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1. Boltzmann formalism for the 3D case 

 

We now start from the Boltzmann equation (see the textbook [S1]):  
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where the external field Re i t ie 


    
qrE E ; here q  is the wavevector of the external 

perturbation acting on the Fermi gas. The Fermi distribution function at equilibrium is  
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First, for simplicity, we neglect the second term in (S1) assuming the long-wavelength limit, 

Fq v    , where 2 /q    and   is the wavelength of the perturbation in the electron gas.  In 

other words, we look at the limit 0q  . Then, we have  
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Within the perturbation theory, we seek a solution in the form:  

 

0
F 1 2 ....f f f f   k                    (S3)  

 

where n
nf E . The first term is typically derived in textbooks [S1] as it gives the linear response 

and the related electric conductivity of an electron gas:  
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Linearization of (S2) yields   
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The above function yields the leading contribution in (S4). The term 1 1Re i tf f e       oscillates 

in time and describes the electric current in the system. The steady-state contribution to the 

nonequilibrium distribution function (which is not oscillating) should be found as the function 

2 time
f .  For this, we will now collect the nonlinear, quadratic terms from (S3) into (S2):  
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Since we are interested in the time-independent term (steady-state distribution under excitation), 

we perform time-averaging the above equation:  
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That gives us the expression 
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Then, by using (S5), we obtain:  
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The above function is shown in the main text as Eq. 12. Its main property is its energy dependence 

through 
2 0

F
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 k

. We show it below in Fig. S1, where we observe that the excited electrons and holes 

are found near the Fermi level, within the thermal interval 6kBT.  Coming back to (S6), the physical 

meaning of the function ( , )A E  can be retrieved from the following consideration: The term 

2
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
  produces the local dissipation in our system,  
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where ( )DOS E is the density of electronic states. Therefore,  
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Above, we used the following property of the Fermi function at low temperature:   
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Figure S1: The Fermi distribution and its second derivative in gold at room temperature. Here 

roomT  denotes the room temperature (293K or 20°C). The second derivative of the Fermi function 

provides us with the energy distribution of excited carriers in the electron gas when driven by an 
external field. We observe that, within the linear quasi-classical theory, all electronic events occur 
in the very vicinity of the Fermi level. The physical reason is that the Fermi energy in a noble 
metal is typically very large, so that F B roomE k T  or F roomT T , where F F B/T E k is the Fermi 

temperature. For gold and silver, F ~ 5.5 eVE that yields the Fermi temperature of F ~ 64000 KT .  

 



2. The number of photogenerated plasmons and the phototemperature.  

 

We now consider how many plasmons are stored in an optically-driven NC. The rate equation for 

the number of plasmons reads [S2]:  
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where plasmonsN  is the number of plasmons stored in a NC, p is the plasmon quantum and absQ   

is the energy absorption rate at the plasmon peak . The term abs

p

Q


 in  (S7) is the rate of creation 

of plasmons by light.   

     Figure S2a depicts a theoretical model for the nonlinear regime of excitation, in which a few 

plasmons can be excited in a single NC. Below we will see that, under CW illumination, it is 

challenging to achieve a situation with a few excited plasmons in a single NC. However, as we 

mentioned in the main text, the regime with a few pumped plasmons in a single NC can be achieved 

under excitation with powerful ultrashort pulses, [S3] when the lattice temperature may not 

increase so significantly.    

     In the CW regime, the time derivative in (S7) vanishes and we obtain a simple estimate for the 

plasmonic population 
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Assuming a plasmon to be a simple harmonic oscillator, the relaxation rate for the population of 

plasmon is plasmon plasmon,dec1/ 2   , where plasmon,dec  is the decoherence rate. This decoherence rate 

should be taken as half of the broadening of the plasmon peak in the absorption spectrum, since 

such broadening comes from the decoherence of oscillations of the polarization.  In other words, 

plasmon,dec / 2FWHM   for the plasmonic peak. For a spherical NC, we can see from simple 

simulations within the local dielectric function approach that plasmon 2.4 fs   . This time is shorter 



than the time constant coming directly from the Drude relaxation constant: Drude 0.078 eV  and 

Drude Drude/ ( ) 8.4 fs   . The reason is that the plasmon peak in a spherical NC is strongly 

broadened due to the interband transitions. The absorption rate is calculated from the Mie theory 

using the standard equation:  
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where metal  is taken from the tables [S4] and the light flux 0I  is a variable.  We need to consider 

two models: a NC in water (model 1) and a NC on a glass substrate (model 2). Figures S2 and S3 

below show such models. For those models, we take the following dielectric constants for the 

matrix: matrix 1.8   (water) and matrix (1 2.5) / 2 1.75     (a NC on a substrate).  

     Simultaneously, we should estimate the photoinduced temperature by a NC. For a spherical NC, 

we have for the local increase of temperature at the surface: 
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where NCR  is the NC radius and t,matrixk  is the heat conductivity. For the first model, 

 t,matrix t,water 0.6 W cm Kk k   . In the second case, we can take the thermal conductivity as an 

average of glass and air:    t,matrix t,glass t,air / 2 0.7 W cm Kk k k    .  

