Supporting Information

1-Methyl-1,4-cyclohexadiene as a traceless reducing agent for the synthesis of catechols and hydroquinones

Andrea Baschieri, *, a Riccardo Amorati, *, a Luca Valgimigli ${ }^{a}$ and Letizia Sambri ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via S. Giacomo 11, 40126
Bologna, Italy. E-mail: andrea.baschieri2@unibo.it (A.B.); riccardo.amorati@unibo.it (R.A.)
${ }^{\text {b }}$ Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.

Index

Representative results of the screening of solvents. (Table S1)
Page 2
Representative results of the screening of MeCHD equivalents. (Table S2) ıge 2

MeCHD conversion to toluene in absence or presence of quinone 1a (Table S3)
Page 3
Conversion of para-quinone 3a in the presence of ortho-quinone 1a (Table S4)
Page 3
Oxygen effect on the reduction reaction of $\mathbf{1 a}$ and $\mathbf{3 a}$ (Table S5)
Page 3
MeCHD conversion to toluene in absence of quinone 1a. (Figure S1)
Page 4
MeCHD conversion to toluene in presence of quinone 1a. (Figure S2)
Page 5
Conversion of compound $\mathbf{1 a}$ to catechol 2a in a NMR tube after 24 h . (Figure S3)
Page 6
Conversion of compound $\mathbf{3 a}(6.46 \mathrm{ppm})$ to hydroquinone $\mathbf{4 a}(6.57 \mathrm{ppm})$ in the presence of 10% of $\mathbf{1 a}(6.86-6.75 \mathrm{ppm})$. (Figure S4)

Conversion of compound $\mathbf{3 a}(6.48 \mathrm{ppm})$ to hydroquinone $\mathbf{4 a}(6.58 \mathrm{ppm})$ in the presence of 50% of $\mathbf{1 a}(6.88-6.75 \mathrm{ppm})$. (Figure S5)

Results from theoretical calculations (cartesian coordinates and computed energies)
Page 7

NMR spectra of compounds $\mathbf{2 a}-\mathbf{f}, \mathbf{4 a - l}$ and $\mathbf{4 C o Q}_{\mathbf{0}}$ (Figure S6-S28)

Page 8
Page 25

Table S1: Representative results of the screening of solvents. ${ }^{[a]}$

Entry	Solvent	4a Conv. ${ }^{[\mathrm{b}]}[\%]$
1	Tetrahydrofuran	0
2	Acetonitrile	5
3	Dichloromethane	98
4	Methanol	1
5	Dimethyl sulfoxide	0
6	Hexane	92
7	Cyclohexane	94
8	Toluene	>99

${ }^{[a]}$ Reaction conditions: 1a (0.09 mmol), 1-methyl-1,4-cyclohexadiene (3.6 mmol), trifluoroacetic acid (3.6 mmol), solvent (1.0 mL), $30{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{[\mathrm{b}]}$ Conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Table S2: Representative results of the screening of MeCHD equivalents on product conversion. ${ }^{[a]}$

Entry	MeCHD (equiv)	4a Conv. ${ }^{[b]}[\%]$
1	0	0
2	2	20
3	5	40
4	10	52
5	20	85
6	30	>99
7	40	>99

${ }^{[a]}$ Reaction conditions: $1 \mathbf{1 a}(0.09 \mathrm{mmol})$, trifluoroacetic acid (3.6 mmol), solvent $(1.0 \mathrm{~mL}), 3{ }^{\circ} \mathrm{C}, 24$ h. ${ }^{[b]}$ Conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Table S3: MeCHD conversion to toluene in absence or presence of quinone 1a. ${ }^{[a]}$

Entry	Time (h)	1a	2a Conv. ${ }^{[b]}[\%]$	Toluene:MeCHD ${ }^{[\mathrm{c}]}[\%]$
1	0	no	$/$	2.47
2	1	no	$/$	2.29
3	2.5	no	$/$	2.50
4	5.5	no	$/$	2.64
5	7	no	$/$	2.81
6	24	no	$/$	3.03
7	0	yes	0	2.83
8	1	yes	42	4.33
9	2.5	yes	78	5.42
10	5.5	yes	100	6.03
11	7	yes	100	5.65
12	24	yes	100	6.53

${ }^{[a]}$ Reaction conditions: Experiment performed in a NMR tube: 1a (0.045 mmol), $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$, MeCHD (1.35 mmol), $30^{\circ} \mathrm{C}$. ${ }^{[b]}$ Conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, ${ }^{[\mathrm{cc}]}{ }^{1} \mathrm{H}$ NMR signal: 2.38 ppm for Toluene, 1.70 ppm for MeCHD.

