Supporting Information

Complete stereoinversion of L-tryptophan by a fungal single-module nonribosomal
peptide synthetase

Yang Hai,' Matthew Jenner,** and Yi Tang*"?

'Department of Chemical and Biomolecular Engineering and *Department of Chemistry and Biochemistry, University of California,
Los Angeles, California 90095, United States. *Department of Chemistry, University of Warwick, Coventry, UK. “Warwick Integrative
Synthetic Biology (WISB) Centre, University of Warwick, Coventry, UK.

*Correspondence: yitang@ucla.edu

S1



1.

Table of Contents

Materials and Methods .......coooiiiiiiiiiiiiii s 4
1.1. Chemicals and general methods...........uuuuiiiiiiiiiiiiiiiiiii 4
1.2. Protein expression and purifiCation .........ccccccoeiiiiiuuuuuiiiiiii e r s rr s r e 4
1.3. Fermentation product isolation and purification ............ccccciuiuiiiiiiiiiiiiiiiii e 5
1.4. DS s L To Tt PR 6
LS. UHPLC-ESI-Q-TOF-MS Analysis of Intact Proteins..........cccccciuuuumiumiiiimiiiiiiiiiiiisississsssssssssssssesseeeeen 7
L.6. Genetic ManIPUlAtION .....ueiiiiii it 7
1.6 Synthesis of D-TIP-SINAC ..ottt e e e s ab e e e e e e s s sarase e e e e e s 7
1.7 Synthesis of L-TIP-SINAC ..ottt e e e e e e s ara s e e e e e e e 8
1.8 Synthesis Of D-TIP-PANt ....ceeeiiiiiiiiiiiiiie et e e e e e s s s bba s e e e e e e s s s ssaaaae e e e e e e aaes 8

8 1) PP 10
Table S1. Oligomers used in this StUAY..........uueiiiiiiiiiiiiii e 10
Table S2. Chiral HPLC retention time for substituted tryptophan analogues..............ccccovriiiiiiiiiiiiinc e, 11
Table S3. Detailed figure captions for all figures in the main text. ...........ccoceiriiiiiiiiiiiii e, 12

FIGUIES. ...ttt e e e e e e e a— e e e e e e s s s r e e e e e r s 13
Fig. S1. SDS-PAGE analysis of purified IVOA Proteins. .........cccciiiiiiiiiiiiiiei it 13
Fig. S2. Hydroxylamine-based colorimetric assay for studying substrate specificity of IvoA A domain ..................... 14
Fig. S3. In vitro charactrization of IvoA acetyltransferase activity by HPLC. .........cccccoviiiiiiiiiiiiiiiiee e 15
Fig. S4. Apparent steady-state kinetics of IvoA catalyzed stereoinversion. ...........cccueeeeeeiiiiiiiiiiiiice e 16
Fig. SS. Gene-knockout of ApaZin yeast. .........cciiiiiiiiiiiiiiiiiii i 17
Fig. S6. Characterization of IVOA aCtiVity IN VIVO. .....ciiiuuuiiiiiiiie i 18
Fig. §7. Chiral-HPLC analysis of the purified tryptophan from yeast cells. ............ccoeveiiiiiiiiiii i, 19
Fig. 8. In vitro hydrogen-deuterium exchange assay of IvoA with D-tryptophan..................coo, 20
Fig. §9. Complementation of IvoA mutant with standalone IVOA-C. ............cooiiiiiiiiiiiiiic 21
Fig. S10. In vitro assay of IvoA-C with synthetic thioester substrates. ............coocciiiiiiiiiiiii e, 22
Fig. S11. Loading of D/L-tryptophan to IvoAAC monitored by intact protein mass spectrometry. ..............c.ooeennn. 23
Fig. S12. Adenylation assay of IvoA A domain with substituted tryptophan amino acids. .........cccceeeiiiiiiiiiinnnnn. 24
Fig. $13. Genomic context analysis of /vroA homologues found in other fungi. ...........ccccvriiiiiiiiiiiiii 25
Fig. S14. '"H-NMR spectrum (500 MHz) of D-tryptophan isolated from yeast overexpressing IvoA in D,0.............. 26
Fig. S15. "H-NMR spectrum (500 MHz) of L-tryptophan isolated from yeast in D;O. ......ccceeiiriiriiriiciiiie e, 27
Fig. $16. '"H-NMR spectrum (500 MHz) of isolated N-acetyl-D-tryptophan in MeOD. .......ccccoovierierrueeneenreennnns 28
Fig. S17. *C-NMR spectrum (125 MHz) of isolated N-acetyl-D-tryptophan in MeOD..........ccocvierierrveenieenreenenns 29
Fig. $18. HSQC NMR spectrum (500 MHz) of isolated N-acetyl-D-tryptophan in MeOD. ..........ccceerveerieerreennn 30

S2



4.