      Below we present the results for a 40 nm Au NC under CW pumping for both models. We 

excite the NC exactly at the plasmon peak, i.e. at NC
p  , where  NC

p 2.37 eV  ; the 

corresponding wavelength of excitation is NC
p 520 nm  .  

 

  



2.1 Model 1: Water matrix  

 

Local heating regime: Figure S2a shows the number of plasmons and the photoinduced local 

temperature. The local temperature at the surface was calculated as  

 

NP,surface NP,surface 293 KT T   . 

The room temperature was taken as 20 °C, thus in absolute units is 293K.  Then, the boiling point  

for water will be reached when the phototemperature of NP,surface 80 KT  . We reach such 

temperature for  5 2
0 3.6 10 W/cmI   . For that intensity, the number of plasmons is 

plasmons 0.08 1N   .  Therefore, for the case of water matrix, the steady-state number of plasmon 

at the boiling point of the matrix is small. In other words, we may not be able to achieve a large 

population of plasmons in a liquid matrix under the CW illumination regime.  

 

Collective heating regime: We should also emphasize that the above temperature (S9) is the local 

one. In real experiments with NC solutions, the temperature is typically given by the collective 

heating effect [S5,S6], which produces temperatures much greater than the above estimate, 

NC,surfaceT , given by (S9).  In the model shown in Figure S2c, we observe that 

collective NC,surfaceT T   . Now we will compute the collective temperature at the center of a 

spherical cluster composed of 105 NCs. The cluster is submerged in a boundless water matrix. The 

equations to compute the collective temperature are [S5]:  
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where totQ  is the total absorption rate, NCN  is the number of Au NCs in the cluster,  0R  is the 

radius of the cluster.  The parameters used in the calculations are: 5
NC 10N   and 0 5.8 μmR  .  

 

 



The calculated collective temperature is, of course, much higher than the local one. The collective 

enhancement factor is  
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Figure S2c shows the collective phototemperature. The boiling point is now reached at the smaller 

intensity of 3 2
0 0.68 10 W/cmI   . Then, the plasmon number per a NC is now really small at the 

boiling point: plasmons 0.00015 1N   . Again, we observe that the number of plasmons per NC is 

small for the typical intensities used in a solution experiment.  

 

2.2 Model 2: A NC on a substrate  

In model 2, we look at the local heating effect arising from a single NC placed on a glass surface 

(Figure S3). Again, we estimate the number of plasmons and the corresponding phototemperature. 

In this system, the relevant phase transition is the melting of the gold NC. Bulk gold melts at 

1337 K (1064 °C), although a small NC can reshape or melt at lower temperatures [S7]. We again 

observe an interesting picture - the pumping of a single plasmon in the CW regime is challenging. 

The required flux for the condition plasmons 1N   is 6 2
0 4.9 10 W/cmI   . Simultaneously, the flux 

required to melt the NC is very close to the above number, with 6 2
0,melting 5.8 10 W/cmI   . 

Therefore, we observe an interesting property: maintaining a single plasmon into a NC in the 

steady state comes together with melting the NC. In a real experiment, it can be challenging to 

achieve a regime with plasmons ~ 1N  in a single NC, because the NC can be damaged at the required 

excitation intensity.   

 

 

 

 

 



 

Figure S2: a) Energy diagram for the nonlinear regime of multi-plasmon generation and the 
calculated number of plasmons in one NC in the CW excitation regime. b,c) Phototemperature. 
The phototemperature is calculated for the two cases. Panel (b) shows the regime of local heating 
using a single spherical NC. Panel (c) describes the case with the strong collective heating effect; 
in this case we use the model of a cluster of Au NCs.  



 

Figure S3: a) Number of plasmons in a single NC phototemperature in the model incorporating a 
single NC on a glass substrate (diagram on the left). b) Local temperature at the NC. The relevant 
phase transformation in this case is the melting of the gold NC.  
  

 

  



3. Current literature on HEs.  

 

Here we give a few examples of fully-quantum calculations for the energy distribution of HEs in 

a plasmonic NCs. The authors of the data shown in Figure S4 employed different theoretical 

approaches. In these spectra, one can see two types of excited carriers: the HEs with high energies 

and the plasmonic (Drude) electrons with low excitation energies. The HEs are created via 

quantum optical transitions in a NC. The plasmonic low-energy carriers occupy the states near the 

Fermi level and appear as a result of classical acceleration.  

