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Table S1. LJ and point charges parameters applied in the current work. 

 

Atom type ε / kJ.mol-1 σ / nm q / e Reference 

Cl- 0.0489528 0.516450 -1.0000 [1] 

Na+ 0.7045856 0.225890  1.0000 [1] 

OW 0.6809460 0.316435 -1.04844 [2] 

HW 0.0000000 0.000000  0.52422 [2] 

C (sp2) 0.3594056 0.339970  0.0000 [3] 

CCOH 0.2941352 0.355000  0.2000 [4] 

HCOH 0.0000000 0.000000  0.4400 [4] 

OCOH 0.6485200 0.307000 -0.6400 [4] 

CCH 0.1924640 0.298500 -0.1150 [5] 

HCH 0.1259384 0.242000  0.1150 [5] 

CC2N 0.3598240 0.339967  0.2400 [6] 

NC2N 0.7112800 0.325000    -0.4800 [6] 
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Figure S1. Selected H- and OH-passivated GNMs alongside pristine (P-C2N) and highly strained 

C2N (S-C2N) in the current work.  
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Figure S2. Electrostatic potential map (ESP) isosurfaces (isovalue of 0.0004 e/Å3) of 10-H 

nanosheet achieved at the B3LYP/6-31G(d,p) theoretical level, from three point of views. 

 

 

 

Figure S3. Electrostatic potential map (ESP) isosurfaces (isovalue of 0.0004 e/Å3) of 12-H 

nanosheet achieved at the B3LYP/6-31G(d,p) theoretical level, from three point of views. 
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Figure S4. Electrostatic potential map (ESP) isosurfaces (isovalue of 0.0004 e/Å3) of 5,5-H,OH 

nanosheet achieved at the B3LYP/6-31G(d,p) theoretical level, from three point of views. 

 

 

 

Figure S5. Electrostatic potential map (ESP) isosurfaces (isovalue of 0.0004 e/Å3) of 6,6-H,OH 

nanosheet achieved at the B3LYP/6-31G(d,p) theoretical level, from three point of views. 
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Figure S6. Electrostatic potential map (ESP) isosurfaces (isovalue of 0.0004 e/Å3) of P-C2N 

nanosheet achieved at the B3LYP/6-31G(d,p) theoretical level, from three point of views. 

 

 

 

Figure S7. Electrostatic potential map (ESP) isosurfaces (isovalue of 0.0004 e/Å3) of S-C2N 

nanosheet achieved at the B3LYP/6-31G(d,p) theoretical level, from three point of views. 
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Figure S8. Top-, oblique- and side views of a water molecule passing through 10-H membrane 

via (a) mechanism I, (b) mechanism II, (c) mechanism III. The red, white, and gray spheres show 

O, H, and C atoms, respectively. 
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Figure S9. Top-, oblique- and side views of a water molecule passing through 5,5-H,OH 

membrane via (a) mechanism I, (b) mechanism II, (c) mechanism III. The red, white, and gray 

spheres show O, H, and C atoms, respectively. 
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Figure S10. Top-, oblique- and side views of a water molecule passing through 12-H membrane 

via (a) mechanism I, (b) mechanism II, (c) mechanism III. The red, white, and gray spheres show 

O, H, and C atoms, respectively. 
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Figure S11. Top-, oblique- and side views of a water molecule passing through 6,6-H,OH 

membrane via (a) mechanism I, (b) mechanism II, (c) mechanism III. The red, white, and gray 

spheres show O, H, and C atoms, respectively. 
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Figure S12. Top-, oblique- and side views of a water molecule passing through P-C2N-I membrane 

via (a) mechanism I, (b) mechanism II, (c) mechanism III. The blue, red, white, and gray spheres 

show N, O, H, and C atoms, respectively. 
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Figure S13. Top-, oblique- and side views of a water molecule passing through P-C2N-II 

membrane via (a) mechanism I, (b) mechanism II, (c) mechanism III. The blue, red, white, and 

gray spheres show N, O, H, and C atoms, respectively. 
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Figure S14. Top-, oblique- and side views of a water molecule passing through S-C2N membrane 

via (a) mechanism I, (b) mechanism II, (c) mechanism III. The blue, red, white, and gray spheres 

show N, O, H, and C atoms, respectively. 
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Figure S15. Top-, oblique- and side views of a water molecule passing through S-C2N-II 

membrane via (a) mechanism I, (b) mechanism II, (c) mechanism III. The blue, red, white, and 

gray spheres show N, O, H, and C atoms, respectively. 
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Figure S16. Interaction energies of Na+ (a) and Cl- ions (b) diffusing across target nanofilters 

obtained at the B3LYP/6-31G(d,p) level of theory. 
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Figure S17. Electrostatic potential map (ESP) isosurfaces (isovalue of 0.004 e/Å3) for Na+ and Cl- 

ions penetrating across chosen nanofilters obtained at the B3LYP/6-31G(d,p) level of theory. 
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Figure S18. Ion rejection at pressures of 40, 60, 80 and 100 MPa for the selected nanosheets in 

the present work. Actually, (1-Np/Nf)×100 formula was used to calculate Na+ and Cl- rejection 

percentage, where Np and Nf are the number of Na+ or Cl− in the permeate side at t = 10 ns and in 

the feed side at t = 0, respectively. 
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Figure S19. Side view of 10-H membrane at 100 MPa. The cyan and white spheres show C and 

H atoms, respectively. 

 

 

Figure S20. Side view of 5,5-H,OH membrane at 100 MPa. The cyan, red, and white spheres show 

C, O and H atoms, respectively. 

 



S19 

 

 

 

 

Figure S21. Side view of S-C2N membrane at 100 MPa. The cyan and blue spheres show C and 

N atoms, respectively. 

 

 

Figure S22. Side view of 12-H membrane at 100 MPa. The cyan and white spheres show C and 

H atoms, respectively. 
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Figure S23. Side view of 6,6-H,OH membrane at 100 MPa. The cyan, red, and white spheres show 

C, O and H atoms, respectively. 
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Figure S24. A snapshot of chosen nanopores at 100 MPa show the deformation at the their edge. 

The blue, cyan, red, and white spheres show N, C, O and H atoms, respectively. 
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