Fig. S19. '"H-NMR spectrum (500 MHz) of synthesized D-Trp-SNAC in dg-DMSO......ccuveriurerrieniiirieenieeereeneeas 31

Fig. $20. *C-NMR spectrum (125 MHz) of synthesized D-Trp-SNAC in dg-DMSO. ....cuveriurirrieniiirreenieesreeneeas 32
Fig. $21. COSY NMR spectrum (500 MHz) of synthesized D-Trp-SNAC in ds-DMSO......cceervieriiiriieenieenieennes 33
Fig. $22. "H-NMR spectrum (500 MHz) of synthesized L-Trp-SNAC in ds-DMSO. .....ccuveriueerriiniiinieenieeeieeneees 34
Fig. $23. *C-NMR spectrum (125 MHz) of synthesized L-Trp-SNAC in ds-DMSO. ....ccuverireirrieniiinieenieeereeniees 35
Fig. S24. '"H-NMR spectrum (500 MHz) of synthesized D-Trp-pant in dg-DMSO.........cerverriiiiriiniierreenieeereeneeas 36
Fig. $25. *C-NMR spectrum (125 MHz) of synthesized D-Trp-pant in dg-DMSO.......cerverrieerriiniienreenieeereeneees 37
Fig. $26. HSQC NMR spectrum (500 MHz) of synthesized D-Trp-pant in ds-DMSO. .....ceevurirrieniirniienieenreenenes 38
Fig. $27. HMBC NMR spectrum (500 MHz) of synthesized D-Trp-pant in ds-DMSO. .....cccuvirrienierrreenieenreenenes 39
Fig. $28. COSY NMR spectrum (500 MHz) of synthesized D-Trp-pant in ds-DMSO........ccvverrienierrreenieenreennnes 40
Fig. $29. Representative chiral HPLC traces (Part L).......cccueerueirueerieiiieesiieeiee e eiee et 41
Fig. $30. Representative chiral HPLC traces (Part I1)..........ccciouiiiiiiiiiiiie e 42
Fig. $31. Representative chiral HPLC traces (Part IIL). ........c.cccuiiiriuiiiiiiie e sie s s 43

S (S (S 1o PP P PP PP PPPPPPPPPPPP 44

S3



1. Materials and Methods

1.1. Chemicals and general methods

L-Tryptophan is purchased from Fisher Chemicals. p-Tryptophan is purchased from Acros Organics. N-acetyl-L-
tryptophan and N-acetyl-p-tryptophan are purchased from TCIL. Ny-Boc-L-tryptophan- AN-hydroxy-succinimide ester, Ny-
Boc-p-tryptophan- M-hydroxy-succinimide ester, and all other tryptophan amino acid derivatives are purchased from Chem-
Impex Int’l. Inc. Isopropyl-B-D-1-thio-galactopyranoside (IPTG) was purchased from Carbosynth. Tris-(2-carboxyethyl)
phosphine hydrochloride (TCEP-HCI) was purchased from GoldBio Biotechnology. All other chemicals were purchased
from Sigma-Aldrich. PCR reactions were performed using the Phusion® high-fidelity DNA polymerase (New England
Biolabs) and used according to the manufacturer’s instructions. Custom oligonucleotides were synthesized by Integrated

DNA Technologies. Escherichia colistrain DH10B was used for cloning procedures.

1.2. Protein expression and purification

The ivoAgene (AN10576) exon fragments were cloned from the genomic DNA extract of A. nidulans AEM strain,'
and assembled through yeast homologous recombination using a Frozen-EZ Yeast Transformation II Kit (Zymo research).
Gene fragments were integrated into a 2p-based yeast expression vector (pXWSS) with uracil auxotrophic marker and
ADH?2 promoter and terminator. To facilitate purification, the target gene was fused with an octahistidine tag at its N
terminus. The full-length wild-type IvoA and mutants were expressed in S. cerevisiae JHY686 strain and expression was
autoinduced in YPD medium. Briefly, single colonies of yeast cells harboring plasmids was inoculated into SDCt uracil drop-
out culture and left grown at 28 °C for 2days. The seed culture was then inoculated into YPD culture (1 ml to S0 mL) and
left grown at 28 °C for another 2 days. Cells were harvested by centrifugation and washed once with cell lysis buffer (50 mM
K;HPO, (pH 7.5), 10 mM imidazole, 300 mM NaCl, 5% glycerol). Cells were flash frozen in liquid nitrogen and lysed by
using a stainless-steel Waring blender. The cell lysate was cleared by centrifugation at 26,000 g for 60 min at 4 °C and the
supernatant was filtered through a 0.22 um filter (Millipore). The filtrate was incubated with Ni**-NTA resin for 30 min at
4 °C and then the slurry was loaded onto a gravity column. The resin was washed and eluted with increasing concentrations
of imidazole in cell lysis buffer. The fractions were examined by SDS-PAGE gels and targeted proteins were subject to size-
exclusion chromatography by using a HiLoad Superdex 200 26/60 column (GE Healthcare) equilibrated in storage buffer
[S0 mM K;HPO, (pH 7.5), 150 mM NaCl, 1 mM TCEP]. Pure fractions were concentrated to 20 mg/mL by Amicon
concentrators (Millipore), supplemented with 10% glycerol and stored at -80 °C. Protein concentrations were determined
by Bradford assay.

