| 1  | Supporting Information (SI)                                                                                                                             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Reducing ammonia emissions from dairy cattle production via                                                                                             |
| 3  | cost-effective manure management techniques in China                                                                                                    |
| 4  | Nannan Zhang <sup>1,2†</sup> , Zhaohai Bai <sup>1†</sup> , Wilfried Winiwarter <sup>3,4</sup> , Stewart Ledgard <sup>5</sup> , Jiafa Luo <sup>5</sup> , |
| 5  | Juan Liu <sup>1,2</sup> , Yongqing Guo <sup>1,6</sup> , Lin Ma <sup>1,*</sup>                                                                           |
| 6  |                                                                                                                                                         |
| 7  | <sup>1</sup> Key Laboratory of Agricultural Water Resource, Hebei Key Laboratory of Soil                                                                |
| 8  | Ecology, Center for Agricultural Resources Research, Institute of Genetic and                                                                           |
| 9  | Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road,                                                                                 |
| 10 | Shijiazhuang 050021, Hebei, China;                                                                                                                      |
| 11 | <sup>2</sup> University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District,                                                         |
| 12 | Beijing 100049, China                                                                                                                                   |
| 13 | <sup>3</sup> International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361                                                       |
| 14 | Laxenburg, Austria                                                                                                                                      |
| 15 | <sup>4</sup> The institute of Environmental Engineering, University of Zielona Gora, Licealna 9,                                                        |
| 16 | 65-417 Zielona Gora, Poland                                                                                                                             |
| 17 | <sup>5</sup> AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton 3240,                                                              |
| 18 | New Zealand                                                                                                                                             |
| 19 | <sup>6</sup> College of Animal Science, South China Agricultural University, Guangzhou 510642,                                                          |
| 20 | China                                                                                                                                                   |
| 21 | † These authors contributed to this paper equally.                                                                                                      |

**S**1

- \* Corresponding author: email, malin1979@sjziam.ac.cn, phone +8618503216030
- 23 **Summary:** Supporting information contains 32 pages, 12 figures and 7 tables.

### 25 **Contents**

| 26       | 1. Measurement of ammonia emission abatement efficiency from diet manipulation | .S4 |
|----------|--------------------------------------------------------------------------------|-----|
| 27       | 2. Measurement of ammonia emission abatement efficiency from acidification in  |     |
| 28       | housing                                                                        | .S5 |
| 29       | 3. Measurement of ammonia emission abatement efficiency from covering and      |     |
| 30       | compaction of manure during storage                                            | .S6 |
| 31       | 4. Technical implementation of the abatement options                           | .S7 |
| 32       | 5. Calculation of reduction efficiency                                         | .S9 |
| 33       | 6. Uncertainty and sensitivity analysis                                        | .S9 |
| 34       | ReferencesS                                                                    | 32  |
| 35<br>36 |                                                                                |     |

In this study, reduction efficiencies of the NH<sub>3</sub> mitigation measures were evaluated 37 using an incubation method, which was used to represent the upper limits of the optimal 38 NH<sub>3</sub> mitigation potentials. The trials were conducted in the laboratory at a temperature 39 of 15-20°C. All selected mitigation options are shown in Table S6 (note: sequence of 40 tables as mentioned in the main text). Excreta from cows from the diet manipulation 41 treatments was derived from combination of urine and faeces collected from cows fed 42 with a standard diet (17% crude protein [CP]) or a low CP diet (15% CP), which are 43 detailed in the following section. Slurry used for testing acidification in housing was 44 45 collected directly from the floor of a dairy house, while slurry used for the storage test was collected from manure channels that were connected to dairy houses. Both solid 46 47 and liquid manures used for the storage test were collected after manure was separated using a screw-press separator. Thus, three manure types (slurry, solid and liquid 48 49 manure) were evaluated for the storage stage. Properties of manures used in this study are shown in Table S7. 50

51

### **1. Measurement of ammonia emission abatement efficiency from diet manipulation** There were two dietary treatments in the present study; a standard diet (17% CP) and a low CP diet (15% CP). Ingredients of standard diet contained oat hay, 10.65% DM; alfalfa hay, 11.91% DM; whole corn silage, 28.02% DM; concentrate feed, 19.04% DM; steam-flaked corn, 13.55% DM; ground corn, 7.12% DM; soybean meal, 0.46% DM; whole cottonseed, 3.22% DM; beet pulp, 5.51% DM; mono-dicalcium phosphate,

0.52% DM. Ingredients of low CP diet contained: Oat hay, 10.65% DM; alfalfa hay, 58 11.91% DM; whole corn silage, 28.02% DM; concentrate feed, 19.04% DM; 59 steam-flaked corn, 8.5% DM; ground corn, 7.12% DM; soybean meal, 3.22% DM; corn 60 gluten meal, 2.3% DM; whole cottonseed, 3.22% DM; beet pulp, 5.51% DM; 61 mono-dicalcium phosphate, 0.52% DM. Urine and faeces were collected separately 62 under the tail of 4 lactating cows fed the dietary treatments, 2 cows for each respective 63 diets. Samples were collected individually over four continuous days and stored in 64 plastic containers at 4°C to limit potential N loss during storage. Separate urine and 65 faeces samples from each dairy cow were bulked for the four collection days. 66 Immediately before the start of the experiment, 100 ml of urine and 150 g of faeces<sup>1</sup> 67 68 from the same dairy cow were mixed in a plastic chamber with a height of 9.3 cm and diameter of 9.2 cm. For each dairy cow, three replicates of NH<sub>3</sub> emission measurements 69 were made over five days using a static chamber.<sup>2, 3</sup> 70

71

Gas emission rates were measured every six hours during the first day, every eight hours during the second day, and every twelve hours during the last three days. For each measurement, the concentration of NH<sub>3</sub> inside the chambers was recorded 3 times at an interval of 2 min between two adjacent measurement occasions using a Multi-Gas Monitor INNOVA 1412i. The difference in NH<sub>3</sub> gas concentration during the last two adjacent measurements was used to calculate the gas emission flux.