Table S4: Conversion of the para-quinone 3a to the hydroquinone $\mathbf{4 a}$ in the presence of the orthoquinone 1a. ${ }^{[a]}$

Entry	MeCHD (equiv)	1a:3a	2a Conv. ${ }^{[\mathrm{b}]}[\%]$	4a Conv. ${ }^{[\mathrm{b}]}[\%]$
1	30	$0: 100$	$/$	<0.5
2	30	$10: 90$	>99	<1
3	30	$50: 50$	>99	4.5
4	0	$50: 50$	<0.5	<0.5
$5[\mathrm{cc}]$	0	$50: 50$	>99	<0.5

${ }^{[a]}$ Reaction conditions: 1a $+\mathbf{3 a}(0.18 \mathrm{mmol})$, Toluene $(2.0 \mathrm{~mL}), 30{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{[b]}$ Conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, ${ }^{[\mathrm{c}]} \mathbf{2 a}$ was used instead of $\mathbf{1 a}$.

Table S5: Oxygen effect on the reduction reaction of 1a and 3a. ${ }^{[a]}$

1a Toluene, $30^{\circ} \mathrm{C}$
2a

4a

Entry	Comp.	Prod.	t $[\mathrm{~h}]$	TFA [equiv] $]$	Conv. ${ }^{[\mathrm{b}]}$ $[\%]$
	1a	$\mathbf{2 a}$	1	$/$	55
2	1a	2a	1	$/$	$71^{[\mathrm{c}]}$
3	$\mathbf{3 a}$	$\mathbf{4 a}$	5	40	45
4	3a	4a	5	40	$62^{[\mathrm{c}]}$

${ }^{[a]}$ Reaction conditions: 1a or $\mathbf{3 a}(0.18 \mathrm{mmol})$, 1-methyl-1,4-cyclohexadiene (5.4 mmol), toluene (2.0 mL), $30{ }^{\circ} \mathrm{C} .{ }^{[b]}$ Conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, ${ }^{[c]}$ Experiment performed under nitrogen atmosphere.

Figure S1. MeCHD conversion to toluene in absence of quinone 1a.

Figure S2. MeCHD conversion to toluene in presence of quinone 1a.

Figure S3. Conversion of compound 1a to catechol 2a in a NMR tube after 24 h . Experiment performed in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent.

Figure S4. Conversion of compound $\mathbf{3 a}(6.46 \mathrm{ppm})$ to hydroquinone $\mathbf{4 a}(6.57 \mathrm{ppm})$ in the presence of 10% of $\mathbf{1 a}(6.86-6.75 \mathrm{ppm})$.

Figure S5. Conversion of compound $\mathbf{3 a}(6.48 \mathrm{ppm})$ to hydroquinone $\mathbf{4 a}(6.58 \mathrm{ppm})$ in the presence of 50% of $\mathbf{1 a}(6.88-6.75 \mathrm{ppm})$.

Calculation results

MeCHD

CBS-QB3 Enthalpy= -272.164977 CBS-QB3 Free Energy= -272.203348
No imaginary frequencies
C,0,-0.0787811878,-0.1034861486,-0
.0869357301\C,0,-0.0063476486,-0.0996329964,1.4156458034\C,0,1.1244187
133,-0.008416848,2.1180414246\C,0,2.4722387743,0.1023808941,1.44301784
$77 \backslash \mathrm{C}, 0,2.4060505779,0.0991201444,-0.059412642 \backslash \mathrm{C}, 0,1.2687917812,0.00735$
09239,-0.7431904888\H,0,-0.9527207987,-0.177520367,1.946139765\C,0,1.1
429134471,-0.0089634765,3.6229323731\H,0,2.9799877723,1.0153349738,1.7
$910398294 \backslash \mathrm{H}, 0,3.3503316389,0.1768935316,-0.5916762037 \backslash \mathrm{H}, 0,1.2905815645$
,0.0106882465,-1.8295570985\H,0,-0.5860846852,-1.0166256926,-0.4335352
$926 \backslash \mathrm{H}, 0,-0.7274677817,0.7162783117,-0.4311740461 \backslash \mathrm{H}, 0,3.1211872618,-0.7$
172893946,1.7885891941\H,0,1.7417079374,-0.842553157,4.0093427103\H,0, $1.5986789371,0.9096557946,4.0117265248 \backslash \mathrm{H}, 0,0.1367698011,-0.0916527348$, 4.0387737128

MeCHD alkyl radical
(most stable isomer)