For individual domain expression, the expression plasmids were constructed by subcloning the corresponding
domain region into a modified pET28a (+) vector (Addgene plasmid #29656). The resulting N-terminal TEV protease

cleavable hexahistidine tagged individual domains were overexpressed in £. coli BL21(DE3) cells in LB medium in the
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presence of 50 mg/L kanamycin. Expression was induced by 100 uM IPTG when ODgoo reached 1.0 and the cell cultures

were left grown at 16 °C overnight. Cells were harvested by centrifugation and lysed by sonication. Purification was

performed similarly to the full-length protein.

1.3. Fermentation product isolation and purification

The fermentation product was analyzed with a Shimadzu 2020 LC-MS (Phenomenex Kinetex, 1.7 pm, 2.0 X 100
mm, C18 column) using positive and negative mode electrospray ionization with a linear gradient of 5-95% MeCN-H,O
supplemented with 0.1% (v/v) formic acid in 15 min followed by 95% MeCN for 3 min with a flow rate of 0.3 mL/min. For
structural characterization, N-acetyl-p-tryptophan and D-tryptophan were isolated from a 2L yeast culture overexpressing
IvoA protein. The cell pellets containing D-tryptophan were removed by centrifugation and the supernatant containing N-
acetyl-D-tryptophan was collected separately.

To purify N-acetyl-D-tryptophan, the pH value of the supernatant was adjusted to 3 by using 1M HCL. The acidified
supernatant was extracted with ethyl acetate and the organic layer was combined. The organic solvent was removed by
rotavap and the crude extract was dried over Na,SO,. N-Acetyl-p-tryptophan was purified by silica-gel chromatography.
Fractions containing the target compound were combined and further purified by semipreparative HPLC using a reverse-
phase column (Phenomenex Kinetics, C18, S pm, 100 A, 250 x 4.6 mm). The planar structure of MVacetyl-D-tryptophan was
confirmed by comparing NMR spectrum with spectrum reported in the literature and database.” 'H-NMR (500 MHz,
CD;OD): 8 1.89 (s, 3H), 3.15 (dd, /= 14.7, 7.5 Hz, 1H), 3.35 (dd, overlap with solvent, 1H), 4.69 (t, /= 14.7, Hz, 1H),
7.00 (ddd, /= 8.0, 7.0, 1.0 Hz, 1H), 7.07 (m, 2H), 7.31 (dt, /= 8.1, 0.9 Hz, 1H), 7.56 (dt, /= 7.9, 1.0 Hz, 1H). The
stereochemistry of M-acetyl-D-tryptophan was determined by chiral analytical HPLC with a CHIRALPAK® IA-3 (150 x 4.6
mm, 3 pm) at room temperature. The mobile phase was 80/20/0.1/0.1 hexanes/ethanol/TFA/DEA and the flow-rate was
1.0 mL/min.

To purify D-tryptophan, the cell pellet was extracted by acetone and the solvent was removed by rotavap. The crude
residue was dissolved in mobile phase A (water containing 0.1 (v/v) TFA) and applied to reverse-phase flash-
chromatography. Basically, 20 mL of Cosmosil 140 Ci5-OPN resin (Nacalai Tesque, Inc.) was packed in a Luer-Lock, non-
jacketed glass column (Sigma) and equilibrated with mobile phase A. The resin was washed with 3 column volume (CV) of
mobile phase and then eluted with increasing methanol content in a step-wise manner. Tryptophan was eluted at 15-25%
(v/v) methanol fractions. The pooled fractions were further purified by semipreparative HPLC using a reverse-phase
column (Phenomenex Kinetics, C18, S um, 100 A, 250 x 4.6 mm). The planar structure of D-tryptophan was confirmed by
comparing NMR spectrum with spectrum reported in the literature and database.'H-NMR (500 MHz, D,0): 8 3.37 (dd, J
=15.4,7.8 Hz, 1H), 3.51 (dd, /= 15.4, 5.0 Hz, 1H), 4.19 (dd, /=7.7,5.0 Hz, 1H), 7.20 (ddd, /= 8.0,7.0, 1.1 Hz, 1H), 7.28
(ddd, /= 8.2, 7.0, 1.2 Hz, 1H), 7.32 (s, 1H), 7.54 (dt, /= 8.2, 1.0 Hz, 1H), 7.72(dt, /= 8.0, 1.0 Hz, 1H). Similarly, -
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tryptophan was purified from yeast cells without overexpressing ivoA protein. 'H-NMR (500 MHz, D,0): & 3.40 (dd, /=
15.4,7.6 Hz, 1H), 3.52 (dd, /= 15.4, 5.2 Hz, 1H), 4.26 (dd, J="7.5, 5.0 Hz, 1H), 7.19 (t, /= 7.5 Hz, 1H), 7.28 (t, /= 7.6 Hz,
1H),7.33 (s, 1H), 7.53 (d, /= 8.1 Hz, 1H), 7.71(d, /= 8.1 Hz, 1H). The stereochemistry was determined by chiral analytical
HPLC with a Crownpak® CR(+) column (150 mm x 4 mm x 3.5 pm, Daicel) at room temperature. The mobile phase was