## 79 2. Measurement of ammonia emission abatement efficiency from acidification in 80 housing

For simulation of housing practice, we assumed that the dairy building has a slatted 81 floor. Slurry was directly collected from dairy housing, and moved to a box simulating a 82 pit in a layer of 5 cm thick. Length, width and height of the simulated slatted pit were 83 25.5, 37 and 22 cm, respectively. After the addition of manure into the pit, sulfuric acid 84 (H<sub>2</sub>SO<sub>4</sub>), diluted 1: 100 with water, was sprayed evenly on to the manure surface to add 85 a layer of about 3 mm. Amount of acid was small compared to the volume of manure, 86 and it was expected that it had no influence on quality of slurry and bio-availability of N 87 in the manure. 88

89

The ventilated chamber method was used to quantify  $NH_3$  emission five times:<sup>1</sup> at the beginning, and at 6, 12, 18 and 24 h after application of the acid. Ventilation rate was 0.2 head space exchanges min<sup>-1</sup> which simulated the air ventilation in the dairy building.<sup>1</sup>  $NH_3$  in the gas removed from the chamber was absorbed in 2% boric acid, which was subsequently titrated by standard  $H_2SO_4$  solution.  $NH_3$  emission was calculated from the consumption of  $H_2SO_4$ .

96

# 97 3. Measurement of ammonia emission abatement efficiency from covering and 98 compaction of manure during storage

99 During storage, we applied vermiculite cover or acidified vermiculite cover layers, each

with a 6 cm thickness, to the surface of slurry or surface of liquid manure. Acidified
vermiculite cover was created by mixing lactic acid and vermiculite at a volume ratio of
1:5. The diameter and height of the containers used were 20 and 35 cm, respectively.
The abatement measures used for solid manure were a plastic film cover and/or
compaction. The type of container for solid manure storage was the same as for slurry
and liquid manure. The original height of solid manure was 20 cm. Compaction of solid
manure halved the volume of manure.

107

Storage of slurry, liquid manure and solid manure lasted for 15 days, and gas emission was measured at 1, 2, 3, 4, 7, 11 and 15 days after application of the treatments. During storage, NH<sub>3</sub> emission was measured using the ventilated chamber method<sup>4</sup>. Air ventilation rate was 20 head space exchanges min<sup>-1</sup>, which was used to measure the maximum potential NH<sub>3</sub> emission. NH<sub>3</sub> in the gas removed from the chamber was absorbed in 2% boric acid, titrated with standard H<sub>2</sub>SO<sub>4</sub> and calculated as for the acidification study described above.

115

#### **4. Technical implementation of the abatement options**

For cow housing, we determined the effects of the acidification treatment for manure under a slatted floor (Figure 1a). To estimate the cost involving the acidification measures, we made the following general assumptions about dairy houses, acidification system and application: 1) each dairy building has two stirring systems, which were used to dilute  $H_2SO_4$  100 times, and four sprinkler systems, which were used to apply the diluted  $H_2SO_4$  to the surface of slurry under the slatted floor; 2) each sprinkler system included 50 nozzles, 110 m pipe and one pump; and 3) three L of tap water m<sup>-2</sup> manure was used to clean the spraying system after each operation.

125

For the covered system, a cover was assumed to be applied across the stored slurry and 126 liquid manure (Figures 1b and S11). The equipment used here was a mixer and a system 127 consisting of a U-spiral conveyor with mesh on the bottom and tracks, installed on the 128 edge of the tank. Movement of the conveyor along the tracks at a proper speed could 129 distribute the vermiculite cover or the acidified vermiculite cover to the surface of 130 131 manure in the store tank. For the acidified vermiculite cover treatment, a mixer was used for mixing lactic acid with vermiculite. As size of tank influenced the costs of the 132 133 equipment and operation, we assumed that the tank used for storage was 10 m wide 134 with a maximum depth of 4.5 m for stored slurry and liquid manure, based on the general practice on the dairy farm. 135

136

Plastic film cover was placed on the top edge of the store facility (Figure 1c). As manure was added to the facility, the plastic film was immediately used to cover it mainly through a manual operation, and the lifetime of the plastic film used was assumed to be 1 year. A road roller was used for compacting the solid manure (Figure 1c). As for the assumption presented above, the depth of stored solid manure was 1.5 m

**S**8

while the depth of solid manure added per day was 0.15 m. The road roller was used to compact the new added manure on the top of the manure store for three times in succession each time.

145

#### 146 **5. Calculation of reduction efficiency**

Abatement efficiencies of the test options were calculated based on differences in total
NH<sub>3</sub> emission from the tested options and the controls according to eq S1:

149 
$$RE = \frac{f_{control} - f_{abatement}}{f_{control}}$$
(S1)

Where RE is defined as the reduction efficiency of abatement options directly measured from the experiment;  $f_{control}$  and  $f_{abatement}$  are total emissions for the nil-abatement and abatement measures, respectively.

