of the Cartesian principle axes used in the calculation of dipole derivatives and moments of inertia of the ground state of AuCH₂⁺. Figure S3 shows the spectra for AuCH₂⁺ (¹A₁) including rotational band structure at 293 K both with and without including nuclear spin statistics. Figure S4 shows representative mass spectra of the ionic species formed from gold laser ablation in a flow of ethylene oxide mixed with He with and without laser irradiation at 836 cm⁻¹. Figure S5 shows the spectrum for AuCH₂⁺ (¹A₁) including the rotational band contours and the two lowest frequency bands blue-shifted by 90 cm⁻¹. Figures S6 and S7 show comparisons of the calculated spectra for alternative precursors with the experimental spectrum.

Frequency (cm ⁻¹)	Coordinate 1	Coordinate 2	Coordinate 3	IR Intensity (km mol ⁻¹)
758.59	-7.79E-10	4.59E+00	1.40E-10	21.059
1030.07	8.10E+00	-5.89E-10	-5.56E-10	65.627
1393.35	1.90E-10	1.40E-10	-3.26E+00	10.612
3077.32	4.59E-10	-3.62E-10	-4.45E+00	19.828
3197.60	5.51E-10	6.59E+00	1.92E-10	43.419
Eigenvalues	6.18177	184.98131	191.16308	
Х	0	0	1	
Y	0	1	0	
Z	1	0	0	


Table S1. Dipole Derivatives, Principle Axes, and Moments of Inertia of $AuCH_2^+$ (${}^{1}A_1$)


Figure S1. Mass spectrum of the ionic species formed from laser ablation of gold in a flow of ethylene oxide mixed with He as observed with no laser light (black trace) and with laser light (red trace) at 1010 cm⁻¹. Note the appearance of AuC^+ in the red trace.


Figure S2. Geometric orientation of the Cartesian principle axes for which dipole derivatives and moments of inertia of $AuCH_2^+$ (${}^{1}A_1$) were calculated.


Figure S4. IRMPD spectrum for formation of $[Au,C]^+$ (black) and the DFT calculated spectra including rotational band structure at 77 K for the singlet carbene AuCH₂⁺ (red) with the two lowest frequency bands blue-shifted by 90 cm⁻¹.

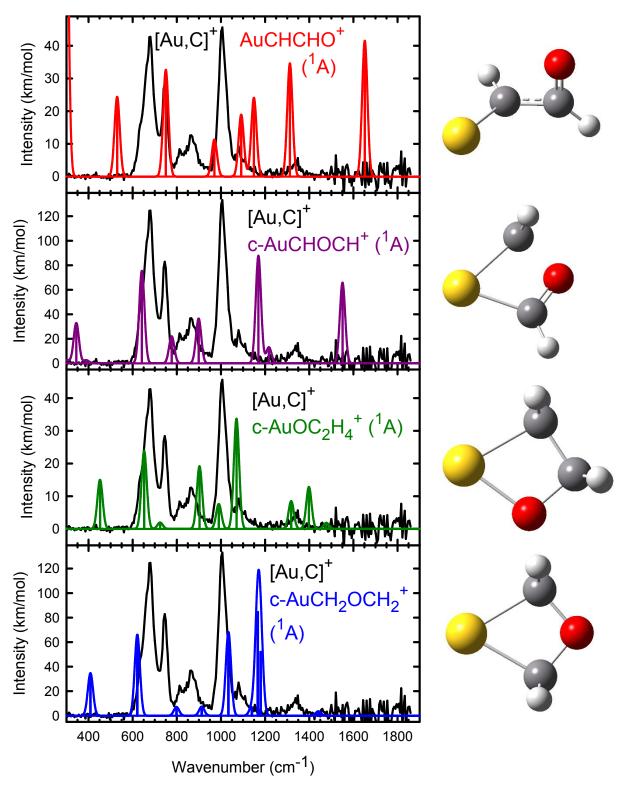

Figure S3. IRMPD spectra for formation of $[Au,C]^+$ (black) and the DFT calculated spectra including rotational band structure at 293 K excluding (top panel) and including (bottom panel) nuclear spin statistics for the singlet carbene AuCH₂⁺ (red).

Figure S5. Mass spectrum of the ionic species formed from laser ablation of gold in a flow of ethylene oxide mixed with He as observed with no laser light (black trace) and with laser light (red trace) at 836 cm⁻¹. Note the appearance of AuC⁺ at m/z 209 (seen in the expansion) and the depletion of the peak at m/z 255, AuC₃H₆O⁺.

Figure S6. IRMPD spectra for formation of $[Au,C]^+$ (black) and the DFT calculated spectra for the metallacyclopropene, $AuC_2H_2^+$ (1A_1) (top trace, red), metallacyclopropane, $AuC_2H_4^+$ (1A_1) (middle trace, purple), and gold formaldehyde, $AuCH_2O^+$ (bottom trace, blue).

Figure S7. IRMPD spectra for formation of $[Au,C]^+$ (black) and the DFT calculated spectra for AuCHCHO⁺ (¹A) (top trace, red), metallacyclobutene, c-AuCHOCH⁺ (¹A) (middle trace, purple), and metallacyclobutanes, c-AuOC₂H₄⁺ (¹A) (middle trace, green) and c-AuCH₂OCH₂⁺ (¹A) (bottom trace, blue). Structures are shown to the right.