 

 

Figure S4:  A few examples of calculated hot-electron distributions from the current literature. 
These distributions were calculated for various nanocrystals, which were optically driven at the 
plasmonic frequency. a) Au cubes from [S2]. The approach is based on the density matrix 
formalism. b) Au spheres from [S8]. The approach is based on the density matrix formalism and 
the mean-field theory. c) Sodium sphere from [S9]. The method involves Fermi’s golden rule.  d) 
TD-DFT calculation for the large Ag cluster from [S10].  Reproduced with permission from (a) 
[S2] Copyright 2013 American Chemical Society, (b) [S8] Copyright 2017 American Chemical 



Society, (c) [S9] Copyright 2018 American Chemical Society, (d) [S10] Copyright 2019 Royal 
Society of Chemistry.  
 
 

4. Estimates for nonthermalized hot electrons and for thermalized hot carriers.  

 

Figure 7a shows that an excited NC always has some number of nonthermalized HEs with energies 

in the interval F FE E E     . Then, Figures 10a,b give another piece of information: for 

certain experimental situations, we specifically care about the numbers of over-barriers electrons, 

i.e. the number of electrons with barE E  . There are two mechanisms creating such carriers: the 

direct optical excitation and the electronic photothermal effect. We now estimate the number of 

over-barrier carriers for those mechanisms.  

   First, we define the electronic temperature as a function of the intensity for a typical experimental 

situation. We note that the electronic and crystal temperatures are close to each other in the CW 

excitation regime. From the experiment [S11], we derive the following function:  
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where the photothermal coefficient is calculated as 

 
2

80 K

566 W cmT   . 

This coefficient is derived from the observation that the solution gets boiled at the flux of 

2566 W cm . The mechanism of photo-heating is collective and, therefore, we need relatively 

small intensities to reach the boiling point of water. The Au spherical NCs in Ref. [S11] had a 

diameter of 40nm. The optical path and the laser spot radius were 1.65 mm and 0.15 mm, 

respectively. The NC concentration was 10 -39 10 cm .   Now we compute the number of thermal 

electrons in a NC above the barrier. For high energies ( F B eE E k T  ), the Fermi distribution 

function becomes an exponential function:  
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Then, the number of over-barriers electrons is computed in the following way:  
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where ( )DOS   is the density of states in a NC:  
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Here NCV  is the NC volume. Eq. (S11) is the key formula to estimate the number of photothermal 

electrons in a NC. It has the Boltzmann exponential function, which is very small at small light 

intensities, since bar B eE k T  . Here eT is the electronic temperature and this temperature

~e roomT T . To get the feeling of how small this function is, we now look at the involved energies 

and their ratio: bar 0.8 eVE  , B room 0.025 eVk T  and bar B room/ ~ 31.7E k T . Therefore, the 

exponential function at room temperature becomes   
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However, the coefficient before the exponential function in (S11) is large. So, we need to be careful 

in computing function (S11). To quantify the electronic photothermal process, we will plot below 

the photo-induced change in the thermal over-barrier population:  
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    The number of HE electrons can be derived from the rate of generation and the relaxation time. 

Under the steady-state condition, the number of HEs is given by  

 

bar bar, , e-eHE E E HE E EN Rate                    (S12) 

where 
barHE, E > E + ΔEF

Rate is the rate of generation of HEs and  e-e  is the e-e relaxation time.  The 

rate of the HE production is given in the main text as Eq. 19:  
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The e-e relaxation time as a function of energy is given by: 

  

2
F

e-e 0,e-e 2
F

( )
( )

E

E
  





 

 

where 0,e-e 6 fs   [S12]. For our numerical estimates, we will take the e-e time in the middle of 

the energy interval of interest, which is F FbarE E E E      , where 2.37 eV   and 

0.8 eVbarE  . In other words, we take e-e e-e ( )   , where 1.59 eV  .  

     For a spherical NC, the surface integral in (S13) is easy to compute [S13]:  
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where 0E  is the amplitude of the external driving field, which is taken in the standard form 

0( ) cos( )E t E t  .   



      From the key equations (S11) and (S12), we observe that  
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For the case of the thermalized HEs, we assumed above that 
bar bar
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E E

k T I k Te e
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dependencies are fundamentally different. The number of HEs has a linear dependence with the 

intensity, whereas the number of thermal HEs is proportional to the exponential function, in which 

the intensity enters the Boltzmann exponent.  Therefore, the HEs will always dominate for small 

light intensities. Below we will see it this in our numerical calculations (Figure S5). At the intensity 

required to boil water in a solution system, the number of HEs is much greater than the number of 

thermal electrons:  
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The above estimates for realistic experimental conditions show the importance of HEs in small 

plasmonic nanostructures, where the quantum surface generation of HEs dominates over the bulk 

electronic photothermal effect.  Figure S5 illustrates this conclusion.  

 

               

 

 



Figure S5: This figure includes the calculated collective phototemperature (a), the numbers of 
over-barrier electrons (b) and the ratio, 

bar bar, Thermal HE,/HE E E E ERatio N N    (c). Here, we used 

the following parameters: F 5.5 eVE  (gold), bar 0.8 eVE  (Au-TiO2 barrier) and water 1.8  . 

Pumping is resonant, i.e. NC
p 2.37 eV (520 nm)    .  
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