Supporting Information

Fabrication of An Inexpensive Hydrophilic Bridge on A Carbon Substrate and Loading Vanadium Sulfides for Flexible Aqueous Zinc-ion Batteries

Sainan Liu^{a,b}, Xinxiang Chen^c, Qiang Zhang^{a,b}, Jiang Zhou^c, Zhenyang Cai^{c*}, Anqiang Pan^{c*}

^a School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.

^b Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha 410083, China.

^c School of Materials Science and Engineering, Central South University, Changsha 410083, China

*Corresponding author, Email: csuczy@csu.edu.cn, pananqiang@csu.edu.cn

Figure S1 XRD patterns of (a) natural halloysite, (b) A-SiO₂, (c) commercial carbon nanotubes, and (d) pure carbon fiber substrate. Insets: macroscopic photographs of each sample.

Figure S2 Microscale morphology of samples. (a) SEM image and TEM image (inset) of natural halloysite; (b) SEM image and TEM image (inset) of A-SiO₂; (c) SEM image of commercial carbon nanotubes; and (d) SEM image of the pure carbon fiber substrate.

The original halloysite clay morphology exhibits nanotubes with lengths of $0.8-1.0 \,\mu\text{m}$, an average external diameter of $80-100 \,\text{nm}$, and an average lumen diameter of $20-40 \,\text{nm}$. After selective acid etching, the obtained A-SiO₂ retains its original tubular morphology, but with a shorter length of $0.2-0.5 \,\mu\text{m}$. The commercial carbon nanotubes exhibit a curved tubular morphology, and the pure carbon substrate fiber exhibits a smooth surface.

Figure S3 Some representative TEM images of the HCC substrate, showing that A- SiO_2 and carbon nanotubes are uniformly composited on the surface of carbon fibers.

Figure S4 TEM images of (a) pure carbon fiber substrate, (b) HC, and (c) CC

substrate.

Figure S5 Macroscopic digital photos of the intuitive hydrophilicity test of HCC and pure carbon fiber substrates.

Figure S6 Contact angles (CAs) of the (a) CC substrate and (b) pure carbon fiber

substrate.

Position / cm ⁻¹	Position / cm ⁻¹ Assignments	
2600	Inner-surface -OH stretching vibrations	
3090	of halloysite aluminol groups	
2(20	Inner -OH stretching vibrations of	
3620	halloysite aluminol groups	
a broad peak at 3200–3700 with a		
maximum at 3450	SIO-H vibrations	
1643	-O–H deformation of water	
a broad peak at 850–1300 with a	in-plane Si–O–Si deformations	
maximum at 1040		
910	-O–H deformation of inner hydroxyls	
790	Symmetric stretching of Si-O	
750	Si–O–Al perpendicular stretching	

Table S1 Observed vibration positions and their assignments from the FTIR spectra

 of different samples.

Method for Calculating the Physical Adsorption Energy.

First-principles calculations were performed with the density functional theory (DFT) using the Vienna Ab-initio Simulation Package (VASP) package. The generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional were used to describe the electronic exchange and correlation effects. Uniform G-centered k-points meshes with a resolution of 2π *0.03 Å⁻¹ and Methfessel–Paxton electronic smearing were adopted to integrate the Brillouin zone for geometric optimization. The simulation was run with a cutoff energy of 500 eV throughout the computations. These settings ensure the convergence of the total energies to within 1 meV per atom. Structural relaxation proceeded until all forces on atoms were less than 1 meV Å⁻¹ and the total stress tensor was within 0.01 GPa of the target value. The physical adsorption energy of H₂O molecules on the Si–O and carbon surfaces ($\Delta E_{adsorption}$) was defined as:

$\Delta E_{adsorption} = E_{surf+H2O} - E_{surf} - nE_{H2O}$

where $E_{surf+H2O}$, E_{surf} and E_{H2O} represent the ground-state energies of the substrate binding with the H₂O compound, the substrate surface, and the H₂O molecule, respectively, and n=3.

Table S2 DFT-calculated values of the physical adsorption energy of H_2O for carbonnanotubes, pure carbon fibers, and A-SiO2.

$E(surf+H_2O)/eV$ $E(surf)/eV$ $E(H_2O)/eV$ $\Delta E/eV$	V
---	---

Figure S7 (a) XPS survey; (b) V $2p_{3/2}$ and (c) S 2p spectrum of the HCC-V₃S₄

samples.

Figure S8 TGA curve of the $HCC-V_3S_4$ in the air atmosphere.

Figure S9 (a) SEM and (b) TEM images of the HCC- V_3S_4 samples.

Figure S10 TEM images of (a) $C-V_3S_4$, (b) $HC-V_3S_4$, and (c) $CC-V_3S_4$.

Figure S11 Macroscopic digital photos of each component for the flexible HCC-

 V_3S_4 //CFC–Zn device.

Figure S12 (a) XRD pattern and (b) SEM image of the CFC–Zn samples.

Figure S13 The selected galvanostatic charge/discharge curves of $C-V_3S_4$ at different current densities.

Figure S14 Electrochemical performance of the flexible systems CC-V₃S₄//CFC–Zn and HC-V₃S₄//CFC–Zn in the voltage range of 0.5–1.5 V (vs. Zn/Zn²⁺). (a) Cycling performance at 0.5 A g⁻¹ and (b) rate performance.

Figure S15 The flexibility and the corresponding electrochemical performance of the HCC-V₃S₄//CFC–Zn device at 2 A g⁻¹ in the voltage range of 0.5–1.5 V (vs. Zn/Zn²⁺).