153

#### 154 6. Uncertainty and sensitivity analysis

155 Many factors influenced estimation of NH<sub>3</sub> emission, abatement potential and net economic benefit, such as animal numbers, emission factors, NH<sub>3</sub> abatement 156 efficiencies and the price of materials used for technical implementation of the different 157 158 options. Using the Monte Carlo simulation, uncertainties of baseline NH<sub>3</sub> emission, reduction potential and net economic benefit of the selected abatement options were 159 assessed and are shown in Figures S2 and S6. Abatement options using the low CP diet, 160 161 acidification of surface manure during housing and solid manure compaction (representing the most economic benefit, the highest-reduction and the lowest-reduction 162

abatement options, respectively) were selected to conduct the sensitivity analysis of the 163 164 net economic benefit for the three components (i.e. total technical implementation cost, total mineral fertilizer cost saving and health damage cost saving) using both European 165 health damage data set and decreased health damage data set (Figure S12). Based on the 166 167 decreased health damage cost, the net economic benefit of low protein feed was more 168 sensitive to total implementation cost and health damage cost saving than total mineral fertilizer cost saving, which was due to the low proportion of mineral fertilizer cost 169 170 saving related to the net economic benefit. Based on the "European" health damage cost, the net economic benefit became more sensitive to the health damage cost saving. 171

| Stago   | Manure        | A batamant antiana                                       | Reduction of | Reduction efficiency, % |  |  |
|---------|---------------|----------------------------------------------------------|--------------|-------------------------|--|--|
| Stage   | system        | Abatement option <sup>a</sup>                            | Mean         | Range                   |  |  |
| Feeding | Mixed excreta | Low protein feed                                         | 24           | 13-38                   |  |  |
| Housing |               | Acidification                                            | 98           | 97-98                   |  |  |
|         | Classer       | Cover                                                    | 81           | 75-86                   |  |  |
|         | Slurry        | Cover and acid                                           | 94           | 93-94                   |  |  |
|         | Liquid monuto | Cover                                                    | 75           | 74-77                   |  |  |
|         | Liquid manure | Cover and acid                                           | 86           | 85-88                   |  |  |
| Storage |               | Plastic film cover                                       | 71           | 66-75                   |  |  |
| Storage |               | Manure compaction                                        | 2.7          | 1.5-7.2                 |  |  |
|         | Solid manure  | Manure compaction & cover (liquid) <sup>b</sup>          | 37           | 31-37                   |  |  |
|         |               | Manure compaction & cover and acid (liquid) <sup>c</sup> | 42           | 36-42                   |  |  |

173 **Table S1** Ammonia emission abatement efficiencies from the test abatement options

<sup>a</sup> See Table S6 for details of abatement options.

<sup>b</sup> Manure compaction & cover (liquid) refers to solid manure compaction and a
 vermiculite cover on liquid produced following compaction during storage.

<sup>c</sup> Manure compaction & cover and acid (liquid) refers to solid manure compaction and a

vermiculite cover acidified with lactic acid on liquid produced following compaction

179 during storage.

|                                     |        |                             | Total cost of investment <sup>a</sup><br>(US\$ system <sup>-1</sup> ) |                   | Fixed operation   | Lifetime of the  | Numbers of dairy<br>cows |  |
|-------------------------------------|--------|-----------------------------|-----------------------------------------------------------------------|-------------------|-------------------|------------------|--------------------------|--|
|                                     |        |                             |                                                                       |                   | rate <sup>b</sup> | equipment        |                          |  |
|                                     |        |                             | Mean                                                                  | s.d. <sup>c</sup> | (%)               | (year)           | (head)                   |  |
| Acidification system during housing |        | 595                         | 46                                                                    | 4                 | 2                 | 100 <sup>h</sup> |                          |  |
|                                     | Slurry | Cover <sup>d</sup>          | 7637                                                                  | 945               | 4                 | 10               | 500 <sup>i</sup>         |  |
| Distribution                        |        | Cover and acide             | 7637                                                                  | 945               | 4                 | 10               | 500 <sup>i</sup>         |  |
| system                              | Liquid | Cover <sup>d</sup>          | 7383                                                                  | 934               | 4                 | 10               | 500 <sup>i</sup>         |  |
|                                     | manure | Cover and acid <sup>e</sup> | 7383                                                                  | 934               | 4                 | 10               | 500 <sup>i</sup>         |  |
| Plastic film cover <sup>f</sup>     |        | _j                          | -                                                                     | 4                 | 1                 | 500 <sup>i</sup> |                          |  |
| Compaction system <sup>g</sup>      |        | 1295                        | 51                                                                    | 4                 | 6                 | 500 <sup>i</sup> |                          |  |

#### 180 **Table S2** List of parameters used for the calculation of investment cost

<sup>a</sup> Total cost of investment includes cost for equipment and installation excluding materials.

<sup>b</sup> Fixed operation rate reflects the cost of maintenance, insurance, and administrative overhead of equipment installed on dairy farm.

<sup>c</sup> s.d. means the standard deviation.

<sup>d</sup>Cover refers to a vermiculite cover on slurry or liquid manure during storage.

<sup>e</sup> Cover and acid refers to a vermiculite cover acidified with lactic acid on slurry or liquid manure during storage.

<sup>186</sup> <sup>f</sup> Plastic film cover means the plastic film cover on the solid manure separated from slurry, and it can be operated without any equipment.

<sup>g</sup>Compaction system means the road roller for solid manure compaction.

<sup>188</sup> <sup>h</sup> 100 means that the assumption of one system of corresponding mitigation option was based on 1 animal building housing 100 dairy cows.

<sup>189</sup> <sup>i</sup> 500 means that the assumption of one system of corresponding mitigation option was based on 1 dairy farm with 500 dairy cows.