CBS-QB3 Enthalpy= -271.549665 CBS-QB3 Free Energy $=-271.588237$
(More stable of $1.23 \mathrm{kcal} / \mathrm{mol}$ than the isomer on C 6)
No imaginary frequencies
C,0,-0.0046266383,0.0000025732,0.0515359345
\C,0,0.0860672715,0.0000754893,1.4647901112\C,0,1.3575553274,-0.000024
$7762,2.0890826192 \backslash \mathrm{C}, 0,2.5227396356,-0.0001434669,1.3753942072 \backslash \mathrm{C}, 0,2.49$ 23356129,-0.0002157599,-0.1322979838\C,0,1.1141062368,-0.0001235438,-0 .726106327\C,0,3.8739575416,-0.0001879839,2.024533029\H,0,1.4064208173 ,0.0000273718,3.1746221411\H,0,3.066663178,0.8657233046,-0.5103970728 Н,0,1.0320187869,-0.0001688812,-1.8079254068\H,0,-0.9838283557,0.00004 $35382,-0.4168421167 \backslash \mathrm{H}, 0,-0.8121460019,0.0001563297,2.0694542785 \backslash \mathrm{H}, 0,3$. 0665045464,-0.8663056125,-0.5102938156\H,0,4.4591154673,-0.8787481071, $1.7231470544 \backslash H, 0,4.4591323923,0.8783900949,1.7232250611 \backslash \mathrm{H}, 0,3.79931563$ $14,-0.0002311139,3.1138140185$

Toluene

CBS-QB3 Enthalpy $=-271.013230$

CBS-QB3 Free Energy= -271.051271
No imaginary frequencies
C,0,0.0116868395,0.0151036436,0.0067474\C,0,
$0.0338945887,0.0109529665,1.40534287 \backslash \mathrm{C}, 0,1.238704321,-0.0024410963,2.1$
$042070711 \backslash \mathrm{C}, 0,2.448674194,-0.0098325615,1.4137427051 \backslash \mathrm{C}, 0,2.4416489389$, $-0.0024410963,0.0206458743 \backslash C, 0,1.2340099208,0.0109529665,-0.6733178602$ \H,0,-0.9036463588,0.0204962946,1.9526532351\H,0,1.232142791,-0.002952 $7708,3.1887678658 \backslash \mathrm{H}, 0,3.3875853037,-0.0169410219,1.955823287 \backslash \mathrm{H}, 0,3.377$ $6253741,-0.0029527708,-0.5273169748 \backslash \mathrm{H}, 0,1.239224127,0.0204962946,-1.75$ 89073203\C,0,-1.2958460554,-0.0024272324,-0.7481570689\H,0,-1.20437467 $44,0.4957132395,-1.7162711785 \backslash \mathrm{H}, 0,-1.6265280909,-1.0294400949,-0.93907$ 64312\H, $0,-2.0885217776,0.4957132395,-0.1848834744$

3,5-di-methylcatechol

$\begin{array}{lr}\text { CBS-QB3 Enthalpy }= & -460.541498 \\ \text { CBS-QB3 Free Energy }= & -460.589309\end{array}$
No imaginary frequencies
C, $0,0.0357424462,-0.0007135469,0$
$.0294106757 \backslash \mathrm{C}, 0,0.0000848981,-0.0240101374,1.4229008737 \backslash \mathrm{C}, 0,1.21664299$
$77,-0.0249595392,2.1168751133 \backslash \mathrm{C}, 0,2.4165577942,-0.0031618179,1.4219443$ $149 \backslash \mathrm{C}, 0,2.4347425336,0.0200850512,0.0217558578 \backslash \mathrm{C}, 0,1.2365255672,0.0215$ $105585,-0.690510451 \backslash \mathrm{O}, 0,3.6605279045,-0.0022473292,2.0177256861 \backslash \mathrm{O}, 0,3$. $6233290097,0.0414690829,-0.654110749 \backslash \mathrm{C}, 0,1.2696605153,0.046622788,-2.1$ $961593274 \backslash \mathrm{H}, 0,-0.8979304371,0.0003720112,-0.5240226318 \backslash \mathrm{C}, 0,-1.30893849$ 95,-0.0477278072,2.1762035349\H,0,1.2273464979,-0.0427976935,3.2039837 626\H,0,3.5638962958,-0.0189942545,2.9743536454\H,0,4.3312899358,0.036 $8218257,0.0024980877 \backslash \mathrm{H}, 0,0.2592652377,0.0449689714,-2.6085913725 \backslash \mathrm{H}, 0,1$.7927266818,0.9341789182,-2.5645293457\H,0,1.8073866102,-0.8194387459, $-2.59345892 \backslash \mathrm{H}, 0,-2.1574977544,-0.0434720409,1.489411885 \backslash \mathrm{H}, 0,-1.3947863$ 54,-0.9405089869,2.8041627735\H,0,-1.4097607291,0.8220026927,2.8335926 034