aq. HC1041% (w/v) supplemented with 15% (v/v) MeOH and the flow rate was 1.0 ml/min.

1.4. Enzymatic assay.

The hydroxylamine-based colorimetric assay for adenylation activity was performed according to the literature.?
Acetyltryptophan acetyltransferase activity was performed by incubating 1-100 uM IvoA with 1 mM p-tryptophan or other
substrates with 1 mM acetyl-CoA or 1 mM acetyl-phosphate in 100 mM phosphate buffer (pH 7.5). The reaction mixture
was incubated at room temperature and the reaction was quenched at different time interval by mixing with 5-fold volume
of methanol. The mixture was clarified by centrifugation to remove protein and salts, and the supernatant was dried in vaccuo
by using speedvac. The residue was dissolved in methanol and subjected to LC-MS analysis. For ATP-dependent
acetyltransferase activity, 1 mM L/D-tryptophan, S mM ATP, 1 mM CoA and 5 mM MgCl, were used.

The ATP-dependent stereoinversion activity was typically performed with 2-5 yM IvoA, 1 mM L/D-tryptophan, 3
mM ATP and 10 mM MgCl, in 100 mM phosphate buffer (pH 7.5), and the reaction was quenched by mixing with S-volume
of methanol. The solvent was removed in vaccuo by speedvac and the residue was dissolved in ethanol and analyzed by
chiral- HPLC by using a Crownpak® CR(+) column (150 mm x 4 mm x 3.5 pm, Daicel) at room temperature. The mobile
phase was aq. HCIO, 1% (w/v) supplemented with 15% (v/v) MeOH and the flow rate was 1.0 ml/min.

When assays were performed in DO, enzyme stock solution was buffer exchanged into K;HPO, buffer in D,O (pD
7.5) by using Zeba™ Spin Desalting Column (ThermoFisher Scientific). All substrates and cofactors were dissolved in the
same buffer.

The 1-/p-tryptophan loading reactions were performed by incubating 80 yM Aolo-IvoA-AC with S mM ATP, 10
mM MgCl, and 1 mM 1-/p-tryptophan in a final volume of 50 pL. The reaction was allowed to proceed for 15 min before a
two-fold dilution with mQH,O and analysis by UHPLC-ESI-Q-TOF-MS.

The thioesterase activity assay of standalone IvoA-C was performed in ammonium acetate buffer (20 mM, pH =
6.9). Typically, S mM synthetic substrate (5% DMSO) was incubated with SO uM enzyme. The reaction was analyzed by
HPLC. Boiled enzyme was used as control to measure the background nonenzymatic hydrolysis.

Theloaded IvoA-AC(E’) was prepared enzymatically by incubating Aolo-enzyme with respective substrate (1 mM)
in the presence of excess ATP (5 mM) and MgCl, (10 mM) in storage buffer for 2 min. The reaction was quenched by
desalting the enzyme through Zeba™ Spin Desalting Column, which is equilibrated in the ammonium acetate buffer (20

mM, pH = 6.9). The desalted enzyme was immediately mixed with IvoA-C (50 uM), or boiled enzyme, or chemical
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hydrolysis (1 M KOH). The hydrolysis reaction was quenched after 1 min by mixing with 2 volume of acetonitrile and
subjected to LC-MS analysis.

1.5. UHPLC-ESI-Q-TOF-MS Analysis of Intact Proteins

The1-/p-tryptophan loading reactions were analyzed on a Bruker MaXis II ESI-Q-TOF-MS connected to a Dionex
3000 RS UHPLC fitted with an ACE C4-300 RP column (100 x 2.1 mm, $ pm, 30 °C). The column was eluted with a linear
gradient of 5-100% MeCN containing 0.1% formic acid over 30 min. The mass spectrometer was operated in positive ion
mode with a scan range of 200-3000 1m/z. Source conditions were: end plate offset at —500 V; capillary at —4500 V; nebulizer
gas (N,) at 1.8 bar; dry gas (N) at 9.0 L min™" ; dry temperature at 200 °C. lon transfer conditions were: ion funnel RF at
400 Vpp; multiple RF at 200 Vpp; quadrupole low mass at 200 m/Z; collision energy at 8.0 eV; collision RF at 2000 Vpp;

transfer time at 110.0 ps; pre-pulse storage time at 10.0 ps.