<sup>190</sup> <sup>j</sup> No equipment was used for the implementation of plastic film cover on solid manure, and labor and plastic film cover were classified to

191 be the variable operation.

|                                                   |                    |                    | Labor cost                | Energy cost               | Price of th | e material (US\$ m <sup>-3</sup> ) <sup>a</sup> |
|---------------------------------------------------|--------------------|--------------------|---------------------------|---------------------------|-------------|-------------------------------------------------|
|                                                   |                    |                    | $(US\$ cow^{-1} yr^{-1})$ | $(US\$ cow^{-1} yr^{-1})$ | Mean        | Standard deviation                              |
| Acidification system during housing               |                    | 0.09               | 0.02                      | 459                       | 111         |                                                 |
| Distribution                                      | Slurry             | Cover <sup>d</sup> | 0.17                      | 0.01                      | 17          | 2.5                                             |
| system                                            |                    | Cover and acide    | 0.74                      | 0.02                      | 302         | 41                                              |
|                                                   | Liquid manure      | Cover <sup>d</sup> | 0.09                      | 0.01                      | 17          | 2.5                                             |
|                                                   |                    | Cover and acide    | 0.36                      | 0.01                      | 302         | 41                                              |
| Plastic film c                                    | cover <sup>f</sup> |                    | 0.00                      | 0.00                      | 0.4         | 0.08                                            |
| Compaction <sup>g</sup>                           | 5                  |                    | 0.55                      | 0.60                      | -           | -                                               |
| Compaction & cover (liquid) <sup>h</sup>          |                    | 0.58               | 0.60                      | 17                        | 2.5         |                                                 |
| Compaction & cover and acid (liquid) <sup>i</sup> |                    |                    | 0.65                      | 0.60                      | 302         | 41                                              |

#### 192 **Table S3** List of parameters used for the calculation of variable operation costs

193 Table continued and footnotes on next page.

|                                                   |        |                             | Usage amount<br>of material | Unit of usage amount                                      | Working a<br>(r | $R_{f}^{c}$        |                           |
|---------------------------------------------------|--------|-----------------------------|-----------------------------|-----------------------------------------------------------|-----------------|--------------------|---------------------------|
|                                                   |        |                             | of material                 |                                                           | Mean            | Standard deviation | (times yr <sup>-1</sup> ) |
| Acidification system during housing               |        |                             | 0.58                        | ml H <sub>2</sub> SO <sub>4</sub> kg <sup>-1</sup> manure |                 | -                  | 365                       |
| Distribution                                      | Slurry | Cover <sup>d</sup>          | 6                           | cm thickness                                              | 0.66            | 0.19               | 6                         |
| system                                            |        | Cover and acide             | 6                           | cm thickness                                              | 0.66            | 0.19               | 6                         |
|                                                   | Liquid | Cover <sup>d</sup>          | 6                           | cm thickness                                              | 0.32            | 0.09               | 6                         |
|                                                   | manure | Cover and acid <sup>e</sup> | 6                           | cm thickness                                              | 0.32            | 0.09               | 6                         |
| Plastic film cover <sup>f</sup>                   |        | 0.77                        | $m^2 cow^{-1} yr^{-1}$      | 0.78                                                      | 0.09            | 1                  |                           |
| Compaction <sup>g</sup>                           |        |                             | -                           | -                                                         |                 | 91.9               | 365                       |
| Compaction & cover (liquid) <sup>h</sup>          |        |                             | 6                           | cm                                                        | 0.09            | 0.02               | 6                         |
| Compaction & cover and acid (liquid) <sup>i</sup> |        |                             | 6                           | cm                                                        | 0.09            | 0.02               | 6                         |

#### 194 **Table S3** List of parameters used for the calculation of variable operation costs (continued)

<sup>a</sup> Unit price of plastic film cover is US<sup>s</sup> m<sup>-2</sup>.

<sup>196</sup> <sup>b</sup> Working area of storage facility for slurry and liquid manure means area of storage place, and working area of storage facility for

197 compaction system means the total area for compaction per year based on assumption of 0.15 m thickness of solid manure added per day,

and its uncertainty was derived from the variation of the depth of storage facility.

199 <sup>c</sup>  $R_{\rm f}$  refers to the replacement frequency.

<sup>200</sup> <sup>d</sup> Cover refers to a vermiculite cover on slurry or liquid manure during storage.

<sup>e</sup> Cover and acid refers to a vermiculite cover acidified with lactic acid on slurry or liquid manure during storage.

<sup>202</sup> <sup>f</sup> Plastic film cover refers to a plastic film cover on solid manure during storage. Considering the limited labor time to apply the plastic film

203 cover, no additional staff and salary was assumed.

<sup>g</sup> Compaction refers to solid manure compaction. No material is applied to compaction system.

<sup>205</sup> <sup>h</sup> Materials applied to compaction & cover (liquid) refers to a vermiculite cover on liquid produced following compaction.

<sup>1</sup> Materials applied to compaction & cover and acid (liquid) refers to a vermiculite cover acidified with lactic acid on liquid waste produced

207 following compaction.

| Item                                                                                                   | Uncertainty range <sup>a</sup> | PDF       | Reference           |
|--------------------------------------------------------------------------------------------------------|--------------------------------|-----------|---------------------|
| Emission estimation:                                                                                   |                                |           |                     |
| Livestock number                                                                                       | ±5%                            | Normal    | 5, 6                |
| Manure N excretion                                                                                     | ±20%                           | Lognormal | 7, 8                |
| N emission factor (NH <sub>3</sub> , N <sub>2</sub> O, N <sub>2</sub> , NO <sub>3</sub> <sup>-</sup> ) | ±33%                           | Lognormal | 7, 9,10             |
| Reduction efficiency                                                                                   | See Table S1                   | Normal    | This study          |
| Cost-benefit analysis:                                                                                 |                                |           |                     |
| Investment price                                                                                       | See Table S2                   | Normal    | Survey <sup>b</sup> |
| Variable operation cost                                                                                | See Table S3                   | Normal    | Survey <sup>b</sup> |
| Urea price                                                                                             | ±5%                            | Normal    | Survey <sup>b</sup> |
| Diesel fuel price                                                                                      | ±20%                           | Normal    | Survey <sup>b</sup> |
| Gasoline fuel price                                                                                    | ±20%                           | Normal    | Survey <sup>b</sup> |
| Diet ingredient price                                                                                  | ±5%                            | Normal    | Survey <sup>b</sup> |
| Depth of manure storage facility (solid manure separated from slurry)                                  | ±33%                           | Normal    | Survey <sup>b</sup> |
| Depth of manure storage facility (slurry and liquid manure separated from slurry)                      | ±11%                           | Normal    | Survey <sup>b</sup> |
| Animal stock in dairy farm                                                                             | $\pm 70\%$                     | Normal    | Survey <sup>b</sup> |
| Population                                                                                             | ±5%                            | Normal    | 6                   |
| Land area                                                                                              | ±5%                            | Normal    | 6                   |
| Fertilizer replacement percentage of retained manure N                                                 | ±33%                           | Uniform   | Survey <sup>b</sup> |

Table S4 Uncertainty range and probability density function (PDF) of input parameters in the ammonia emission estimation, emission reduction estimation and cost-benefit analysis.