Phenoxyl radical from 3,5-di-methylcatechol (most stable isomer)

CBS-QB3 Enthalpy=
No imaginary frequencies
$\mathrm{C}, 0,0.0538210097,-0.052448066,0.020694$
$4563 \backslash \mathrm{C}, 0,0.0394835135,-0.0118546049,1.4454996965 \backslash \mathrm{C}, 0,1.2397188459,0.06$
$070454,2.1533254866 \backslash \mathrm{C}, 0,2.4353138713,0.0923562347,1.4543160451 \backslash \mathrm{C}, 0,2.4$
$760968851,0.051828271,-0.0073688345 \backslash \mathrm{C}, 0,1.2129373983,-0.0234209015,-0$.
$7143542369 \backslash \mathrm{O}, 0,3.6212534048,0.1613617298,2.0604752924 \backslash \mathrm{O}, 0,3.6018082898$
$, 0.084715193,-0.5589484708 \backslash \mathrm{C}, 0,1.2468786871,-0.0652839647,-2.212895231$
$4 \backslash \mathrm{H}, 0,-0.899013324,-0.1087833317,-0.4976807677 \backslash \mathrm{C}, 0,-1.2799536632,-0.04$
$82871869,2.1665149996 \backslash \mathrm{H}, 0,1.2524811487,0.0926048151,3.2364046091 \backslash \mathrm{H}, 0,4$
$26827428,0.1681373074,1.3236119087 \backslash \mathrm{H}, 0,0.2408552873,-0.1210685192,-2$.
$6318785395 \backslash \mathrm{H}, 0,1.7479245906,0.8207513756,-2.6137361051 \backslash \mathrm{H}, 0,1.823776382$
$3,-0.9262340712,-2.5632199959 \backslash \mathrm{H}, 0,-1.9107459942,0.7963526075,1.8696492$
$312 \backslash \mathrm{H}, 0,-1.834233088,-0.9603604504,1.9208570286 \backslash \mathrm{H}, 0,-1.1496107779,-0.0$
$110709776,3.2487847848$

3,5-di-methyl orthoquinone

CBS-QB3 Enthalpy $=$	-459.313646
CBS-QB3 Free Energy $=$	-459.359148

No imaginary frequencies
C,0,0.0837404273,-0.0506020499,0.01827677
92\C,0,0.0689041716,-0.0031520019,1.4876064743\C, $0,1.2190932724,0.0826$ 436149,2.1901863369\C,0,2.5184294117,0.131131807,1.5184591101\C,0,2.51 63979144,0.0789443271,-0.04305997\C,0,1.2024445623,-0.0146183386,-0.73 $32595615 \backslash \mathrm{O}, 0,3.5758472081,0.2084469521,2.1075775543 \backslash \mathrm{O}, 0,3.564333646,0$. $1150076883,-0.6487101389 \backslash \mathrm{C}, 0,1.2151286095,-0.062946311,-2.2309791128 \backslash \mathrm{H}$,0,-0.8824681598,-0.1191292393,-0.474948336\C,0,-1.2766356302,-0.05460 9376,2.1538689576\H,0,1.230871293,0.1190764368,3.273892165\H,0,0.20397 72733,-0.1310352507,-2.6352321197\H,0,1.7026423009,0.8262761448,-2.640 7073859\Н,0,1.797418664,-0.9189835732,-2.5836314608\H,0,-1.902858352,0 $.7809591358,1.8224526881 \backslash H, 0,-1.8066112978,-0.9738248697,1.8811897574 \backslash$ H,0,-1.1910734764,-0.0135850964,3.2397391219

2,5MeQH2

CBS-QB3 Enthalpy $=$	-460.539744
CBS-QB3 Free Energy $=$	-460.586115

No imaginary frequencies
С, $0,-0.0167869338,0.0000242878,0.01421647$
$63 \backslash C, 0,-0.0224297309,0.0000138424,1.4136457703 \backslash C, 0,1.2118909102,-0.000$ 0057473,2.0642486853\C,0,2.4149377868,-0.0000218601,1.3603284457\C,0,2 .4204562911,-0.000010177,-0.0387918967\C,0,1.1859246506,0.0000146992,$0.6895646918 \backslash \mathrm{C}, 0,-1.3258054415,0.0000203451,2.1678447156 \backslash \mathrm{O}, 0,3.6375765$ $238,-0.0000329792,1.990468449 \backslash \mathrm{O}, 0,-1.2397208551,0.0000389311,-0.615653$ 5187\H,0,1.2315150557,-0.0000031829,3.1514793297\C,0,3.7233426568,-0.0 000225882,-0.793173988\H,0,1.1668226538,0.0000227693,-1.7768292829\H,0 ,-1.1008488141,0.0000738325,-1.5676658302\H, 0,3.4985389648,-0.00018693 64,2.9424345386\H, $0,-1.928895973,0.8766978808,1.9136096736 \mathrm{H}, 0,-1.9287$ 928441,-0.8767886455,1.913809474\Н,0,-1.1552739069,0.0001486424,3.2460 964559\H,0,3.5524978853,-0.0000258559,-1.8715010245\H,0,4.3265271036,0 $.87683402,-0.5396446162 \backslash \mathrm{H}, 0,4.3265131046,-0.8768859795,-0.539635265$