1.6. Genetic manipulation

The S. cerevisiae hpa3A mutant strain derived from parent JHY686 strain was constructed by integration of a LEU2
marker to the Apa3loci through homologous recombination. The correct integration was selected by colony-PCR. The
resulting strain JHY686-YH (MATa Iys2A0 his3A1 leu2AO ura3A0 pep#A SALI* HAPI' CATS(91M) MIPI(661T)
MKTI(30G) RMEI (INS-308A) TAO3 (1493Q) prbIA::ADH2p-npgA-ACSIt hpa3A:: LEU2) was used to transform

plasmid overexpressing IvoA protein.

1.6 Synthesis of p-Trp-SNAC

o / o o o)
o n DIPEA, DCM /\/n TFA/H,0/TIPS H
—_— _— . N
“ —Boc L g \ﬂ/ rt., 2 hrs | H S \n/ [ ; s\ \n/
N-— o) HN HN o

~

NH _
N H Boc HN + 2 CF,C00 °

Ny-Boc-D-tryptophan- N-hydroxy-succinimide ester (0.2 g, 0.5 mmol) was dissolved in anhydrous dichloromethane (10
mL) at room temperature, and to this solution was added N-acetylcysteamine (0.07 g, 0.6 mmol) and diisopropylethylamine
(DIPEA, 0.12 g, 1 mmol). This was stirred at room temperature for 2 hrs and washed with saturated ammonium chloride.
The organic layer was dried over sodium sulfate and removed by rotavap. The residue was subjected to silica flash
chromatography. The resulting white solid product was dissolved in 2 mL of cocktail of 90% trifluoroacetic acid (TFA)/5%
water/5% triisopropylsilane (TIPS) and stirred for 8 hrs. The solvents were evaporated to give a crude oil, which was taken
up in minimal volume of dichloromethane and precipitated with diethyl ether. The resulting solid was further washed with

diethyl ether to afford the final product in 80% yield. 'H-NMR (ds-DMSO, 500 MHz): & 11.12 (s, 1H), 8.56 (s, 3H), 8.06
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(t, 1H, J=S5.3Hz),7.55(d, 1H, /="7.7 Hz), 7.38 (d, 1H, /= 8.1 Hz), 7.25 (d, 1H, /= 2.5 Hz), 7.10 (ddd, 1H, /= 8.2,7.0, 1.2
Hz), 7.02 (ddd, 1H, /= 8.0, 7.0, 1.1 Hz), 4.45 (t, 1H, /= 6.6 Hz), 3.27 (m, 2H), 3.15 (q, 2H, /= 6.6 Hz), 2.96 (td, 2H, /=
6.8,3.0 Hz), 1.79 (s, 3H).*C-NMR (ds-DMSO, 125 MHz): § 196.5, 169.4, 136.3, 127.0, 125.2,121.3, 118.7, 118.1, 111.7,
106.2, 59.0,37.8,28.4,27.6, 22.6. HRMS ESI m/z calculated for C;sH,0N;0,S* [M+H]* 306.1271, found 306.1258.

1.7 Synthesis of L-Trp-SNAC

o_ o o] o
(o} n DIPEA, DCM /\/n TFA/H,O/TIPS H
AN —_— - N
Boc + HS \n/ Tt 2hrs i ) ’ N\ \n/
N— o) HN HN o

A\ “Boc HN WHs CF,C00 °

The synthesis of L-Trp-SNAC is essentially the same as D-Trp-SNAC, except NVy-Boc-L-tyrptophan- N-hydroxy-succinimide
ester was used. "H-NMR (ds-DMSO, 500 MHz): 5 11.14 (s, 1H), 8.61 (s, 3H), 8.06 (t, 1H, /= 6.2 Hz), 7.55 (d, 1H, /= 8.0
Hz),7.38 (d, 1H, /= 8.1 Hz),7.25 (s, 1H), 7.10 (t, 1H, /= 7.5 Hz), 7.02 (t, 1H, /="7.5,7.0, 1.1 Hz), 4.44 (t, 1H, /= 4.7 Hz),
3.28 (m,2H), 3.14 (m, 2H), 2.96 (td, 6.7,2.7,2H), 1.80 (s, 3H). *C-NMR (ds-DMSO, 125 MHz): § 196.5, 169.5, 136.3,
127.0, 1252, 121.3, 118.7, 118.1, 111.7, 106.2, 59.0, 37.8, 28.4, 27.6, 22.6. HRMS ESI m/z calculated for C;sH,0N;0,S*
[M+H]* 306.1271, found 306.1264.