Samples	Current density	Capacity retention / mA h g-1	Cycle number	Reference
	/ A g-1	(voltage range)		
VS4@rGO	1	180 (0.35-1.8 V)	165	[1]
Na ₂ V ₆ O ₁₆ ·1.63H ₂ O nanowire	0.1	231 (0.2-1.6 V)	100	[2]
Na _{1.1} V ₃ O _{7.9} nanoribbons/graphene	0.3	171 (0.4-1.4 V)	100	[3]
Fe ₅ V ₁₅ O ₃₉ (OH) ₉ ·9H ₂ O nanosheet	5	100 (0.4-1.6 V)	300	[4]
VS ₂ nanosheet	0.5	111 (0.4-1.0 V)	200	[5]
V ₂ O ₅ nanosheet	2	113 (0.4-1.4 V)	400	[6]
Na _{0.76} V ₆ O ₁₅	0.5	125 (0.4-1.4 V)	100	[7]
This work flexible HCC-	0.5	148 (0.5-1.5 V)	200	This
V3S4//CFC-Zn	5	102 (0.5-1.5 V)	1000	work

Table S3 A comparison of our work with previously reported electrochemicalperformance of V-based cathode ZIBs.

Figure S16 Ex situ XRD patterns of the HCC-V $_3S_4$ electrodes (a) discharged to 0.5 V

at the second cycle and (b) charged to 1.5 V at the second cycle.

Figure S17 Ex situ XRD patterns of the HCC-Zn electrodes (a) discharged to 0.5 V at the first cycle and (b) charged to 1.5 V at the first cycle.

			Composit	tion (at%)		
Samples	V	S	Zn	Si	0	С
1	3.61	4.81	0.88	5.29	10.59	74.82
2	3.73	4.97	0.97	5.03	10.06	75.24
3	3.67	4.89	0.92	5.17	10.34	75.01

 Table S4 WDS composition analysis of the first cycle discharged electrode.

Figure S18 Electrochemical impedance spectra of the flexible ZIBs employing the $HCC-V_3S_4$, $HC-V_3S_4$, $CC-V_3S_4$, and $C-V_3S_4$ as cathodes.

In the Equivalent circuit, Rs stands for the combination of electrolyte resistance and ohmic resistances of cell components. R_{ct} is the resistance of the charge transfer resistance of electrochemical reaction. Q, and W are the double layer capacitance, and the diffusion controlled Warburg impedance (the value is recorded as R_W), respectively. The conductivity of the samples was calculated by the formula: $\sigma=L/S\cdot R$, where L is the thickness of the electrode (80 µm) and S is the cross-sectional area of the electrode (4 cm²). σ_e means electron conductivity ($\sigma_e=L/S\cdot R_{ct}$). σ_i is ion conductivity ($\sigma_i=L/S\cdot R_W$). So, the ion and electron values of these different samples were shown in Table S5.

Samples	$\sigma_e/\!\!\times\!10^{2}S\!\cdot\!m^{1}$	$\sigma_i/\!\!\times\!\!10^{2}~S\!\cdot\!m^{1}$
HCC-V ₃ S ₄	2.05	3.91
HC-V ₃ S ₄	1.10	0.86
CC-V ₃ S ₄	0.89	0.66
C-V ₃ S ₄	0.41	0.07

Table S5 The ion and electron conductivity of that different samples.

References

(1) Qin, H.; Yang, Z.; Chen, L.; Chen, X.; Wang, L. A High-rate Aqueous Rechargeable
Zinc Ion Battery Based on the VS₄@rGO Nanocomposite. *J. Mater. Chem. A* 2018, 6
(46), 23757-23765.

(2) Hu, P.; Zhu, T.; Wang, X.; Wei, X.; Yan, M.; Li, J.; Luo, W.; Yang, W.; Zhang, W.;
Zhou, L.; Zhou, Z.; Mai, L. Highly Durable Na₂V₆O₁₆·1.63H₂O Nanowire Cathode for Aqueous Zinc-Ion Battery. *Nano Lett.* 2018, *18* (3), 1758-1763.

(3) Cai, Y.; Liu, F.; Luo, Z.; Fang, G.; Zhou, J.; Pan, A.; Liang, S. Pilotaxitic S-15

Na_{1.1}V₃O_{7.9} Nanoribbons/graphene as High-performance Sodium Ion Battery and Aqueous Zinc Ion Battery Cathode. *Energy Storage Mater.* **2018**, *13*, 168-174.

(4) Peng, Z.; Wei, Q.; Tan, S.; He, P.; Luo, W.; An, Q.; Mai, L. Novel Layered Iron Vanadate Cathode for High-capacity Aqueous Rechargeable Zinc Batteries. *Chem. Commun. (Camb)* **2018**, *54* (32), 4041-4044.

(5) He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered VS₂ Nanosheet-Based Aqueous Zn Ion Battery Cathode. *Adv. Energy Mater.* **2017**, *7* (11), 1601920.

(6) Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Investigation of V₂O₅ as A Low-cost Rechargeable Aqueous Zinc Ion Battery Cathode. *Chem. Commun. (Camb)* 2018, *54* (35), 4457-4460.

(7) Guo, X.; Fang, G.; Zhang, W.; Zhou, J.; Shan, L.; Wang, L.; Wang, C.; Lin, T.;
Tang, Y.; Liang, S. Mechanistic Insights of Zn²⁺ Storage in Sodium Vanadates. *Adv. Energy Mater.* 2018, 8 (27), 1801819.