Radical from 2,5-dimethyl-hydroquinone

CBS-QB3 Enthalpy $=\quad-459.913793$
CBS-QB3 Free Energy $=\quad-459.960006$
No imaginary frequencies
C,0,-0.0672217979,0.0000316699,-0.01104
$58063 \backslash \mathrm{C}, 0,-0.0260274209,0.0000119919,1.4526346272 \backslash \mathrm{C}, 0,1.1971669634,-0$.
$0000166954,2.0839574341 \backslash \mathrm{C}, 0,2.4002059716,-0.0000307986,1.3541919876 \backslash \mathrm{C}$, 0,2.415371561,-0.0000165795,-0.0678720668\C,0,1.2042488972,0.000012989 3,-0.7102106184\C,0,-1.3263112439,0.0000159136,2.1951365166\O,0,3.6075 $243592,-0.0000582623,1.9725161048 \backslash \mathrm{O}, 0,-1.1542833704,0.0000581839,-0.62$ $5824652 \backslash \mathrm{H}, 0,1.2468784996,-0.0000282866,3.1710142417 \backslash \mathrm{C}, 0,3.7323777667,-$ $0.0000330673,-0.7980520646 \backslash \mathrm{H}, 0,1.1494165843,0.0000253718,-1.7932073638$ \H,0,3.4830362819,-0.0000732097,2.928412326\H,0,-1.9249538338,0.872920 2058,1.9196506553\H,0,-1.9248727812,-0.872994841,1.9198032107\H,0,-1.1 736057746,0.0001098366,3.2760155213\H,0,3.572801059,-0.0000286224,-1.8 $768050302 \backslash \mathrm{H}, 0,4.329389412,0.8775668728,-0.5343052085 \backslash \mathrm{H}, 0,4.3293655753$, $-0.8776499609,-0.5343082356$

2,5-dimethyl-para benzoquinone

CBS-QB3 Enthalpy $=\quad-459.328177$
CBS-QB3 Free Energy= $\quad-459.373569$
No imaginary frequencies
C, $0,-0.0594448586,0.0000059266,-0.00564302$
54\C,0,-0.0239823974,0.0000208585,1.4943871112\C,0,1.1683244096,0.0000 178304,2.1127202737\C,0,2.4537125254,-0.0000061674,1.381924252\C, $0,2.4$ 182192156,-0.0000079059,-0.1180232195\C,0,1.2259210918,-0.0000039976,$0.7364474763 \backslash \mathrm{C}, 0,-1.3426754495,0.0000256135,2.2028462748 \backslash \mathrm{O}, 0,3.5169351$ 589,0.0000052115,1.9804793927\O,0,-1.1225923423,0.0000132214,-0.604130 1024\H,0,1.2576904895,0.0000296544,3.1942755578\C, $0,3.736896581,-0.000$ $0167052,-0.8265364789 \backslash \mathrm{H}, 0,1.1365703918,-0.0000100879,-1.8179958997 \backslash \mathrm{H}, 0$,-1.9326261606,0.8740291682,1.9134508383\H,0,-1.932559745,-0.874068405 1,1.9135826357\H,0,-1.2094153906,0.0001067837,3.2851777095\H,0,3.60354 $74182,-0.0000230691,-1.9088403367 \backslash \mathrm{H}, 0,4.3267903971,0.8740345188,-0.537$ $195107 \backslash \mathrm{H}, 0,4.3267845068,-0.8740680616,-0.537183786$

O-protonated 2,5-dimethyl-para benzoquinone
cbs-qb3 geom=check scrf=(solvent=toluene)