1.8 Synthesis of D-Trp-pant

o

o, o o
o _DIPEA, DCM H TFAIHZOITIPS
+ Hs/\/N
Boc rt 2 hrs
N’ NH 0

N\
N
H

3 CF;€00~

Ny-Boc-D-tryptophan- N-hydroxy-succinimide ester (0.1 g, 0.25 mmol) was dissolved in anhydrous dichloromethane (5
mL) at room temperature, and to this solution was added dimethyl ketal protected pantetheine prepared (80 mg, 0.25
mmol)® and DIPEA, 0.06 g, 0.5 mmol). This was stirred at room temperature for 2 hrs and washed with saturated
ammonium chloride. The organic layer was dried over sodium sulfate and removed by rotavap. The residue was subjected
to silica flash chromatography. The resulting white-yellow solid was dissolved in S mL of cocktail of 75% trifluoroacetic acid
(TFA)/20% water/5% triisopropylsilane (TIPS) and stirred for 24 hrs. The solvents were evaporated to give a crude oil,
which was taken up in minimal volume of dichloromethane and precipitated with diethyl ether. The resulting solid was
further washed with diethyl ether to afford the final product in total 60% yield. 'H-NMR (ds-DMSO, S00 MHz): 8 11.11 (s,
1H), 8.53 (s, 3H), 8.10 (t, 1H, /= 5.7 Hz), 7.72 (t, 1H, /= 6.1 Hz), 7.55 (d, 1H, /= 7.9 Hz), 7.38 (d, 1H, /= 8.1 Hz), 7.25
(d, 1H, /J=2.4Hz),7.10 (t, 1H, /= 7.5 Hz), 7.02 (t, 1H, /= 7.4 Hz), 4.45 (t, 1H, J= 6.7 Hz), 3.70 (s, 1H), 3.31 (m, overlap,
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1H), 3.30 (m, overlap, 1H), 3.29 (m, 2H), 3.26 (m, 2H), 3.22 (m, overlap, 1H), 3.18 (m, overlap, 1H), 3.16 (m, 2H), 2.96
(m, 2H), 2.26 (t, 1H, /= 8.6 Hz), 0.80 (s, 3H), 0.78 (s, 3H)."*C-NMR (ds-DMSO, 125 MHz): 5 196.5, 172.9,170.7, 136.3,
126.9,125.2,121.3,118.7,118.1, 111.6, 106.1, 75.0, 68.0, 59.0, 39.1, 37.7, 35.2, £35.1, 34.8, 28.3,21.0, 20.3 HRMS ESI m/z
calculated for C»,H33N,OsS* [M+H]* 465.2166, found 465.2193.
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2. Tables

Table S1. Oligomers used in this study

Name Sequence (5°-3")

ivoA-FL-F1 ATATGGCTAGCCATCACCATCACCATCACCATCACACTGCCTCACCCAT
CATCCAGCCAG

ivoA-FL-R1 CTTTGAGACAAATGGCATTCTGGTTGACCAGAGATCGGACTTC

ivoA-FL-F2 CGATCTCTGGTCAACCAGAATGCCATTTGTCTCAAAGTACTCTACAATG
CC

ivoA-FL-R2 GATAATGAAAACTATAAATCGTGAAGGCATTCAAATGATTTCACACACCA
TGCGCTCAAC

ivoA-AC-R CTTGATAATGAAAACTATAAATCGTGAAGGCATTTACGACGATAACTTCG
CGCTGAGATC

ivoA-S785A-F GTAACGGCGGTGACGCAATAATGGCCATGGAGGC

ivoA-S785A-R GCCTCCATGGCCATTATTGCGTCACCGCCGTTAC

ivoA-H963A-F CTCTGTGTTCACGCCTTGGTCGTCGACTTC

ivoA-H963A-R GAAGTCGACGACCAAGGCGTGAACACAGAG

ivoA-H1428A-F GCGAATTGGAATTTAGTGCTACCATTATAGACGCTG

ivoA-H1428A-R CAGCGTCTATAATGGTAGCACTAAATTCCAATTCGC

ivoA-T-F GAAAACCTGTACTTCCAATCCAATTCAGATCCATCAGACAGCATGGTAG
CG

ivoA-T-R TTCGGATCCGTTATCCACTTCCAATTTAGGCTGAAGTTTTGGTTGCCAT
TTCGCCAATC

ivoA-C-F ACCTGTACTTCCAATCCAATGGTGTTTGCATTGAGCGCGATGTC

ivoA-C-R ATCCGTTATCCACTTCCAATTCAAATGATTTCACACACCATGCGCTCAAC

Hpa3KO-F1 CACCTTTTGCAAGCACGAAGAACGTAGGCTCGAGGAGAACTTCTAGTAT
ATCTACATACC

Hpa3KO-R1 AGTTATCTCTATACACAGTAGTCTACATTACACAGCGGTTTCGACTACG
TCGTTAAGGCC

Hpa3KO-F2 GATGAGTGCAGACTAATGAAAAAGACCCCAGACCCATCTCCACCTTTTG
CAAGCACGAAG

Hpa3KO-R2 CTTCGCAAGTGAGCCTATAGAAGCTAGAGTTATCTCTATACACAGTAGT

Hpa3KO-checkF
Hpa3KO-checkR

CTACATTACAC
CCAATCCGGTTATTAAATCGTTATCAGGCGGAAACCTTC
CTTGCGATTAAATCGGAGAACAAACTATGAAAAGCCAATAAGAAAC
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Table S2. Chiral HPLC retention time for substituted tryptophan analogues.

