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Methods 

Molecular docking 

We performed a molecular docking analysis to investigate the binding conformation of N19 

in cMET and EGFR. Kinase inhibitors can be roughly grouped into three types (I, II, and III). 1, 2 

Type-I inhibitors target the active DFG-in conformation and compete with ATP. Type II 

inhibitors bind the inactive DFG-out confirmation.2 The inactive DFG-out confirmation creates 

an additional pocket (called back pocket) adjacent the ATP-binding site.2 Shapes of type II 

inhibitors are long and slender to simultaneously occupy the ATP-binding site and the back 
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pocket by a head group and a tail group, respectively. The tail group is hydrophobic and forms 

additional interactions with the back pocket.2, 3 N19 is more likely to be a Type-I inhibitor 

because its shape is not slender and lacks a hydrophobic tail group. However, cMET and EGFR 

structures that are currently available in the Protein Data Bank have multiple DFG-

conformations. For cMET and EGFR, we modeled the protein structure in with a preference 

for the active DFG-in conformation using a homology-modeling approach.4 The structure (PDB 

code 2PVF) of FGFR2 with a sequence identity of 57% was selected as a structure template 

because it is in the active DFG-in conformation and contains an ATP analog, ACP. Additionally, 

docking was completed directly on well-resolved X-ray structures for cMET and EGFR using 

PDB codes 3CCN and 3W33 with 1.9 Å and 1.7 Å resolution, respectively. These structures 

were resolved in the presence of cofactors allowing excellent grid mapping. The residues 

within 10 Å around the ATP analog defined the binding site. Then, N19 was docked into the 

binding site using XP Glide docking on Schrodinger. XP Glide uses additional precision settings 

and provides interaction profiles between compounds and protein residues. XP Glide uses well-

documented scoring function to determine intermolecular energies, including electrostatic, van 

der Waals, and hydrogen-bonding interactions. Our previous studies using XP Glide has had 

excellent results for drug binding and development with structure-function studies.5-10 In 

addition, XP Glide has been successfully applied to discover new inhibitors and binding sites for 

several proteins.11-14 

 

 

 

 



Supplementary Figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Binding confirmation of N19 in cMET and EGFR. A. Schematic representation of 

the protein binding pocket position relative to the N19 compound with pose1 and pose2 for 

orientation of the nitrogen versus ketone oxygen to the pocket hinge point. B. EGFR binding 

poses for N19 are given, where the ring and chain groups of N19 form 3 and 2 hydrogen bonds 

with EGFR residues, respectively. C. Similarly, the cMET binding poses for N19 are given, 

where the very similar hydrogen-bonding interactions are occurring. In both B and C panels, 



hydrogen bonds between residues and N19 are represented as light green dashes. The ring group 

also makes stable van der Waals interactions with the binding site, which are depicted. 

 

 

 

 

 

 

Figure S2: Representative examples of tumors treated with indicated groups. 

 

 

 

 

 

 

 

 

 

 



Figure S3: Immunohistochemistry of liver tissue for trichrome staining after 2x/wk for three 

weeks of treatment with indicated groups. Scale bars = 200 µm.  

 

Figure S4: N19 inhibits both EGFR and cMET in PDAC tumors. IHC staining with anti-

EGFR (top panel) and anti-cMET (bottom panel) of tumor tissues 2x/wk for three weeks treated 

with indicated groups. Scale bars = 200 µm.                

Table S1: Primers used in the study 

 

 

 

Table S2. Docking results for N19 with cMET and EGFR in multiple poses. 

Compounds Protein Docking Score (kcal/mol) Pose Rank 

N19 (pose1) cMET -5.87 3 

N19 (pose2) cMET -5.3 4 

Decoy Cmpd* cMET -4.0 5 

N19 (pose1) EGFR -7.03** 1 

 cMET-F  5’CATGCCGACAAGTGCAGTA3’ 

 cMET-R  5’TCTTGCCATCATTGTCCAAC3’ 

 EGFR -F   5’GCGTCTCTTGCCGGAATGT3’ 

 EGFR-R  5’GGCTCACCCTCCAGAAGGTT3’ 



N19 (pose2) EGFR -6.89 2 

Decoy Cmpd* EGFR -3.51 6 

 

*Decoy compounds were randomly selected for a counter screen on the efficacy of the N19 

binding affinity for the EGFR and cMET receptors, which does indicate superiority over the 

randomly selected decoy compound by >30-1000X depending on the pairing. 

**Best docked compound pose with the highest affinity. 
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