CBS-QB3 Enthalpy= -459.686027
CBS-QB3 Free Energy= -459.732043

C, $0,-0.0608438749,0.0000406645,-0.010664692 \backslash \mathrm{C}$,
$0,-0.03455444,0.0000159205,1.5047341727 \backslash \mathrm{C}, 0,1.1756051843,-0.0000044993$
,2.1166718542\C,0,2.3784644145,-0.0000215846,1.3481747801\C,0,2.420253
8016,-0.0000163338,-0.1129730139\C,0,1.2281847264,0.0000077291,-0.7428 $925661 \backslash C, 0,-1.3314610124,0.000012467,2.2184788841 \backslash \mathrm{O}, 0,3.5371150142,-0$. $0000486382,1.92963604 \backslash \mathrm{O}, 0,-1.1182847191,0.0000501673,-0.6021245158 \backslash \mathrm{H}, 0$,1.2613910705,-0.0000111026,3.1978200386\C,0,3.749151736,-0.0000384578 ,-0.8052414721\H,0,1.1516762109,0.0000116593,-1.8236887049\H,0,3.47935 90076,-0.0000545072,2.9012510287\H,0,-1.9220841675,0.8718036224,1.9180 835583\H,0,-1.9220300741,-0.8718395772,1.9181467991\H,0,-1.2015715827, $0.0000484102,3.2990411669 \backslash \mathrm{H}, 0,3.612067005,-0.0000314186,-1.8852190733 \backslash$ H,0,4.3340512601,0.8792889793,-0.5237628116\H,0,4.334017148,-0.8793907 886,-0.5237698937

2,5-dimethyl-para hydroquinone radical cation
cbs-qb3 geom=check scrf=(solvent=toluene)

CBS-QB3 Enthalpy $=-460.304174$
CBS-QB3 Free Energy= -460.350363

C, $0,-0.0108249071,0.0011574156,-0.041711635$
$4 \backslash C, 0,0.0002826507,0.017663445,1.370977061 \backslash C, 0,1.2300797442,0.00356429$
13,2.1256894309\C,0,2.4006956952,0.0012340417,1.4100698797\C,0,2.38958 $79401,0.0178192026,-0.0026167622 \backslash C, 0,1.1597897591,0.0036456155,-0.7573$ 306506\O,0,-1.1100857418,0.0442952752,2.0878473926\C,0,1.1829222501,-0 $.004305479,3.6201352089 \backslash \mathrm{O}, 0,3.499951754,0.0445947531,-0.7194879549 \backslash \mathrm{C}, 0$,1.2069485359,-0.0042387642,-2.2517756638\H,0,3.3534508191,-0.01658587 $57,1.9279483084 \backslash \mathrm{H}, 0,-0.9635798841,-0.0167163417,-0.5595884125 \backslash \mathrm{H}, 0,-1.9$ 045340427,0.0717775707,1.5333806269\Н,0,4.2944004764,0.0721281368,-0.1 $650240026 \backslash H, 0,0.6537872816,0.8772726807,3.9927521282 \backslash \mathrm{H}, 0,0.6324428875$, $-0.8763914268,3.9839650187 \backslash \mathrm{H}, 0,2.1861729762,-0.0183346431,4.042623131 \backslash$ $\mathrm{H}, 0,0.2036897012,-0.0175346333,-2.6742677072 \backslash \mathrm{H}, 0,1.7367853074,0.876891$ 7553,-2.6244227394\H,0,1.756737003,-0.8767876772,-2.6155696163

2,5MeQH2 (in toluene)
cbs-qb3 geom=check scrf=(solvent=toluene)

CBS-QB3 Enthalpy= -460.544148
CBS-QB3 Free Energy= -460.590657

C,0,0.0035608738,0.0102658609,-0.0082258884\C,0,-
$0.005135956,0.010424762,1.3858349108 \backslash C, 0,1.1957090876,0.0102340337,2.1$
054174335\C,0,2.3863118363,0.0102472847,1.3765896052\C, $0,2.3950083266$, $0.0104553172,-0.0174848957 \backslash \mathrm{C}, 0,1.1941779291,0.0102794146,-0.7370598397$ \O,0,-1.1725416845,0.0103661697,2.1134655544\C, $0,1.1820402182,0.009881$ $6509,3.611557352 \backslash \mathrm{O}, 0,3.5624294222,0.0103961133,-0.7450947742 \backslash \mathrm{C}, 0,1.207$ 8220507,0.0099414709,-2.2432012541 НН, 0,3.3316254948,0.0098161363,1.913 $4883363 \backslash \mathrm{H}, 0,-0.9417430202,0.0098806782,-0.5451412342 \backslash \mathrm{H}, 0,-1.9208440608$,0.0098592774,1.5075922211\H,0,4.3107200712,0.0101589502,-0.139207076\} Н, $0,0.6584408174,0.887261276,4.0030157994 \backslash \mathrm{H}, 0,0.6570260302,-0.86691007$ 06,4.0025803558\H,0,2.1972132562,0.0090401835,4.0123883873\Н, $0,0.19264$ 13436,0.0095769834,-2.6440142557\H,0,1.7318308189,0.8870734869,-2.6346 567204\H,0,1.7324073507,-0.8670996367,-2.6342509761