O
OH
NH,
7N
R D-isomer tr (min) L-isomer tg (min)

H 14.9 24.9

5-OMe 16.9 25.1

5-CN 19.5 33.2
5-NO, 46.2 108.8

4-F 31.2 47.8

S-F 229 38.7
6-F 22.1 32.2
5-Cl 76.0 169.3
6-Cl 72.5 105.6
S-Br 140.2 345.4
6-Br 110.1 168.2
7-Br 74.5 102.4
2-Me 20.8 26.2
4-Me 38.2 57.9
5-Me 39.2 58.3
6-Me 37.8 54.5

7-Me 36.0 53.1




Table S3. Detailed figure captions for all figures in the main text.

Figure Figure Caption

Figure 1 Diverse functions of single-module NRPS and NRPS-like enzymes. (A) Characterized examples. TqaB
activates 2-aminoisobutyrate (AIB) and its C domain catalyzes enantioselective annulation of AIB to the
indole ring of oxyfumiquinazoline F. TdiA activates indoel pyruvic acid (IPA) and its TE domain catalyzes
head-to-tail dual Claisen condensation reactions. HglA activates L-tyrosine and its R domain catalyzes
reduction to yield tyrosyl aldehydes which further dimerize into 2,5-dihydropyrazine (B) IvoA studied in
this work. IvoA was proposed to acetylate L-tryptophan. The P450 IvoC was proposed to install the hydroxy
group at 6-postion of N-acetyl-L-tryptophan. The laccase IvoB was proposed to further oxidize N-acetyl-6-
hydroxy-L-tryptophan for pigment formation. In this study, we demonstrate that IvoA does not catalyze
acetylation. Instead, IvoA catalyzes ATP-dependent stereoinversion of L-tryptophan.

Characterization of IvoA activity. (A) Stereochemistry determination for isolated N-acetyl-D-tryptophan.
The enantiomers were separated by usinga CHIRALPAK® IA-3 (150 x 4.6 mm, 3 um) at room temperature.
The mobile phase was 80/20/0.1/0.1 hexanes/ethanol/TFA/DEA and the flow-rate was 1.0 mL/min. (B)
Mass spectrometry shows the mass shift of tryptophan when the assay was performed in D20. C) '"H-NMR

Figure 2

spectra indicate incorporation of deuterium at the o position: 1) the change of splitting pattern of the
diastereotopic 3 proton signal due to smaller coupling constant (*Jip)); 2) the disappearance of o proton
signal, which is complicated by the overlapping methylene proton from emerging AMP product . D) Chiral
HPLC resolution of tryptophan enantiomers from IvoA reaction demonstrated complete stereoinversion of
L-tryptophan to D-tryptophan.

Working model of IvoA. IvoA can adenylate both L-tryptophan and D-tryptophan albeit the former is the
preferred substrate. The activated tryptophan is tethered to the phosphopantetheine (Ppant) arm from T
domain, which then delivers the corresponding tryptophanyl-S-Ppant thioester to E domain for
epimerization to establish a mixture of DL-tryptophanyl-S-Ppant thioesters. C domain stereoselectively
hydrolyzes D-tryptophanyl-S-Ppant thioester to release D-tryptophan.

Characterization of IvoA-C activity in vitro by LC-MS. Enzymatically loaded Dp/L-tryptophanyl-S-IvoA-

Figure 3

Figure 4
AC(E®) was mixed with standalone C domain at pH 6.9. The reaction was quenched after 1 min and the

release free tryptophan amino acids were quantified by LC-MS. Boiled and mutant enzymes are used as
negative control. Chemical hydrolysis by KOH is used as positive control.
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Fig. S1. SDS-PAGE analysis of purified IvoA proteins.
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Fig. S2. Hydroxylamine-based colorimetric assay for studying substrate specificity of IvoA A domain.