<sup>a</sup> When the direct standard deviation is not available, the uncertainty range was assumed to be  $\pm 2$  standard deviations of the parameter.

<sup>b</sup> Survey means that the uncertainty range of the parameters was derived survey data.

Table S5 Health damage cost saving and net economic benefit considering health damage cost saving under selected abatement options for dairy production in China in 2015. The respective scenarios are described in Section 2.2 in the main text.

|                                                                                   | Acidification | Low protein | Cover and acid | Cover    | Cover and     | Cover    |
|-----------------------------------------------------------------------------------|---------------|-------------|----------------|----------|---------------|----------|
|                                                                                   | Actumcation   | feed        | (slurry)       | (slurry) | acid (liquid) | (liquid) |
| Health damage cost saving (European health data set <sup>a</sup> ), million US\$  | 4474          | 2816        | 2036           | 2019     | 1355          | 1185     |
| Net economic benefit (European health data set <sup>b</sup> ), million US\$       | 4315          | 4383        | 522            | 1906     | 596           | 1108     |
| Health damage cost saving (Decreased health data set <sup>a</sup> ), million US\$ | 447           | 282         | 204            | 202      | 136           | 119      |
| Net economic benefit (Decreased health data set <sup>b</sup> ), million US\$      | 288           | 1848        | -1310          | 89       | -624          | 41       |

Table continued and footnotes on next page.

Table S5 Health damage cost saving and net economic benefit considering health damage cost saving under selected abatement options for dairy production in China in 2015. The respective scenarios are described in Section 2.2 in the main text.

|                                                                                   | Manure compaction & cover and acid (liquid) | Plastic film<br>cover | Manure compaction & cover (liquid) | Manure compaction |
|-----------------------------------------------------------------------------------|---------------------------------------------|-----------------------|------------------------------------|-------------------|
| Health damage cost saving (European health data set <sup>a</sup> ), million US\$  | 1736                                        | 652                   | 1521                               | 25                |
| Net economic benefit (European health data set <sup>b</sup> ), million US\$       | 752                                         | 654                   | 1400                               | -11               |
| Health damage cost saving (Decreased health data set <sup>a</sup> ), million US\$ | 174                                         | 65                    | 152                                | 2.5               |
| Net economic benefit (Decreased health data set <sup>b</sup> ), million US\$      | -811                                        | 67                    | 31                                 | -33               |

<sup>a</sup> European health data set means the health damage cost analysis based on the value of a life year in Europe.<sup>5, 6, 11</sup>

<sup>b</sup> Decreased health data set means the health damage cost analysis based on an adjustment factor for the value of a life year of 10%, which

219 was used as Chinese situation.<sup>5, 6, 12</sup>

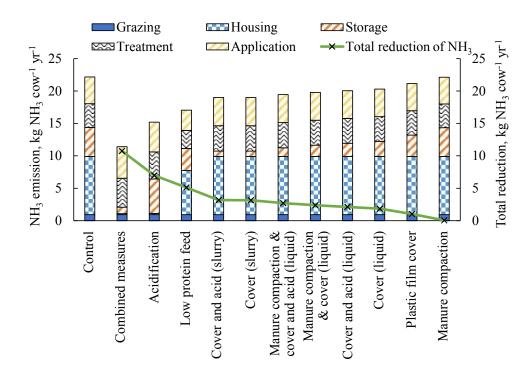
| Stage   | Manure system              | Abatement option   |                                                                                                             |
|---------|----------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|
| Feeding | Mixed excreta              | Low protein feed   | 15% <sup>a</sup> compared with 17% <sup>b</sup> diet crude protein                                          |
| Housing | Slurry                     | Acidification      | Spraying sulfuric acid (H <sub>2</sub> SO <sub>4</sub> , diluted 1: 100 with water) to form a layer of 3 mm |
|         |                            |                    | on manure surface                                                                                           |
| Storage | Slurry                     | Cover              | Vermiculite cover with a layer of 6 cm on slurry                                                            |
|         |                            | Cover and acid     | Vermiculite mixed with lactic acid (99%) at a volume ratio of 1:5 with a layer of 6                         |
|         |                            |                    | cm on slurry                                                                                                |
|         | Liquid manure <sup>c</sup> | Cover              | Vermiculite cover with a layer of 6 cm on slurry                                                            |
|         |                            | Cover and acid     | Vermiculite mixed with lactic acid (99%) at a volume ratio of 1:5 with a layer of 6                         |
|         |                            |                    | cm on slurry                                                                                                |
|         | Solid manure <sup>c</sup>  | Plastic film cover | -                                                                                                           |
|         |                            | Manure compaction  | Compaction until the volume of solid manure halved                                                          |

#### 220 Table S6 Ammonia emission abatement options

<sup>a</sup> Ingredients of diet with 15% crude protein.