2,5MeQH2 tautomer hydride addition C 1

[^0]C,0,0.0135926728,0.0095175641,-0.0064402233\C,0,0
. $0052914373,0.0113660578,1.4659000551 \backslash \mathrm{C}, 0,1.3225294474,-0.0501020703,2$.1629829179\C,0,2.4375725507,-0.1769824482,1.4327248797\C,0,2.46376959 $01,-0.3074955062,-0.0638715032 \backslash \mathrm{C}, 0,1.1312105415,-0.096512229,-0.740485$ 0453\O,0,-1.0427603358,0.0817854778,2.0972948891\C,0,1.3040940261,0.04 9991656,3.6606725167\O,0,3.4121115579,0.5943052464,-0.6544106666\C,0,1 $.1366583668,-0.0588243869,-2.2389280725 \backslash \mathrm{H}, 0,3.4098502877,-0.2167851599$,1.9193382926\H, $0,-0.9600432935,0.1144231794,-0.4739558263 \backslash \mathrm{H}, 0,4.29664$ 98703,0.2821600403,-0.4375134865\H, $0,0.8392683128,0.9872811274,3.97852$ 89198\H,0,0.7020298675,-0.7539479673,4.0927071611\H,0,2.3130277502,-0. $0019523285,4.0732147261 \backslash \mathrm{H}, 0,0.1268056489,0.0496169002,-2.636101394 \backslash \mathrm{H}, 0$,1.7533268306,0.7724621719,-2.5899232967\H,0,1.5789698947,-0.972556034 $1,-2.6510863726 \backslash \mathrm{H}, 0,2.7631439866,-1.34463194,-0.2995715614$

2,5MeQH2 tautomer hydride addition C3

CBS-QB3 Enthalpy $=-460.516286$
CBS-QB3 Free Energy= -460.564729

C,0,-0.0615542356,0.245630152,-0.0074987168\C,0,-
$0.0074566228,0.2185189179,1.5150037205 \backslash C, 0,1.3099117996,0.0297718421,2$ $.152367147 \backslash \mathrm{C}, 0,2.397743289,-0.1088562017,1.3601618918 \backslash \mathrm{C}, 0,2.367780319$, $-0.0857001186,-0.0931297362 \backslash \mathrm{C}, 0,1.2176970026,0.080675325,-0.7754647754$ \O,0,-1.0275540781,0.3496870814,2.1765650865\C,0,1.3599614078,0.003347 4316,3.651267265\O,0,3.5582734721,-0.2399778328,-0.7682634392\C,0,1.14 67718092,0.1099878073,-2.2730581466\H,0,3.3710883252,-0.2483533732,1.8 291820367\H,0,-0.7818662564,-0.5274016131,-0.3085158866\H,0,4.27553091 28,-0.3451567655,-0.1359887784\H,0,0.9658382223,0.9349025208,4.0676822 $503 \backslash H, 0,0.7283742005,-0.7982427895,4.045066306 \backslash \mathrm{H}, 0,2.379149253,-0.1410$ $213737,4.0137890832 \backslash \mathrm{H}, 0,0.4903823909,-0.6833974293,-2.6500469614 \backslash \mathrm{H}, 0,0$ $.7278276975,1.0594659441,-2.6271635243 \backslash H, 0,2.1311797505,-0.0182801505$, $-2.7205949238 \backslash H, 0,-0.5469846659,1.1909580689,-0.2863055834$

2,5MeQH2 tautomer hydride addition C5

CBS-QB3 Enthalpy $=-460.514455$
CBS-QB3 Free Energy $=-460.560755$

C,0,-0.0354512093,-0.1714931408,0.0297474399\C,0,
$-0.0638056374,-0.4392526063,1.4660738032 \backslash \mathrm{C}, 0,1.2775512969,-0.578263653$
$9,2.196100776 \backslash \mathrm{C}, 0,2.4880674336,-0.3717060141,1.3344468535 \backslash \mathrm{C}, 0,2.405677$
$322,-0.113089597,0.0203513301 \backslash \mathrm{C}, 0,1.1118494312,-0.0099937849,-0.669441$
566\O,0,-1.1171328529,-0.5563693072,2.0786474331\C,0,1.2977448278,0.32
04696889,3.4515526706\O,0,3.4814347077,0.0802792299,-0.8054683209\C,0, $1.1173741707,0.2787587504,-2.1420519294 \backslash \mathrm{H}, 0,3.4603428875,-0.4426980572$,1.8158750141\H, $0,-1.0007034025,-0.0886674107,-0.4575999081 \backslash \mathrm{H}, 0,4.2932$ $814855,0.0019915268,-0.2915450235 \backslash \mathrm{H}, 0,1.3170650647,1.3760697381,3.1688$ 663294\H,0,0.4036112973,0.1350969073,4.0473072781\H,0,2.1803945359,0.1 $124793784,4.0609472336 \backslash \mathrm{H}, 0,0.1016131417,0.3313993622,-2.533672441 \backslash \mathrm{H}, 0$, $1.6295303539,1.2230694987,-2.3473962863 \backslash \mathrm{H}, 0,1.6699733778,-0.4942355287$,-2.6837386917\H,0,1.2883288096,-1.6207256291,2.5496333718