The reaction condition is 2 uM of IvoA-T° + 3 mM of ATP + 0.1 mM of carboxylic acid substrate + 15 mM hydroxylamine
+ 15 mM MgCL in Tris buffer (pH 8.0). The reaction is quenched after 3 hrs by addition of equivalent volume (150 L) of
stopping solution [10% (w/v) FeCleH,O and 3.3% (w/v) trichloroacetic acid dissolved in 0.7 M HCl]. The precipitated
enzyme was removed by centrifugation and the supernatant was measured for its absorbance at 540 nm.
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Fig. §3. In vitro characterization of IvoA acetyltransferase activity by HPLC.
The reaction condition is 100 uM of IvoA + 2 mM of ATP + 1 mM of L-tryptophan + 1 mM of AcCoA + S mM MgCl, in

phosphate buffer (pH 7.5). Each trace represents: i) M-acetyltryptophan standard; ii) 30 min reaction; iii) 24 hrs reaction;
iv) 24hrs reaction using boiled enzyme.
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Fig. S4. Apparent steady-state kinetics of IvoA catalyzed stereoinversion.
Substrate inhibition was observed with WT enzyme. The kinetic constants were shown in the main text. For WT, 1 yM

enzyme was used in each assay and the reaction was quenched after 2 min. For E’ mutant, 10 uM enzyme was used in each
assay and the reaction was quenched after 60 min. For C° mutant, 50 uM enzyme was used in each assay and the reaction

was quenched after 60 min.
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Fig. S5. Gene-knockout of Apa3in yeast.
Replacement of Apa3 gene by LEU2 marker. Successful gene replacement will cause size change of PCR fragments. The
integration was confirmed by colony PCR.
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Fig. S6. Characterization of IvoA activity in vivo.

A) HPLC analysis of extracellular metabolites extracted from the culture medium. Excess L-tryptophan fed to the culture
was converted to tryptophol (denoted by *) B) HPLC analysis of intracellular metabolites extracted from the yeast cell
pellets.
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Fig. §7. Chiral- HPLC analysis of the purlﬁed tryptophan from yeast cells.

Note that D-enantiomer is eluted earlier than L-enantiomer. The analysis was performed by using a Crownpak® CR(+)
column (150 mm x4 mm x 3.5 pm, Daicel) at room temperature. The mobile phase was aq. HC1O4 1% (w/v)
supplemented with 15% (v/v) MeOH and the flow rate was 1.0 ml/min.
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Fig. $8. In vitro hydrogen-deuterium exchange assay of IvoA with p-tryptophan.
A) Mass-spectrometry analysis shows the +1 Da mass shift of tryptophan in D,O. B)'H-NMR spectra indicate hydrogen-

deuterium exchange took place at the o position. The observation is similar to that with L-tryptophan, which indicates that
epimerization also occurs with b-tryptophan as substrate.
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Fig. §9. Complementation of IvoA mutant with standalone IvoA-C.
Assay was performed by using 20 uM enzyme and 1 mM substrates. The impaired catalytic activity of C domain mutant or
truncation variant can be complemented by adding standalone C domain in trans.
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Fig. $10. In vitro assay of IvoA-C with synthetic thioester substrates.

Synthetic thioester substrates (DL-tryptophan-S-N-acetylcysteamine, DL-Trp-SNAC; D-tryptophan-S-pantatheine, D-Trp-
pant) were incubated with standalone IvoA C domain at pH 6.9. Enzymes were boiled to measure the nonenzymatic
hydrolysis. Free tryptophan and tryptophanyl thioesters were separated by HPLC. The enzyme catalyzed hydrolysis rate is
not significantly different from noncatalyzed reaction, which indicates that these synthetic thioesters are not good
substrate for IvoA-C.
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Fig. S11. Loading of D/L-tryptophan to IvoAAC monitored by intact protein mass spectrometry.

Intact mass spectra of Aolo-IvoAAC (top), and following incubation with MgCl,, ATP and L-/D-tryptophan (middle and
bottom). Loading reaction conducted with L- and D-tryptophan resulted in a +186 Da mass shift to the intact the intact Ao/o-
IvoAAC protein.
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Fig. S12. Adenylation assay of IvoA A domain with substltuted tryptophan amino acids.
The reaction was performed similarly according to the assay described in the caption of Fig. S2.
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Fig. S13. Genomic context analysis of /voA homologues found in other fungi.
Numbers below open reading frame indicate the amino acid sequence identity of IvoA and IvoC homologues to A.

nidulans proteins. Abbreviations to follow: ZnF, zinc-finger protein; MFS, major-facilitator superfamily; HP, hypothetical
protein; IDO, indoleamine 2,3-dioxygenase; ATR, NRPS-like carboxylic acid reductase harboring domain architecture as

A-T-R; Trp-DMAT, dimethylallyl tryptophan synthase-like protein; KFA, kynurenine formyl amidohydrolase.
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Fig. §29. Representative chiral HPLC traces (partI).
In each figure, the upper pannel shows the unreacted substrate, the bottom pannel shows the rection mixture after the
stereoinversion. Note that the D-isomer is always eluted earlier than L-isomer.
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Fig. §30. Representative chiral HPLC traces (part II).

In each figure, the upper pannel shows the unreacted substrate, the bottom pannel shows the rection mixture after the
stereoinversion. Note that the D-isomer is always eluted earlier than L-isomer.
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Fig. S31. Representative chiral HPLC traces (part III).
In each figure, the upper pannel shows the unreacted substrate, the bottom pannel shows the rection mixture after the
stereoinversion. Note that the D-isomer is always eluted earlier than L-isomer.
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