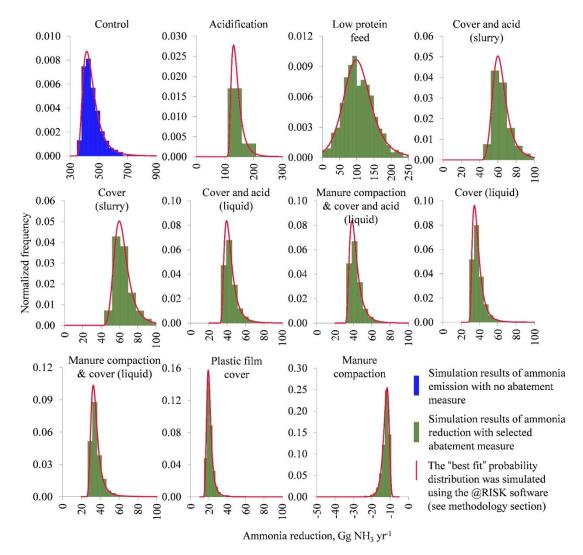
<sup>b</sup> Ingredients of diet with 17% crude protein.

<sup>223</sup> <sup>c</sup> Liquid manure and solid manure were separated from slurry with a screw-press separator.


| Daramataral                         | Urine               |                     | Fae        | Faeces     |            | Slurry from | Liquid     | Solid      |
|-------------------------------------|---------------------|---------------------|------------|------------|------------|-------------|------------|------------|
| Parameters <sup>a</sup>             | 17% CP <sup>b</sup> | 15% CP <sup>c</sup> | 17% CP     | 15% CP     | floor      | channel     | manure     | manure     |
| TN,<br>g N kg <sup>-1</sup> manure  | 11.42±0.02          | 8.73±2.33           | 3.96±0.15  | 3.89±0.26  | 3.42±0.23  | 4.36±0.18   | 2.15±0.20  | 2.96±0.09  |
| TAN,<br>g N kg <sup>-1</sup> manure | NA                  | NA                  | NA         | NA         | 1.24±0.07  | 2.08±0.05   | 1.33±0.17  | 0.45±0.16  |
| W, %                                | NA                  | NA                  | 84.02±0.37 | 82.08±0.53 | 86.30±0.99 | 74.42±1.79  | 93.84±3.19 | 57.53±0.59 |
| рН                                  | NA                  | NA                  | NA         | NA         | 8.26±0.09  | 8.18±0.21   | 8.09±0.19  | 8.61±0.08  |

#### 224 **Table S7** Chemical characteristic of manure used in the trials

<sup>a</sup> TN, total N; TAN, total ammoniacal N; W, water content.


<sup>226</sup> <sup>b</sup> 17% CP means a standard diet treatment in the diet manipulation trial.

<sup>c</sup> 15% CP means a low crude protein diet treatment in the diet manipulation trial.



229 Figure S1. Ammonia emission on animal basis from selected abatement options for dairy

230 production in China in 2015. The respective scenarios are described in Section 2.2.



231

Figure S2. Uncertainty analysis of baseline ammonia emission for dairy production in China in 2015 and ammonia reduction under selected abatement options. The respective

scenarios are described in Section 2.2 in the main text.

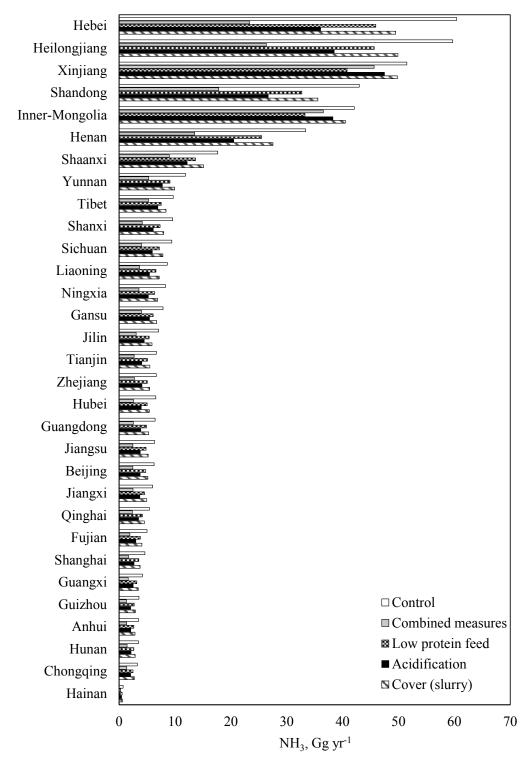
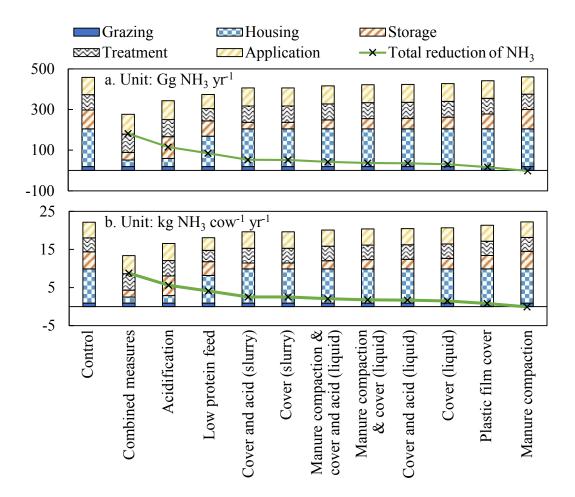
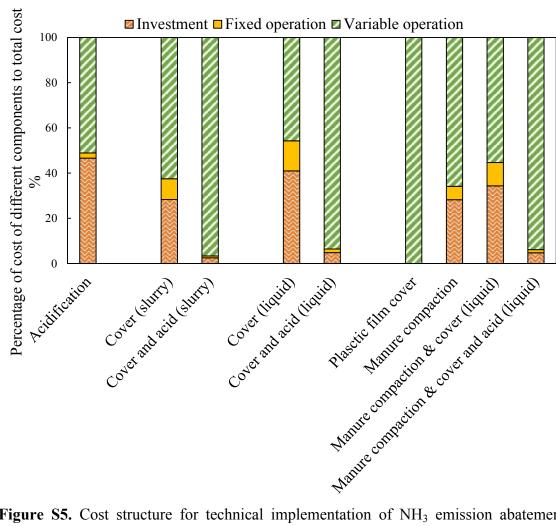



Figure S3. Ammonia emission without and with four selected abatement scenarios from dairy production system in different regions of China in 2015. The respective scenarios

are described in Section 2.2 in the main text.