$\operatorname{MeCHD}\left(-\mathrm{H}^{+}\right)$

cbs-qb3 geom=check scrf=(solvent=toluene)

CBS-QB3 Enthalpy= -271.348264
CBS-QB3 Free Energy $=\quad-271.386823$

C, $0,0.0009904163,0.0407302422,0.0006532001 \backslash C, 0,0$.
$0019610067,0.0207256209,1.3619109214 \backslash C, 0,1.2421932609,-0.0319213455,2$. $0394712906 \backslash \mathrm{C}, 0,2.4757736063,-0.0567330022,1.380352316 \backslash \mathrm{C}, 0,2.5307187415$,-0.0229975845,0.0006838971 \C, $0,1.2613609079,0.0068485857,-0.760168706$ $4 \backslash C, 0,3.8194265189,0.0066276779,-0.7414144422 \backslash \mathrm{H}, 0,3.389353892,-0.09521$ $36968,1.9603847253 \backslash \mathrm{H}, 0,1.2788734564,0.8353639676,-1.4887301909 \backslash \mathrm{H}, 0,-0$. $9264053784,0.0711053268,-0.5595213745 \backslash \mathrm{H}, 0,-0.9203147706,0.0406174325,1$. $9270889892 \backslash \mathrm{H}, 0,1.2368452007,-0.0533949833,3.1242946403 \backslash \mathrm{H}, 0,1.23524340$ 65,-0.8677168134,-1.4367044153\H,0,3.7819069852,-0.6135420302,-1.63976 41558\H,0,4.0157362399,1.0338054341,-1.0761821887\H,0,4.653807947,-0.3 053765173,-0.1146599997

MeCHD

CBS-QB3 Enthalpy= -272.165916
CBS-QB3 Free Energy= - 272.204271

C,0,-0.0793069454,-0.1035290474,-0.0874741998\C,0,-0.
$0068817019,-0.0996867483,1.4155571449 \backslash \mathrm{C}, 0,1.1242420096,-0.0084340306,2$.1183798087\C,0,2.4724630484,0.1024092261,1.443498773\C,0,2.406319409, $0.0991473358,-0.0592506456 \backslash \mathrm{C}, 0,1.2687066117,0.0073411817,-0.7435979565$ ไH,0,-0.9535789174,-0.1775973537,1.9456292083\C,0,1.1431027809,-0.0089 494851,3.6234463878\H, $0,2.9803954663,1.0149645655,1.7917602158 \backslash \mathrm{H}, 0,3.3$ 510540408,0.176949526,-0.590905787\H,0,1.2900663208,0.0106270828,-1.83 $00838662 \backslash \mathrm{H}, 0,-0.5869343224,-1.0161584674,-0.4345834247 \backslash \mathrm{H}, 0,-0.72822085$ 02,0.7156957988,-0.4322079672\H,0,3.1215420715,-0.7168284527,1.7893098 422\H,0,1.7425959362,-0.842314209,4.009061158\H,0,1.5996439092,0.90953 48328,4.0114496414\H,0,0.137047238,-0.0916097501,4.0397793501

H
CBS-QB3 Enthalpy= -0.497457 CBS-QB3 Free Energy= -0.510472

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 a}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}$

Figure $\mathrm{S} 8 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{2 b}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 c}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2d.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2e.

Figure $\mathrm{S} 12 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 f}$.

Figure $\mathrm{S} 13 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 a}$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b}$.

Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 c}$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 d}$.

Figure S17. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{4 d}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 e}$.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{4 e}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 f}$.

Figure $\mathrm{S} 21 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 g}$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 h}$.

Figure $\mathrm{S} 23 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 i}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 j}$.

Figure $\mathrm{S} 25 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 j} \mathbf{j}$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 k}$.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 41.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 C o Q} \mathbf{Q}_{\mathbf{0}}$.

[^0]: CBS-QB3 Enthalpy= -460.510604
 CBS-QB3 Free Energy= -460.557201