Figure S4. Total annual ammonia emission and reduction (a) and ammonia emission

and reduction on an animal basis (b) from abatement options for dairy production in

243 China in 2015, based on 80% of reduction efficiency achieved. Bars are ammonia

emissions from different manure management stages, and green lines are total reduction

of ammonia. The respective scenarios are described in Section 2.2 in the main text.



246

Figure S5. Cost structure for technical implementation of NH<sub>3</sub> emission abatement 247

options. The respective scenarios are described in Section 2.2 in the main text. 248

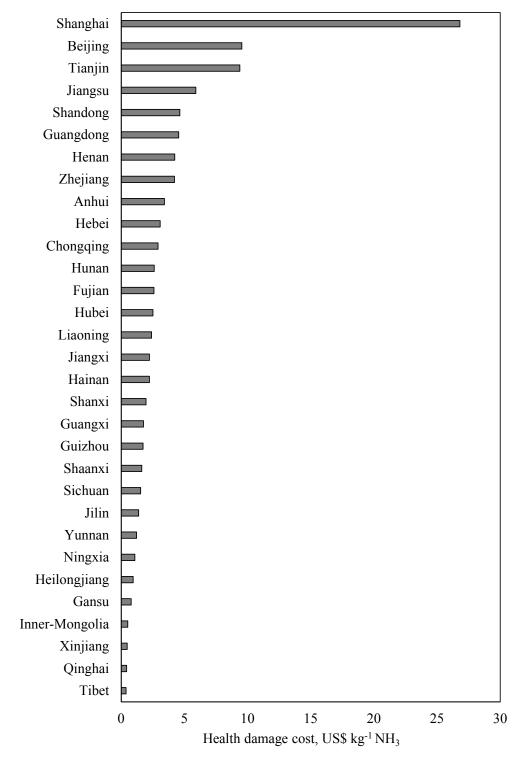




251

Net economic benefit, Million US\$ yr1

Figure S6. Uncertainty analysis of net economic benefit (without health damage cost 252 253 saving) for selected abatement options. The respective scenarios are described in 254 Section 2.2 in the main text.






**Figure S7.** Cost-benefit balance (fertilizer saving minus technical implementation cost)

in different region for mitigation options applied to dairy production in 2015. A positive value refers to net benefit from the balance, and a negative value refers to net cost. The

value refers to net benefit from the balance, and a negative value refrespective scenarios are described in Section 2.2 in the main text.





261 Figure S8. Regional variation of health damage cost based on 10% adjustment factor.

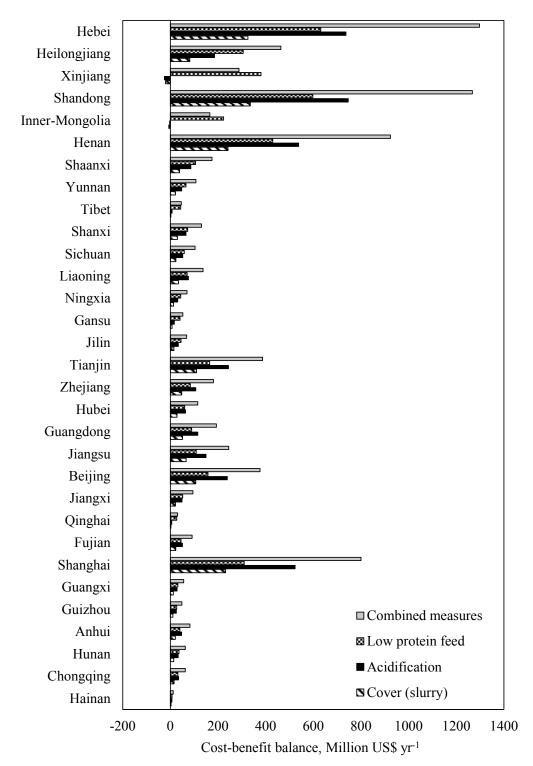
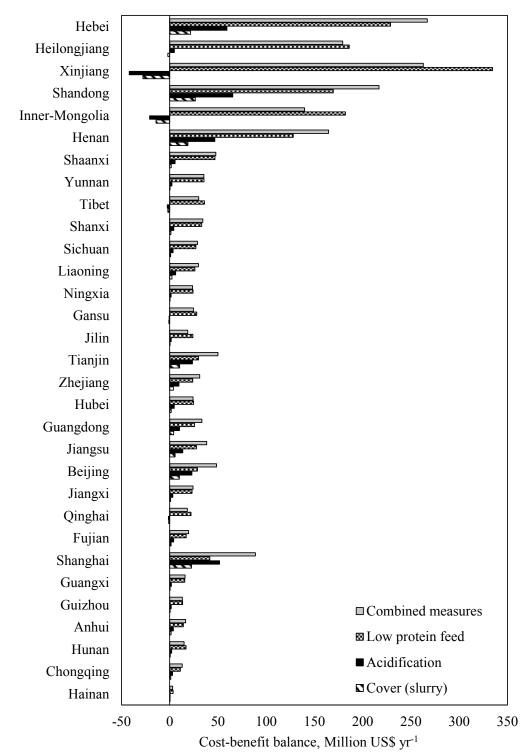
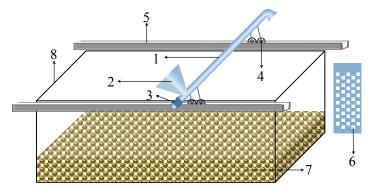



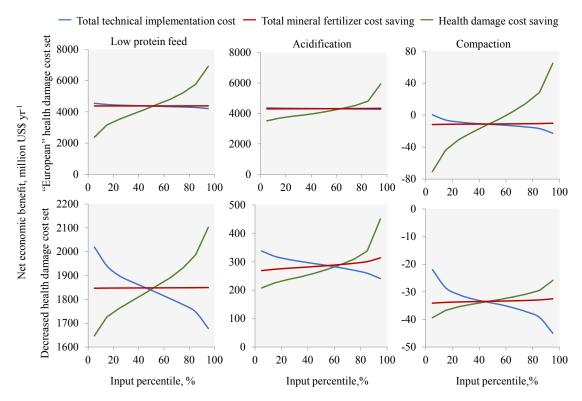



Figure S9. Cost-benefit balance (sum of fertilizer saving and health damage cost saving with European dataset minus technical implementation cost) in different region for




- 266 benefit from the balance, and a negative value refers to net cost. The respective
- scenarios are described in Section 2.2 in the main text.










1.U-spiral conveyor; 2. hopper; 3. electric motor; 4. caster; 5. track; 6. mesh on the bottom of conveyor; 7. slurry or liquid manure; 8. storage facility.

Figure S11. Diagram of coverage system during housing.



276

Figure S12. Sensitivity analysis of net economic benefit with health damage cost saving under selected abatement options. The respective scenarios are described in Section 2.2 in the main text. Costs for each respective abatement measure vary on X-axis. Y-axis shows how the value of net economic benefit changes as the sampled input value changes. The "European" health damage cost set applies the value of a life year derived by Brink et al.<sup>11</sup> Only 10% of this value is used in the decreased health damage cost set, as used by Gu et al.<sup>5, 12</sup>

#### References 285

| 286 | 1. | Pereira, J.; Fangueiro, D.; Misselbrook, T. H.; Chadwick, D. R.; Coutinho, J.;         |
|-----|----|----------------------------------------------------------------------------------------|
| 287 |    | Trindade, H. Ammonia and greenhouse gas emissions from slatted and solid floors        |
| 288 |    | in dairy cattle houses: A scale model study. Biosyst Eng. 2011, 109, 148-157.          |
| 289 | 2. | Wheeler, E. F.; Adviento-Borbe, M. A. A.; Topper, P. A.; Brown, N. E.; Varga, G.       |
| 290 |    | Ammonia and greenhouse gas emissions from dairy freestall barn manure. American        |
| 291 |    | Society of Agricultural and Biological Engineers. Rhode Island, June 29-July 2,        |
| 292 |    | <b>2008</b> , 1.                                                                       |
| 293 | 3. | Lee, C.; Hristov, A.; Dell, C.; Feyereisen, G.; Kaye, J.; Beegle, D. Effect of dietary |
| 294 |    | protein concentration on ammonia and greenhouse gas emitting potential of dairy        |
| 295 |    | manure. J. Dairy Sci. 2012, 95, 1930–1941.                                             |
| 296 | 4. | Chadwick, D. Emissions of ammonia, nitrous oxide and methane from cattle manure        |
| 297 |    | heaps: effect of compaction and covering. Atmos Environ. 2005, 39(4), 787-799.         |
| 298 | 5. | Gu, B., Ju, X., Chang, J., Ge, Y., Vitousek, P. M. Integrated reactive nitrogen        |
| 299 |    | budgets and future trends in China. P. Natl. Acad. Sci. USA 2015, 112, 8792-8797.      |
| 300 | 6. | Gu, B.; Ge, Y.; Chang, S. X.; Luo, W.; Chang, J. Nitrate in groundwater of China:      |
| 301 |    | Sources and driving forces. Global Environ. Change 2013, 23, 1112-1121.                |
| 302 | 7. | Oenema, J., Burgers, S., van Keulen, H., van Ittersum, M. Stochastic uncertainty       |
| 303 |    | and sensitivities of nitrogen flows on dairy farms in The Netherlands. Agr. Syst.      |
| 304 |    | <b>2015</b> , 137, 126-138.                                                            |
|     |    |                                                                                        |

8. Oenema, O., Kros, H., de Vries, W. Approaches and uncertainties in nutrient 305

- budgets: implications for nutrient management and environmental policies. *Eur. J. Agron.* 2003, 20, 3-16.
- Flysjö, A., Henriksson, M., Cederberg, C., Ledgard, S., Englund, J. E. The impact of
   various parameters on the carbon footprint of milk production in New Zealand and
   Sweden. *Agr. Syst.* 2011, 104, 459-469.
- 311 10. Basset-Mens, C., Kelliher, F. M., Stewart, L., Cox, N. Uncertainty of global
- 312 warming potential for milk production on a New Zealand farm and implications for
- decision making. Int. J. Life Cycle Ass. 2009, 14, 630-638.
- 11. Brink, C.; van Grinsven, H.; Jacobsen, B. H.; Klimont, Z. Costs and benefits of
- nitrogen in the environment. In The European Nitrogen Assessment ; Sutton, M. A.;
- Howard, C. M.; Erisman, J. W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven,
- H.; Grizzetti, B. Cambridge University Press: New York. 2011.
- 318 12. Gu, B.; Ge, Y.; Ren, Y.; Xu, B.; Luo, W.; Jiang, H.; Gu, B.; Chang, J. Atmospheric
- 319 Reactive Nitrogen in China: Sources, Recent Trends, and Damage Costs. *Environ*.
- *Sci. Technol.* **2012**, 46, 9420-9427.